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Abstract— Artificial intelligence (AI) is changing the way1

computing is performed to cope with real-world, ill-defined tasks2

for which traditional algorithms fail. AI requires significant3

memory access, thus running into the von Neumann bottleneck4

when implemented in standard computing platforms. In this5

respect, low-latency energy-efficient in-memory computing can6

be achieved by exploiting emerging memristive devices, given7

their ability to emulate synaptic plasticity, which provides a8

path to design large-scale brain-inspired spiking neural networks9

(SNNs). Several plasticity rules have been described in the brain10

and their coexistence in the same network largely expands11

the computational capabilities of a given circuit. In this work,12

starting from the electrical characterization and modeling of the13

memristor device, we propose a neuro-synaptic architecture that14

co-integrates in a unique platform with a single type of synaptic15

device to implement two distinct learning rules, namely, the16

spike-timing-dependent plasticity (STDP) and the Bienenstock–17

Cooper–Munro (BCM). This architecture, by exploiting the afore-18

mentioned learning rules, successfully addressed two different19

tasks of unsupervised learning.20

Index Terms— Bienenstock–Cooper–Munro (BCM), memris-21

tor, resistive memory, spiking neural network (SNN), spike-22

timing-dependent plasticity (STDP).23

I. INTRODUCTION24

THE demand for ubiquitous edge computing, e.g., due25

to the deployment of Internet-of-Things devices, calls26

for energy-efficient computing solutions. In this respect, the27

need for constantly moving data between the CPU and28

the memory in the von Neumann architecture has been29

identified as the main limitation of traditional systems,30
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known as von Neumann bottleneck [1]. A three-order-of- 31

magnitude gap in delay and energy consumption between 32

the actual computation and the complete von Neumann 33

pipeline has been estimated [2]. This limitation becomes 34

of primary importance if artificial intelligence (AI) algo- 35

rithms are asked to be solved locally in low-power systems 36

(so-called edge intelligence) since AI algorithms are typically 37

energy-hungry [3]. 38

Recently, a large variety of approaches have been proposed 39

to reduce power consumption while maintaining (or even 40

increasing) performances for AI applications [4]. Hardware- 41

based neuromorphic spiking neural networks (SNNs), i.e., 42

ad hoc non-von Neumann solid-state circuits emulating some 43

neurobiological functionalities, seem among the most promis- 44

ing. The advantages brought to the fore by SNNs are, 45

in fact, related to their intrinsic functionality that mimics the 46

processes involved in biological neural computation. The latter 47

is indeed very efficient and leverages on a distributed network 48

of elements in which computation and memory functions 49

are co-located, i.e., synapses take an active part in both 50

information processing and storage [5], [6], [7]. In recent 51

years, novel memristive devices emerged as key enablers for 52

fabricating very large-scale SNNs [8], [9] since they can 53

serve as local computational and storage units, emulating 54

specific properties found in the biological realm such as 55

homo-synaptic plasticity [8]. In an SNN, when a presynaptic 56

neuron (i) (hereafter called pre) fires a spike, an excitation 57

(or inhibition in the case of inhibitory neuron) is observed 58

on the postsynaptic neuron ( j) (hereafter called post). The 59

amplitude of the response at the post side is mediated by the 60

synaptic efficacy or weight wi j . In fact, wi j is not constant, 61

and its change is referred to as synaptic plasticity. Memristive 62

devices are employed to mimic synaptic weights. When the 63

pre neuron fires a spike, the spike voltage is applied to the 64

memristive device, and the resulting current is integrated by 65

the post neuron. Since, in a first approximation, a single 66

spike provides an all-or-none type of information, the role 67

of the synaptic weight is to introduce analog modulation in 68

the information transferred to the post neuron. In memristor- 69

based SNNs, this task is performed by the conductance of the 70

memristive element. In neurobiology, the change of synaptic 71

weights is called learning and the conditions leading to express 72

plasticity are the learning rules [5]. The implementation of 73
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learning rules in SNNs leads to optimizing networks’ ability to74

perform a given task. Several learning rules have been derived75

and encoded, and here, we focus on those involved in biolog-76

ically plausible mechanisms characterized by the absence of77

supervision or input labeling. Unsupervised learning is indeed78

the most intriguing feature pertaining to human cognition and79

perception by virtue of its independence from teaching signals80

at each learning event [10]. The learning rules instantiating the81

unsupervised learning can be classified as being timing or rate82

based. In timing-based rules, synaptic plasticity is expressed83

in terms of the time at which individual spikes at the pre84

and/or post are produced, whereas in rate-based, the relation85

is expressed in terms of the spiking rates at the pre and/or86

post. The functional properties emerging from the activity of87

plastic networks are related to specific learning rules. Two of88

the most studied are categorized into spike-timing-dependent89

plasticity (STDP) [10] and the Bienenstock–Cooper–Munro90

(BCM) [11], [12], [13]. STDP is known to develop an asym-91

metric weight connectivity when repetitive exposure to inputs92

with consistent temporal structure is presented to the network93

[14], [15]. BCM, on the other hand, has been shown to subtend94

the emergence of neuronal selectivity [11], [12], [13]. While95

STDP is sometimes used for pattern classification tasks, both96

using mathematical models of neurons (e.g., leaky integrate-97

and-fire) and synapses [16] and memristive devices [8], [17],98

[18], [19], we limit our discussion on STDP to its timing99

properties. This choice is based on the idea that BCM can pro-100

vide a better implementation of pattern classification due to its101

intrinsic development of selectivity. While the developmental102

equation for weights under the STDP rule predicts Hebbian-103

like weights dynamics [5], STDP does not entail competition104

between input synapses associated with different patterns.105

When using STDP, this type of competition is typically added106

through several mechanisms at neuron and/or network level,107

and some examples of these mechanisms are adaptive firing108

threshold, lateral inhibition [16], and synaptic normalization.109

On the other hand, BCM has competition between synapses110

intrinsically built-in (discussed briefly in Section III-B), mak-111

ing it better suited for pattern separation and classification.112

The coexistence of multiple learning rules is of primary113

importance to provide neuromorphic hardware with the ability114

of the brain to adapt to complex scenarios. Several works have115

shown the possibility to implement STDP with either analog116

[8], [18], [19], [20] or binary [21] memristive devices and117

few others tackled the problem of other long-term plasticity118

rules [22], [23], [24], [25], [26], [27]. At the first glance,119

mimicking several plasticity rules would require the use of120

different classes of synaptic elements integrated in the same121

chip by means of different synaptic devices. Nonetheless, this122

poses serious challenges to process engineers, dramatically123

increasing the technological complexity and the overall cost124

of the circuit.125

For this reason, in this work, we address this challenge by126

exploring the possibility to implement two different learning127

rules, namely, STDP and BCM, in a single neuromorphic128

platform using a unique type of synaptic device. Previous129

works [24], [25], [26], [27] have shown the co-integration130

of rate and temporal learning on memristive elements, but131

with several limitations. He et al. [24] showed the integra- 132

tion of two learning rules (rate- and timing-based) on the 133

very same synaptic element, assuming cumulative effects of 134

presynaptic stimulation. In their implementation, depending 135

on the pre rate, either STDP or rate-based (SRDP) plasticity 136

is observed. However, no correlation between pre and post 137

neuron activities is considered for the rate-based plasticity, 138

as instead required by many learning rules such as BCM 139

[5], [28]. Ahmed et al. [25] implemented different plasticity 140

rules by using specialized writing circuits to program the 141

memristive elements and not directly exploiting the actual 142

properties of the spikes. A time-to-digital-to-voltage amplitude 143

circuit reads pre and post spike timings and subsequently 144

updates the memristor conductance using analog multiplexers, 145

allowing fine-tuning of the programming voltage in relation 146

to the pre and post timings. Wang et al. [26] were able to 147

reproduce both STDP and SRDP with a series connection 148

of volatile (diffusive) and nonvolatile (drift) memristors. The 149

use of the volatile memristor temporal dynamics achieves 150

STDP with nonoverlapping spikes as well as a rate rule with 151

a monotone relationship between pre stimulation rate and 152

potentiation. While it is an interesting approach, it suffers from 153

several drawbacks. To demonstrate STDP, they have exploited 154

the delay and relaxation time of the diffusive memristor. The 155

waveforms consist of a short high-voltage pulse followed by 156

a long low-voltage one. The former can induce plasticity in 157

the drift memristor (i.e., long-term plasticity), but due to the 158

delay time, it is unable to activate the diffusive memristor, 159

which, when OFF, effectively impedes plasticity. The latter 160

instead is unable to modify the drift memristor but switches 161

ON the diffusive memristor. Thus, a couple of spikes close to 162

each other are needed to induce long-term plasticity. A careful 163

design of the pre and post spikes allows achieving STDP. 164

In addition to the common STDP, however, this approach 165

includes a non-Hebbian plasticity term due to multiple pre 166

(or post) spikes close to each other. Furthermore, their imple- 167

mentation of SRDP does not consider correlation between 168

pre and post rates (i.e., it is a non-Hebbian plasticity), and 169

its monotonic relation between weight and stimulation rate 170

is different from the BCM rule. Milo et al. [27] integrated 171

STDP and SRDP with memristors using a one-transistor one- 172

resistor (1T1R) and 4T1R architecture, respectively. For the 173

SRDP, long-term potentiation (LTP) is obtained when the post 174

neuron is active and, at the same time, the pre stimulation rate 175

is sufficiently high. Long-term depression (LTD) is achieved 176

by using random post neuron depression back-spikes, which 177

are effective only when the pre neuron is also active. The 178

three main drawbacks of their implementation are: the non- 179

integration by the post neuron of low-frequency pre spikes, 180

the quadratic relation between the weight dynamics and the 181

presynaptic rate (rather than the postsynaptic rate as in BCM 182

rule [12]), and the lack of threshold adaptation to move from 183

LTD to LTP. As explained briefly in Section III-B, the last 184

two properties are important for the robust development of 185

selectivity in the post neuron. The novelty of this work is the 186

integration of different learning rules using the same 1T1R 187

synaptic circuit allowing different synapses to follow specific 188

learning rules. No specialized programming circuit is used, 189
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with the spikes produced by the proposed neuron design being190

directly used as the programming voltages for the memristors.191

To this end, each of the two learning rules is tied to a different192

input of the proposed neuron. Different back-spikes at the two193

inputs are used to program the memristor synapses to follow194

different rules. While our implementation of the STDP is alike195

other in [8], [9], [18], [19], [20], [29], and [30], we propose196

a new architecture for a detailed implementation of the BCM197

rule. The implemented learning rules are successfully tested198

by circuit simulations of artificial SNNs and are verified to be199

consistent with the detailed features of the plasticity models200

employed. A thorough electrical characterization of commer-201

cially available packaged memristive devices is performed, and202

the results are used to calibrate the UniMORE resistive random203

access memory (RRAM) compact model [31]. The calibrated204

model is then used to 1) verify the conditions to be satisfied by205

the chosen memristive device in order to exhibit the specific206

type of plasticity; 2) design a full hybrid-CMOS memristive207

circuit that can support simultaneously both learning rules; and208

3) to perform comprehensive circuit simulations of two dif-209

ferent tasks that leverage on the two different bio-inspired210

learning rules. Results show that using the same components211

(artificial neurons and synapses) and only changing the organi-212

zation of the network, i.e., the connectivity and the plasticity213

rules, we can optimize the architecture to perform different214

tasks.215

II. DEVICES, EXPERIMENTS, AND COMPACT MODELING216

A. Devices and Experiments217

The devices we used are the carbon-doped self-directed218

channel (SDC) memristors fabricated and commercialized by219

Knowm Inc. [32], [33]. In SDC memristors, Ag agglomerated220

in a Ge2Se3 layer is used to modulate the conductance of the221

device [32], [33]. The structure of the memristor is a multilayer222

stack composed of W/Ge2Se3/Ag/Ge2Se3/SnSe/Ge2Se3:C/W,223

where Ge2Se3:C is the active layer [32]. During fabrication,224

the first three layers below the TE are mixed and form225

the Ag source [33]. The role of the SnSe layer is twofold:226

1) it acts as a barrier to avoid Ag saturation in the active227

layer; and 2) the production of Sn ions and their migration228

into the active layer during the device “forming” promote229

Ag agglomeration in specific sites [32], [33]. The electrical230

measurements were performed using the Keithley 4200-SCS231

semiconductor parameter analyzer on dual in-line package232

(DIP) devices. To verify the functionality and basic operation233

of the memristors [34], [35], [36], we performed a sequence of234

15 I–V measurements in dc sweep (quasi-static) mode. The235

applied voltage ramp extended from −0.8 to 0.4 V, and the236

parameter analyzer was set to enforce a 10-μA current compli-237

ance. Results are shown in Fig. 1(a) (red traces): the switching238

curves are characterized by an abrupt transition from the low-239

resistive state (LRS) to the high-resistive state (HRS) with240

a marked cycle-to-cycle variability on the transition voltage241

and a more predictable and gradual transition from HRS to242

LRS. Then, the synaptic functionality of the memristors was243

experimentally verified by applying a suitable pulsed voltage244

sequence to the device. In this experiment, a 10-k� resistor245

Fig. 1. (a) Experimental (red curves) and simulated (black lines) quasi-static
I–V characteristics of the memristive device. (b) Pulse waveforms used to
potentiate and depress the memristive device. (c) Experimental (symbols) and
simulated (solid line) pulsed response of the memristive device when subject
to sequences of potentiation (red circles) and depression (blue diamonds)
pulses, shown in (b). The device is initially driven in LRS by means of 20
“initial set” rectangular pulses, also shown in (b). The resistance read after
each pulse by means of a read pulse, also shown in (b), is computed as
(VREAD/I ) − Rs (Rs = 10 k� series resistance).

was connected in series with the device to prevent accidental 246

current overshoots (whit the role of the series resistor being 247

negligible in normal operating conditions). The device was 248

initially driven in LRS by means of 20 rectangular pulses 249

(V = 0.6 V and T = 100 μs). Then, depression and potentia- 250

tion were verified by means of trains of 20 identical rectangu- 251

lar depression pulses (V = −0.2 V and T = 10 μs) followed 252

by 20 identical rectangular potentiation pulses (V = 0.55 V 253

and T = 30 μs). Each potentiation or depression pulse is 254

followed by a small reading pulse (VREAD = 50 mV and 255

TREAD = 50 μs) that is used to retrieve the resistance value. 256

The pulses are shown in Fig. 1(b), while the synaptic response 257

of the device to the pulse sequence is reported in Fig. 1(c), 258

in which a gradual and reproducible resistance change caused 259

by the cumulative effect of identical pulses is evidenced. 260

B. Compact Model 261

The experimental data are used to calibrate the UniMORE 262

RRAM compact model [31]. The latter is a physics-based 263

compact model supported by the results of advanced multiscale 264

simulations [37] that has been shown to reproduce both the 265

quasi-static and the dynamic behavior of different memristors 266

technologies with a single set of parameters [38] and con- 267

siders the intrinsic device stochasticity and random telegraph 268
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TABLE I

VALUES OF THE PARAMETERS OF THE COMPACT MODEL AS LISTED AND DESCRIBED IN [31] CALIBRATED TO REPRODUCE THE DATA IN FIGS. 1 AND 2

noise [39], [40] providing a strong link to the device physics.269

Coded in Verilog-A, the model can be seamlessly employed270

in SPICE circuit simulations. The model includes the main271

mechanisms governing the transition between HRS and LRS272

by means of field- and temperature-assisted ions/defects drift273

and recombination (LRS-to-HRS transition) and by means of274

field- and temperature-driven bond breaking and related defect275

generation/motion (HRS-to-LRS transition). The internal tem-276

perature dynamics modeling includes the effect of thermal277

capacitance. The details of the model are discussed in [31].278

The model calibration, as well as all circuit simulations,279

is carried out using the Cadence Virtuoso ADE tool. Initially,280

the model parameters are adjusted to reproduce the results of281

both quasi-static switching and pulsed response experiments282

performed during the characterization stage, using the same283

voltage waveforms used in the experiments. The results of both284

experiments, as shown in Fig. 1(a)–(c), are correctly repro-285

duced, confirming that the calibrated model can be effectively286

used in circuit simulations for dependable results. Specifically,287

the model properly accounts for the nonlinearity of charge288

transport observed in both HRS and LRS, as well as for the289

quite abrupt transition from LRS to HRS and the more gradual290

transition from HRS to LRS in quasi-static operation, together291

with the observed cycle-to-cycle variability. In addition, the292

model well-reproduces the typical potentiation and depression293

patterns in Fig. 1(c), which is essential for the simulation of294

spike-driven local learning processes. The optimized values of295

the model parameters (as given in [31]) are shown in Table I.296

III. BIO-INSPIRED LEARNING RULES297

In an SNN, action potentials propagate through the network298

conveying information and potentially determining changes299

in the weights of the encountered synapses, giving rise to300

synaptic plasticity. The existence of various learning rules has301

been reported in almost all brain areas according to their role302

in brain computation. For instance, the cerebellar cortex, which303

is primarily involved in motor learning, can express different304

plasticity rules. In particular, in the same glomerulus, a small305

and compact synaptic hub collecting axons and dendrites from306

tens of neurons, Hebbian [41], non-Hebbian [42], STDP [43],307

and BCM-like [44] synaptic rules can be simultaneously308

expressed. This rich repertoire of mechanisms allows the309

circuit to exploit complex spatiotemporal input computation.310

Similar mechanisms have been observed in visual cortical311

systems [45] and in hippocampal formations [46]. In a wider312

perspective, timing-based learning models are typically associ-313

ated with tasks in which the precise timing of events assumes314

significant importance, such as velocity estimation or spatial 315

navigation [46]. Conversely, rate-based models have been 316

used to explain computational primitives such as statistical 317

learning and neural selectivity [5], [28], as in the case of 318

pattern discrimination of sensory stimuli operated by cortical 319

columns [47]. 320

We focus on two well-known plasticity rules, the STDP and 321

the BCM, since they are typical examples of timing- and rate- 322

based rules. In a circuit simultaneously supporting both learn- 323

ing rules, an important objective is to achieve a design in which 324

information is conveyed through the network in a learning-rule 325

agnostic fashion. Indeed, being spikes stereotyped events, only 326

their timings and rates should, at least in first approximation, 327

carry the information. In fact, in theoretical neuroscience, it is 328

typical to model spikes using Dirac’s delta function, implying 329

that the shape of the spike carries no information [28]. Overall, 330

at the post neuron, the effect of a pre spike should only depend 331

on the synaptic efficacy and not on the learning rule used to 332

modify the weight. This constrains the (forward propagating) 333

spikes to be identical in synapses learning by different rules. 334

A. Spike-Timing-Dependent Plasticity Learning Rule 335

In STDP, the sign of plasticity depends on the relative timing 336

between the spikes at the pre and the post neurons. The focus 337

is on the causality: the synapses connected to pre neurons that 338

cause the post neuron to fire undergo LTP, while the synapses 339

that experience an anticausal relation undergo LTD. From a 340

neuromorphic device standpoint, STDP can be implemented 341

by exploiting the overlap of presynaptic and postsynaptic 342

spikes [9], [29]. Using overlapping waveforms from pre and 343

post neurons to obtain STDP is commonly employed [8], [9], 344

[18], [19], [29], [30], though other approaches are possible. 345

For example, Wang et al. [26] used nonoverlapping spikes 346

leveraging on the temporal dynamics of volatile memristors. 347

In [20] and [27], the waveforms applied across the memristor 348

are driven by the post neuron only, while the pre neuron just 349

drives the selector transistor. 350

To study the feasibility of overlap STDP with the calibrated 351

memristor model, the setup in Fig. 2(a) has been consid- 352

ered. The memristor device with its nMOS selector is placed 353

between two spike waveforms’ voltage sources that mimic the 354

effective behavior of the pre and post neurons, respectively, 355

labeled as forward spike (VFS) and backward spike (VBS), 356

see Fig. 2(b). 357

The forward and backward spikes are designed to be dif- 358

ferent from each other to optimize the STDP relation. To be 359

noted that only the forward spike causes excitation on other 360
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Fig. 2. (a) Test circuit used to verify the correct implementation of STDP
rule. The two voltage waveform generators mimic the pre and post neurons.
(b) Forward spike (VFS) and backward spike (VBS) waveforms. (c) Relative
change of the synaptic weight (the memristor conductance) as a function of the
relative timing of pre and post spikes, showing similarity to the STDP relation
found in biological synapses. Simulations are repeated starting from different
initial resistance values (different symbols). Experimental results obtained on
an SDC memristor are reported as black hollow circles.

neurons (i.e., the actual output spike of a neuron), while the361

backward spike, on the other hand, can solely travel backward362

to implement plasticity. The memristor is placed with its363

bottom electrode connected to VFS, with the top electrode364

facing the selector, in turn connected to VBS. The SpikePRE365

and SpikePOST signals in Fig. 2(a) are rectangular pulses366

that control the voltage sources representing the pre and post367

neurons, respectively. Specifically, SpikePRE is driven high368

when the pre neuron fires a spike and is driven low at the end369

of the spike. In addition, SpikePRE also drives the selector,370

connecting the memristor between VFS and VBS. SpikePOST371

is driven high when the post neuron fires a spike and is driven372

low at the end of the spike. When SpikePRE and SpikePOST373

are low, VFS and VBS are, respectively, zero. Two possible374

conditions can occur depending on the relative spike delay.375

1) The pre neuron spikes more than 10 ms before or more376

than 10 ms after the post neuron spikes: in this case,377

there is no time overlap between the two spikes. When378

only SpikePRE is high, the memristor will experience379

VFS and 0 V at its bottom and top electrodes, respec-380

tively. In this case, no conductance modulation, i.e.,381

plasticity, shall be caused by the forward spike, which382

is therefore designed to be small enough. When only 383

SpikePOST is high, the selector is open and the mem- 384

ristor top electrode will be floating, naturally preventing 385

any conductance modification. 386

2) The time interval between firing events at the pre and 387

post neurons is in between −10 and 10 ms. The overall 388

time can be divided into three periods: only SpikePRE 389

is active, both SpikePRE and SpikePOST are active, and 390

only SpikePOST is active. Their sequence is dictated by 391

whether the pre neuron firing anticipates or follows the 392

post neuron firing activity. As outlined in the previous 393

point, no plasticity will occur when SpikePRE or only 394

SpikePOST is active. However, when both are active, 395

i.e., during the overlap, the total voltage across the 396

memristor is VBS − VFS, which must be designed to be 397

sufficiently high to cause conductance modulation. The 398

two voltage waveforms in Fig. 2(b) have been carefully 399

designed to yield an STDP-like relation between the 400

relative conductance variation and the relative delay 401

between pre and post spikes. 402

Fig. 2(c) shows the relative conductance (i.e., weight) 403

change in the synaptic element when subject to spikes with 404

different delay times, which shows the typical pattern of STDP 405

response [14]. These curves are obtained by simulating the 406

circuit in Fig. 2(a) with different delay times between pre 407

and post neuron spikes (with positive delay meaning that the 408

spike at the post neuron anticipates the one at the pre neuron) 409

and iterated for different initial resistance states. Experimental 410

data [black circles in Fig. 2(c)] are obtained using pulses 411

identical to those in Fig. 2(b) applied to the SDC memristor 412

using the Keithley 4200-SCS. Simulations and experimental 413

results are in good agreement with each other, increasing the 414

dependability of the memristor model and the simulations in 415

this work. Simulation results also show the saturating effect 416

on plasticity caused by the bounded resistance dynamics. Such 417

a saturating effect on the weights is sometimes regarded as 418

weight-dependent plasticity rate [5]. The curves in Fig. 2(c) 419

indeed show how the more a device is potentiated (depressed), 420

which corresponds to low (high) R0, the harder is to potentiate 421

(depress) it further, which has been reported as the optimal 422

choice for synaptic behavior to maximize memory capacity in 423

recursive networks [48]. However, the dynamic range that we 424

show in Fig. 1(c) is not representative of the one that can be 425

obtained in general, as it results from the choice of the voltage 426

pulse amplitude, pulsewidth, and the number of consecutive 427

potentiation or depression pulses [that was set to 20 in the 428

example of Fig. 1(c)]. However, if more pulses are delivered, 429

potentiation and depression can continue (although eventually 430

saturating) and a much larger dynamic range (about 9× in the 431

networks simulated in this study) is achieved. 432

B. BCM Learning Rule 433

Unlike STDP which relates individual spike timing with 434

change in synaptic efficacy, BCM is a rate-based learning 435

rule, relating plasticity to the average firing activity measured 436

over time. The typical function used to describe BCM is 437

ẇi j = η ·�(ν j , θ) · νi , where ẇi j is the time derivative of the 438
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Fig. 3. (a) Test circuit used to verify the correct implementation of the
t-STDP rule. The two voltage waveform generators mimic the pre and post
neurons. A limiter circuit limits the maximum voltage of the backward spike.
The maximum voltage allowed by the limiter, Vsat , is set on its control port.
(b) Relative change of the synaptic weight (the memristor conductance) as
a function of the relative timing of pre and post spikes, showing similarity
with the t-STDP curves reported in theoretical works to implement the BCM
rule [50], where only the potentiation window of the t-STDP (negative delays)
is affected by the triplet term.

synaptic weight connecting pre neuron i to post neuron j , η is439

the learning rate, νi is the pre firing rate, ν j is the post firing440

rate, and θ is the post firing rate threshold separating LTD441

from LTP (i.e., for ν j < θ , LTD will occur, LTP otherwise).442

In many theoretical works, �(ν j , θ) is typically written as443

�(ν j , θ) = ν j (ν j − θ), which provides the characteristic444

nonmonotonic relation between postsynaptic firing rate and445

plasticity [5], [12], [28]. The distinctive trait of the BCM rule446

is its ability to provide selectivity. It can be proven that, under447

certain conditions, the only stable point in the dynamics of448

the weights leads to post neurons responding selectively to449

the input patterns used during training [12].450

Given the features of the BCM rule outlined above, it fol-451

lows that its implementation on a memristors-based SNN452

requires specialized circuitry to monitor the firing rates of453

both pre and post neurons and then update the conductance454

value of the memristor. It has been shown that the BCM455

rule can be obtained with a triplet-STDP (t-STDP) protocol456

[23], [49], [50]. The principle behind emulating BCM with457

t-STDP can be summarized as follows. In the framework of458

the STDP rule, if the delay between pre and post neurons firing459

activity is uniformly distributed over time, then the average460

effect on the synaptic weight will be either potentiation461

or depression depending on the area underneath the STDP462

curve [5]. Therefore, if a viable strategy to modulate the area463

beneath the STDP curve depending on the spiking activities of464

the neurons can be found, then a rate-based plasticity rule can465

be effectively implemented. In our implementation, the STDP466

curve is varied by tuning the maximum positive voltage of 467

the back-spike, affecting only the LTP region of the curve, 468

by means of a limiter circuit [additional block at the post 469

neuron side in Fig. 3(a)] controlled by an ad hoc control 470

voltage generated by a dedicated circuitry (described later 471

in this section). An important feature of this implementation 472

is that only the post back-spike is modified, whereas the 473

forward spike is unchanged compared to the STDP case, 474

making information propagation independent of the learning 475

rule. To test this approach, a setup like the one used to show 476

STDP in Section III-A is used, with the addition of a limiter 477

block with external control that limits the maximum voltage 478

of the back-spike, as shown in Fig. 3(a). The results of the 479

simulations are shown in Fig. 3(b), which demonstrates that 480

the total area beneath the STDP curve can be effectively 481

modulated by tuning the maximum positive voltage of the 482

back-spike. The obtained results are in accordance with the 483

theoretical predictions reported in [50]. 484

In this implementation of the t-STDP protocol, the area 485

beneath the LTP region should be modulated by the temporal 486

distance between successive postsynaptic spikes. The circuit 487

in Fig. 4(a) has been designed to drive the limiter circuit 488

to implement BCM through the t-STDP protocol. Starting 489

from the part of the circuit labeled as Fast, each time the 490

postsynaptic neuron fires a spike, the signal Spike POST is set 491

high and the capacitor Cfast is charged through the pMOS Mp3. 492

The capacitor Cfast is discharged through the nMOS Mn3 with 493

a rate that depends on the voltage applied to its gate, Vp. The 494

capacitor voltage is buffered (Vsat), and it is used to drive the 495

limiter circuit. The capacitor Cfast is chosen such that it is fully 496

charged after just one spike, i.e., during normal conditions, 497

at the end of a spike, the voltage Vsat is at its maximum voltage, 498

Vmax2. During the interspike interval, Vsat decreases, and at 499

the successive spiking event, its value will set the maximum 500

amplitude of the back-spike through the limiter circuit. 501

To test the ability of the t-STDP implementation described 502

above in emulating the BCM rule, the setup reported in 503

Fig. 4(b) is simulated. Two independent random spiking trains 504

are generated and applied at the presynaptic and postsynaptic 505

side. Spike trains are generated by dividing the time into 506

discrete 1-ms temporal bins, and to each bin, a random binary 507

value is assigned signaling if a spike is generated in that 508

time interval, bin = “1” or, not, bin = “0.” Since spikes 509

are 10 ms long while bins are 1 ms long, a nine-bin long 510

absolute refractoriness is inserted preventing a spike being 511

generated, while the previous is not completed. The firing rate 512

of a train can be modulated by changing the probability of 513

a bin to be “1.” The simulation consists in applying 10-s 514

samples of presynaptic and postsynaptic spike trains, with 515

rate νi and ν j , respectively, to the circuit and extracts the 516

relative conductance variation due to the presentation of the 517

two trains. The postsynaptic rate ν j is then varied to obtain 518

the relation between plasticity and postsynaptic spiking rate. 519

Due to the intrinsic stochasticity introduced by the t-STDP 520

protocol, the above process is iterated 15 times for each 521

postsynaptic rate, with each simulation employing different 522

realization of presynaptic and postsynaptic trains. Fig. 4(c) 523

shows the results of such simulations where the characteristic 524
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Fig. 4. (a) Schematic of the circuit used to generate the limiting voltage, Vsat , for the limiter circuit used to implement the BCM rule. The two parts of
the circuit, namely, the slow and the fast part, are evidenced. The fast part is used to convert the temporal distance between two post spikes, �Tpost , into
the limiting voltage, Vsat . The slow part monitors the average firing rate of the post neuron and adjusts, through the Vp voltage, the gain function relating
�Tpost to Vsat in the fast part of the circuit, therefore implementing the adaptive threshold mechanism. (b) Schematic of the circuit used to verify that the
implemented t-STDP protocol gives rise to BCM-like synaptic plasticity when pre and post neuron fire stochastically in time (as Poisson spike trains). These
results are obtained by removing the slow part of the Vsat generator circuit in (a) and controlling Vp manually to resolve its contribution in the threshold
adaptation mechanism. (c) Relative change of the synaptic weight (memristor conductance) as a function of the post spikes rate obtained with different values
of Vp (different symbols). Symbols identify the average value obtained across many simulations, and the error bars report the ±1 σ extension. (d) Simulated
output of the slow circuit, Vp , as a function of the post neuron rate. (e) Relation between LTD-LTP modification threshold [i.e., the post rate at which the
curves in (b) cross the x-axis] and post neuron firing rate.

nonmonotonic relation between postsynaptic firing rate and525

plasticity is visible. Specifically, the symbols in Fig. 4(c)526

represent the average relative conductance variation computed527

over different realizations with the error bars placed at ± one528

standard deviation. Fig. 4(c) also shows the effect of the gate529

voltage Vp, of the discharge nMOS Mn3, in shaping the BCM530

curve.531

This design allows obtaining, on average, a BCM-like532

relative conductance response embodied by a nonmonotonic533

function of the post firing rate but lacks another important534

feature of BCM, namely, the long-term threshold adaptation535

[11], [12]. The use of a fixed post firing rate threshold536

(i.e., θ = const.) does not allow for the robust emergence537

of pattern selectivity. For instance, in a feedforward network538

with a single post neuron that is excited by two input patterns539

(each delivered through an arbitrary number of synapses),540

the two input patterns will cause two distinct responses in541

terms of post neuron rate, ν j1 and ν j2. However, selectivity542

to the two patterns emerges only if ν j1 and ν j2 are not543

both above or both below the threshold. In such a case,544

the synapses related to the pattern evoking high rate at the545

post neuron will experience LTP that, over time, increases546

further the post rate, whereas the response to the other pattern547

will get silenced due to LTD. If the above relation between 548

ν j1 and ν j2 and the threshold is not satisfied, i.e., if ν j1 549

and ν j2 are both above or both below the threshold, all the 550

synapses related to both input patterns will experience LTP 551

(LTD) until saturation, i.e., driving the post neuron to fire 552

at the maximum (minimum) rate, irrespective of the pattern 553

applied. This problem is addressed by letting the threshold 554

be a function of the average post rate [i.e., θ = θ( ¯ν j(t)]. The 555

threshold adaptation mechanism is typically assumed to have a 556

sufficiently long time constant to average the post rate response 557

over all the input patterns [28]. If this condition is satisfied, 558

the threshold function θ( ¯ν j (t)) can be designed to robustly 559

separate the highest post rate response from the other, i.e., 560

adaptively setting the threshold such that ν j1 and ν j2 are not 561

both above or both below it. If so, after a learning period, the 562

post neuron will respond selectively to only one of the patterns 563

used during learning, irrespective of the post neuron rates they 564

initially evoked. The adaptive threshold mechanism effectively 565

implements competition between input synapses. In fact, the 566

potentiation of a subset of synapses (e.g., associated with an 567

input pattern) makes the post neuron to be more active, which 568

leads to a higher BCM threshold, which hinders other synapses 569

(i.e., associated with different input patterns with respect to the 570
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initial one) to potentiate further [28]. In addition, according to571

the theoretical foundation of the BCM learning rule, if the572

function that relates the threshold to the average post neuron573

firing rate is super-linear, a feedback effect that stabilizes the574

average post neuron firing rate emerges. More details on the575

advantages and the requirements for an adaptive threshold can576

be found in [11] and [12]. The adaptive threshold can be577

easily added to the proposed circuit design modulating the578

discharging current through Mn3. The circuit used to estimate579

a long-term firing rate of the post neuron, labeled as slow in580

Fig. 4(a), is similar to the one used to measure the temporal581

distance between two spikes [i.e., fast in Fig. 4(a)], with582

the main difference being a longer time constant in charging583

and discharging the capacitor Cslow. This circuit is used to584

automatically modulate the gate voltage Vp, of the discharging585

nMOS Mn3, which effectively provides a sliding threshold,586

as shown in Fig. 4(c). Fig. 4(d) shows the steady-state Vp587

voltage generated by the circuit at different post spiking rates,588

while in Fig. 4(e), the threshold–frequency relation as obtained589

from the set of simulations of Fig. 4(b) is shown. Notably,590

the proposed circuit, capacitors included, can be seamlessly591

integrated within each neuron design, slightly increasing its592

footprint (estimated for transistor-level simulations in about593

100 μm2 when implementing Rslow with switched capacitors),594

without affecting the advantageous simplicity of the compact595

1T1R synaptic architecture that is agnostic of the specific596

learning rule adopted. This is important as the synapse to597

neuron ratio can be in the order of 104 [5], [9]. Thus, extra598

circuit area can be tolerated in the neuron circuit but not on599

the synaptic element.600

IV. FROM RULES TO SPIKING NETWORKS601

A. Neuron Architecture602

The implementation of an artificial neural network that603

can simultaneously support both BCM and STDP synapses604

requires designing a suitable neuron architecture. For this605

purpose, a neuron circuit is proposed based on a leaky integrate606

and fire neuron model with two inputs, where all the BCM and607

STDP synapses from pre neurons converge. The circuit has608

one output line for the spike waveform along with a digital609

signal, driving an arbitrary number of both BCM and STDP610

1T1R synapses connected to its output. In general, a neuron611

is embedded into a network, asynchronously receiving and612

providing inputs from and to other neurons. For example, in a613

layered structure as that in Fig. 5(a), a neuron in Layer 1 is614

a post neuron for some of the neurons in Layer 0 and a pre615

neuron for some neurons in Layer 2.616

The internal neuron architecture is shown in Fig. 5(b). The617

neuron can be in two states, namely, the integration state618

and the firing state, depending on the value of the logic619

signal “Spike” generated by the SR latch. During integration620

(i.e., “Spike” at logic zero), both the inputs are connected621

to the leaky current integrator that locally provides virtual622

ground. At the same time, the neuron output is grounded.623

When the integrator voltage reaches the threshold, the “Spike”624

signal is raised, and the neuron is set in the firing state.625

The inputs are then disconnected from the integrator and626

connected to dedicated spike generators that are triggered by627

the same “Spike” signal, providing the back-spikes to the input628

Fig. 5. (a) Framework of an SNN that supports both learning rules. A neuron
in layer n behaves as either a pre or a post for other neurons in layer n−1 and
n + 1, respectively. Pre neurons drive the 1T1R synaptic element through
two signals, the forward spike waveform [neuron out in (b)] that carries the
information to the post (next layer), and a logic signal [spike in (b)] that
enables the selector transistor. Two inputs are used to connect the synapses
following different learning rules since, as described in Section III, they
require different backward spikes to be implemented. (b) Leaky integrate-
and-fire neuron architecture simultaneously supporting BCM and STDP rules
on different synapses. (c) Simulated time diagrams of critical nodes of a
neuron in an SNN architecture. While the neuron is in the integration state
(Spike = “0”), both inputs are tied to 0 V by the integrator virtual ground,
so incoming spikes are not seen in the voltage traces of panels 3 and 4. When
the integrator voltage reaches the threshold (first panel), the “Spike” signal
is raised (second panel), disconnecting the inputs from the integrator and
triggering all the waveform generators (at the inputs and output) to provide
backward and forward spikes (panels 3–5). In panel 4, the saturating effect
of the limiter circuit involved in the implementation of the BCM is shown.
The temporal distance between two spikes modulates the maximum voltage
of the BCM backward spike. The negative slope of Vsat is modulated on a
longer time scale by the Vp voltage (not shown) to implement BCM adaptive
threshold, see Section III-B.

synapses. At the output, the “Spike” signal triggers the spike 629

generator that transmits the forward spike. The “Spike” signal 630

is also used to drive the Vsat generator circuit of Fig. 4(a) 631

(in which the control signal is labeled “Spike POST”) that 632

controls the voltage limiter that in turn tunes the maximum 633

positive voltage of the BCM back-spike, as described in 634

Section III-B. As all the generated spikes share the same time 635

duration, TSpike = 10 ms, it is sufficient to introduce a delay 636

circuit that resets the SR latch after TSpike, which discharges 637
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the integrator and brings the neuron back into the integration638

phase. Fig. 5(c) shows the above process in terms of the639

time evolution of the voltage at specific nodes of the internal640

neuron architecture. Except for the subcircuit in Fig. 4 that641

was simulated at the transistor level, the components of the642

neuron were simulated with Verilog-A behavioral models.643

As such, no detailed figures of merit, such as silicon footprint,644

power consumption, and circuit complexity, can be provided.645

However, we suggest possible low-power implementations of646

the most critical constituent blocks. Spike generators can be647

implemented using a digital pulsewidth modulation circuit648

using a simple free-run digital counter and a few simple649

parallel registers accessed sequentially. The counter and the650

memory output can be wired together in an n-bit AND gate651

that would drive a toggle flip-flop to produce a square wave652

with controlled duty cycle. A passive low-pass filter would653

complete the circuit producing the spike waveform. The clock654

driving the counter can run at low frequency given the low655

bandwidth of the output pulse, limited in the kilohertz range.656

Another possibility, with less control on the spike shape657

(i.e., more distorted STDP window), entails analog multiplex-658

ing of different voltage sources [20], [30]. In a transistor-659

level implementation of the neuron circuit that we propose,660

we expect that the largest fraction of the area would be661

contributed by the three op-amps needed to implement the662

leaky integrator, the comparator, and the buffer in the satura-663

tion voltage generator circuit for the BCM. In our network,664

all the signals are limited in bandwidth to a few kilohertz,665

as can be intuitively seen from Fig. 5(c). Therefore, this666

allows using ultralow power (10–100 nW) op-amp with sub-667

threshold transistors that have notoriously limited bandwidth668

[51], [52], [53]. The overall neuron power consumption would669

be dominated by the saturation voltage generation circuit670

(simulated to be around 1.6 μW) and by the power needed671

to effectively potentiate and depress the synapses (simulated672

to be, on average, in the 10–100 nW per synaptic connection).673

B. Unsupervised Motion Detection Task With STDP674

The effectiveness of the proposed STDP implementation is675

verified by simulating a circuit inspired by the one in [14],676

in which Dan and Poo present a simple visual cortical net-677

work model with two groups of direction-selective neurons678

connected through two STDP synaptic layers to a readout679

neuron. Each neuron is placed in a specific spatial position,680

i.e., has a distinct receptive field that is the region of space681

in which a stimulus must occur for the neuron to respond682

with a spike. Therefore, a stimulus (e.g., an object) that moves683

across the receptive fields of the different neurons will cause a684

time- and space-dependent neuron activity. According to [14],685

the interaction of motion stimuli and STDP leads, after several686

presentations of a moving object, to an asymmetry in weights687

connecting input and output neurons. This asymmetry causes688

the output neuron to receive strengthened excitation from input689

neurons that early respond to the moving object, making the690

output neuron progressively anticipate its spiking activity over691

time [14], [15], [28].692

In this study, we reproduced the circuit, limiting the number693

of neurons per group to 32. This is schematically shown694

in Fig. 6(a), in which two groups of 32 direction-selective695

Fig. 6. (a) Network used to perform the STDP-based unsupervised motion
detection task, inspired by the example in [14]. Two sets of 32 direction-
selective neurons labeled as→ (red neurons) and← (blue neurons) enclosed
by circles (red preferring L-to-R motion and blue R-to-L) excite a single
post neuron. All the inputs converge at the STDP input of the post neuron.
(b) Spatiotemporal stimulation provided by the two sets of input neurons
(red circles for L-to-R neurons and blue crosses for R-to-L) caused by the
passage of an object (black dot), from L to R (0–40 ms) and from R to L
(from 90 to 130 ms). (c) and (d) Similar to (b) for L-to-R (c) and R-to-L
(d) neurons only, when several stimulations are repeated. (e) Asymmetric
weight development caused by the repetition of the spatiotemporal patterns
in (b)–(d). The transition between the set of weights that gets potentiated
(�G/G > 0) and depressed (�G/G < 0) shifts over time in the opposite
direction of the one identified by the selectivity of the neurons, which causes
the anticipated output response.

neurons, 32 left to right and 32 right to left, respectively, 696

labeled as → (red neurons) and ← (blue neurons) enclosed 697

by circles, provide the excitatory inputs through two STDP 698

synaptic layers to a readout neuron. Input neurons with the 699

same indices (e.g., in LR1 and in RL1) have the same spatial 700

receptive field, while the preferred direction (LR or RL) 701

specifies the motion direction to which the neuron evokes its 702

maximum firing rate, i.e., when an object is at the maximum 703

of the spatial receptive field moving in the preferred direction 704

the neuron spikes at its maximum rate. In general, direction 705

selectivity in neurons can be obtained by exploiting delayed 706

inhibitions and STDP [54], [55]. We considered inputs neurons 707

described by the following rule: 708

fi = k ·
[

f0 + α + sign(v)

α + 1
· K (x − x0i )+ η

]
+

709

where fi is the firing rate of the i th neuron, f0 is the base firing 710

rate, k is a gain factor, α modulates the direction selectiveness, 711

K is a Gaussian kernel for the spatial receptive field centered 712

at x0i , x and v are the position and the velocity of the object, 713

respectively, and η represents noise in the firing rate. The [ ]+ 714

operator describes the rectified linear unit (ReLU) function, 715

which returns its argument when the latter is positive and zero 716

otherwise. This is used to generate a Poisson spike train for 717

the input neurons. 718
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Initially, all the synaptic weights are randomly assigned719

with values drawn from the same distribution. The simulation720

consists in the presentation to the input neurons of an object721

moving left to right and back several times, i.e., scanning722

across the receptive fields of all input neurons. Fig. 6(b) shows723

the spiking wave of the→ (red circles) and← (blue crosses)724

neurons as the object is moved one time from left to right725

(from 0 to 40 ms) and then from right to left (from 90 to726

130 ms), reflecting the direction selectivity of the input727

neurons. In Fig. 6(c) and (d), the spiking activities recorded728

across several presentations of the object are superimposed to729

show the input variability. These spikes are then applied to730

the corresponding STDP synaptic layers. The output neuron731

integration time constant is set to generate a single spike per732

presentation with the initial values of the synaptic weights.733

As reported in [14], with this setup, STDP is expected to734

break the initial weight symmetry and develop an asymmetric735

weight distribution such that the synapses that connect to input736

neurons that fire before the post neuron are potentiated, while737

the one firing later is depressed. As shown in Fig. 6(e), this738

is effectively achieved with our implementation of the STDP739

protocol. Initially, the integration of a relatively high number740

of input spikes is needed for the output neuron to reach the741

threshold, which means that the output neuron will spike742

when the moving object has already passed by a relatively743

large number of input neurons. The asymmetric plasticity744

provided by the STDP potentiates synaptic connections related745

to inputs that spiked shortly before the output and depresses746

those related to inputs that spiked shortly after the output.747

Accordingly, when the moving object is presented again, the748

output neuron will require less input spikes to reach threshold,749

and therefore fire, anticipating its response. The depression of750

synaptic weights related to inputs that spiked shortly after the751

post limits the excitation of the post due to these inputs, which752

hinders the possibility for the output neuron to fire multiple753

spikes per object presentation. As predicted, in the sequence754

of Fig. 6(e), the transition between the set of weights that are755

potentiated and depressed, which is dictated by the post spike,756

recedes over time for the weights connected to → neurons757

(advances for weights connected to ← neurons) consistently758

with the anticipated response of the output neuron. In fact,759

at T = 1 s, around 20 input spikes from the → neurons760

are necessary for the output to reach the threshold, while at761

T = 50 s, around 14 input spikes are sufficient.762

C. Unsupervised Multipattern Recognition Task With BCM763

The effectiveness of the proposed implementation of the764

BCM rule is verified by simulating a feedforward network765

composed of 32 pre and 4 post neurons. Four orthogonal766

input patterns defined in terms of input spiking rates were767

designed to stimulate the network. Each pattern consists of768

32 independent Poisson spike trains with high (for 8 specific769

neurons) and low (for the remaining 24) frequency rates. The770

pre neurons are divided into four groups of eight neurons771

(here selected to be adjacent to one another for simplicity772

and without loss of generality): when the i th pattern is to be773

presented to the network, the i th group will generate the high774

rate trains, with the remaining groups generating the low rate775

trains, as shown in Fig. 7(a). This stimulation protocol has776

been chosen to achieve the fastest convergence of the network 777

and easier interpretation of the results. Partially overlapping 778

patterns, continuous input firing rate between high and low, 779

as well as pattern presented randomly over time are also 780

viable stimulations. If the overlap of the input pattern is not 781

too extreme, the effectiveness of the rule is not significantly 782

affected (not shown for brevity). The patterns are presented 783

sequentially in time, with a pattern duration of 0.5 s, with an 784

epoch being one presentation of the four patterns (2 s). The 785

four output neurons are connected to each other through fixed 786

weight inhibition. To this end, an inhibitory input is added to 787

the neuron design in Fig. 5(b), whose input current, instead 788

of being summed by the integrator, is subtracted, effectively 789

reducing the neuron excitation. The overall architecture with 790

the feedforward excitation and the lateral inhibition is shown in 791

Fig. 7(a). All the 128 excitatory weights are initiated at random 792

initial values, all drawn from the same distribution. Synaptic 793

modification via BCM naturally starts with a transitory period 794

where the combined effect of plasticity and BCM threshold 795

adaptation spontaneously brings the firing rates of all the 796

postsynaptic neurons and the BCM threshold close to each 797

other. At the end of this initial transitory period, all the 798

input patterns evoke similar responses to all neurons. This 799

quasi-symmetric condition with respect to the input patterns 800

is broken as soon as one output neuron starts to respond 801

systematically with higher rates for a particular pattern. In that 802

case, lateral inhibition lowers the net excitation on the other 803

output neurons that in turn lower their spiking rates. Since they 804

are all close to the threshold, when that happens, the winner 805

output neuron tends to potentiate the synaptic inputs related 806

to that input pattern, whereas the other output neurons tend 807

to depress the same relative synaptic inputs due to the lower 808

spiking rate. This process consolidates over time until each 809

output neuron spontaneously develops univocal input pattern 810

selectivity, as shown in Fig. 7(b). Fig. 7(c) highlights the effect 811

of pattern learning and selectivity in terms of post neuron 812

rates. At the first epoch, all the input patterns evoke a similar 813

spiking activity in all the output neurons, whereas at the final 814

epoch, each input pattern evokes high activity in only one 815

output neuron and that neuron responds with high activity 816

for only that input pattern. Fig. 7(d) shows the firing rates of 817

output neuron 1 for the four input patterns at different epochs. 818

From about the 12th epoch on, the response to pattern 2 819

intensifies, while the others abate. The same happens for all 820

the output neurons. Defining selectivity of a generic output 821

neuron as [11] 822

Selectivity = 1− mean(rate wrt input patterns)

max(rate wrt input patterns)
823

in Fig. 7(e), a marked increase in selectivity over time for all 824

the neurons is shown. The classification accuracy is 95.75%. 825

It was evaluated as the number of spikes from the specialized 826

neurons for each specific input pattern (i.e., successful clas- 827

sification) over the total number of output spikes in the last 828

25 epochs when the network reached the maximum selectivity 829

[i.e., after learning, Fig. 7(e)]. A guard interval of 50 ms 830

is used to mitigate the spikes of neurons excited during the 831

presentation of the previous input pattern. 832
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Fig. 7. (a) Schematic illustration of the 32 pre by 4 postsynaptic neurons feedforward network with lateral inhibition among the postsynaptic neurons, used
to implement the BCM-based unsupervised multipattern recognition task. Each input pattern excites eight pre neurons at high rate, while the other neuron
fires at a low rate. (b) Time sequence of the patterns applied to the network and spiking activity of the four output neurons. Initially, all the synaptic weights
are randomly assigned and no relation between the applied pattern and the output neurons activity is present (see 0–4 s zoomed inset). After learning through
BCM, a one-to-one relation between input patterns and output neurons is achieved (see 96–100 s zoomed inset). (c) Color maps of the initial and final
spiking rates of the output neurons for the different input patterns. (d) Evolution over the learning epochs of output neuron 1 firing rate for the different
input patterns. (e) Evolution of the output neurons selectivity. At around 20 epochs, selectivity reaches its maximum at 0.75 for a four-input environment:
max (1− (

∑
pi fi )/(max( fi ))) = 1− pi = 1− (1/4) = 0.75.

Simulations employing memristors as synapses in SNN833

for pattern classification were already shown [8], [17], [18].834

In [17], a 64 × 4 memristive network was used to perform835

recognition on four different characters. STDP was used with836

a winner-take-all paradigm for the output neurons, achieving837

96% accuracy. Though sharing similarities with our work,838

directly comparing the performance would be misleading since839

we employed: 1) a single pattern per class and 2) differ-840

ent accuracy evaluation methods. However, we expect our841

implementation to be less prone to runaway dynamics due to842

self-stabilization of BCM and less dependent on lateral inhi-843

bition. As selectivity is emergent in BCM, in our network,844

lateral inhibition is mainly used to nudge different neurons to845

learn different patterns and not to make them selective to a846

single pattern. Similar arguments hold true for other works847

where pair-based STDP is used for classification [8], [18].848

V. CONCLUSION849

In this work, we proposed a new hybrid CMOS-memristor850

SNN architecture simultaneously supporting two learning851

rules. For this purpose, a memristor was electrically char-852

acterized in terms of its I–V and pulsed response, as well853

as to the spike waveforms of the proposed neuron. In sim-854

ulation, a neuron architecture supporting the two learning855

rules was designed after both STDP and BCM had been 856

verified independently. Then, the proposed architecture was 857

verified to successfully solve different classes of unsupervised 858

learning tasks. A motion detection task exploiting the tim- 859

ing nature of STDP was shown: the shift of the receptive 860

field of the output neuron was observed when subjecting 861

the network to repeated motion stimuli. Then, a multipattern 862

recognition task exploiting the properties of the BCM rule with 863

adaptive threshold was performed. In particular, the experi- 864

ment showed good performances in terms of selectivity, with 865

a classification accuracy of 95.75%. Due to the simultaneous 866

support of multiple learning rules, the proposed architecture 867

is an important step toward the implementation of complex 868

biologically plausible SNN able to adapt to complex scenarios. 869
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