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Abstract: Drones are currently seen as a viable way of improving the distribution of parcels in urban
and rural environments, while working in coordination with traditional vehicles, such as trucks.
In this paper, we consider the parallel drone scheduling traveling salesman problem, where a set
of customers requiring a delivery is split between a truck and a fleet of drones, with the aim of
minimizing the total time required to serve all the customers. We propose a constraint programming
model for the problem, discuss its implementation and present the results of an experimental program
on the instances previously cited in the literature to validate exact and heuristic algorithms. We were
able to decrease the cost (the time required to serve customers) for some of the instances and, for the
first time, to provide a demonstrated optimal solution for all the instances considered. These results
show that constraint programming can be a very effective tool for attacking optimization problems
with traveling salesman components, such as the one discussed.

Keywords: parallel drone scheduling; traveling salesman problem; constraint programming; drones;
optimization

1. Introduction

E-commerce has experienced a boom in recent decades and, according to statistics
provided by Statista (https://www.statista.com/statistics/379046/worldwide-retail-e-
commerce-sales/, accessed on 8 January 2023), an enormous increase in e-commerce sales
is occurring worldwide. One consequence is a huge increase in home-delivered parcels,
which can be readily observed in our own cities. It has been reported [1] that many
e-commerce and parcel delivery companies are offering ever faster delivery, such as same-
day and instant delivery. The report suggests that 20 to 25% of consumers are willing to
pay more to receive their parcel on the same day, and 2% would want instant delivery.
Companies may be able to offer this kind of delivery through application of cutting-edge
technology, such as the use of different types of vehicles, including aerial drones. In [2],
the authors forecast that autonomous vehicles, including drones, will deliver about 80% of
all parcels in the coming decades. Among the different aspects of the use of aerial drones
for last mile deliveries, we focus on operational planning, aiming at optimized delivery
strategies. There are several advantages associated with the use of aerial drones: they do
not need to follow the road network and can fly in (almost) straight lines, and they are
not affected by traffic congestion. These properties also have an important positive impact
on sustainability, making these innovative solutions of interest to companies (through
reduction in costs), to customers (through more efficient delivery services) and for the
whole of society (through more sustainable logistics).

The seminal work of [3] pioneered a new routing optimization problem in which a
truck and a drone collaborate to make deliveries. From an operational research perspective,
the authors present two new prototypical variants developed from the traditional traveling
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salesman problem (TSP) called flying sidekick TSP (FSTSP) and parallel drone scheduling
TSP (PDSTSP). In both cases a truck and drones collaborate to deliver parcels, the difference
being that, in the former, model drones can be launched and collected from the truck during
its tour, while, in the latter, the drones are operated directly from the central depot, while
the truck executes a traditional delivery tour. In the remainder of the paper, we will focus
on the second problem, addressing the interested reader to [4] for full details and some
solution strategies for the FSTSP.

More specifically, in the PDSTSP, there is a truck that can leave the depot, serve a set
of customers, and return to the depot, and a set of drones, each of which can leave the
depot, serve a customer, and return to the depot before serving other customers. Not all
the customers can be served by the drones, either due to their location or the characteristics
of their parcel. The objective of the approach is to minimize the time needed to serve all the
customers and to get the last vehicle back to the depot.

A first mixed-integer linear programming (MILP) model for the PDSTSP and some
heuristic methods [5,6] are proposed in [3]. A more refined model, and the first meta-
heuristic method, based on a two-step strategy embedding a dynamic programming-based
component, are discussed in [7] (later extended in [8] for a variation of the problem using
several trucks). A similar two-step approach, but based on matheuristics concepts [9] is
presented in [10]. A hybrid ant colony optimization metaheuristic is discussed in [11]. An
improved variable neighbour search metaheuristic is presented in [12]. Most of the work
published to date has focused on heuristic methods, while exact methods have been able to
solve systematically only instances with up to 20 customers [10]. Two other recent studies
have dealt with variations of the problem where several trucks are employed, and also
present results for the basic PDSTSP. In [13], three MILP models are proposed, one of which
is arc-based and the other two are set-covering-based, together with a branch-and-price
approach using one of the set-covering-based models. A heuristic version of one of the
solvers is also discussed, leading to a matheuristic approach developed to target large in-
stances. A more realistic variation of the PDSTSP is introduced in [14], where concepts such
as the capacity of the vehicles, load balancing and decoupling of costs and times are taken
into account. The authors propose an MILP model and a ruin-and-recreate metaheuristic
for the problem. Several other PDSTSP variants and extensions have also been introduced
and investigated in the literature. We refer the interested reader to [15,16] for a complete
survey. The reader interested in technological details about hardware design for UAVs can
refer to [17,18]. Solutions for autonomous flying for drones are described in [19]. Finally,
policies and regulations for flying drones are analyzed in [20].

In this paper, we explore the potential of constraint programming (CP) for the PDSTSP.
The use of CP is motivated by recent developments in black-box solvers for such a paradigm.
Although still not widely used in the optimization community, these solvers can now benefit
greatly from parallel computation, and offer a new perspective for optimization on modern
personal computers. We discuss how to use CP efficiently and show how the paradigm
can be used to optimally solve (mostly for the first time) instances traditionally used to
benchmark exact and heuristic PDSTSP approaches in the literature. In earlier research
studies attention was focused mainly on heuristic methods, since initial studies indicated
that exact algorithms were not likely to be suitable for large instances. In this paper, we
show that CP can be a “game-changer” for PDSTSP and potentially for other optimization
problems with similar characteristics.

The rest of the paper is organized as follows: PDSTSP is formally defined in Section 2;
in Section 3, a CP model for the PDSTSP, that represents the main contribution of the paper,
together with the results, is proposed; Section 4 presents extensive experimental results
relating to validation of the proposed approach; our conclusions are drawn in Section 5.
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2. The Parallel Drone Scheduling Traveling Salesman Problem

The PDSTSP can be represented on a complete directed graph G = (V, A), where the
node set V = {0, 1, ..., n} includes the depot (node 0) and a set of customers C = {1, ..., n} to
be served. The set A contains ordered pairs of nodes, representing connections. A truck and
a set D of identical drones are available to deliver parcels to the customers. The truck starts
from the depot 0, visits a subset of the customers, and returns back to the depot. The drones
operate back-and-forth trips from the depot to customers, delivering one parcel per trip.
Not all the customers can be served by a drone due to the weight of the parcel, excessive
distance of the customer location from the depot, or adverse morphological configurations
of the terrain. Let CD ⊆ C denote the set of customers that can be served by drones. These
customers are referred to as drone-eligible in the remainder of the paper. The travel time
incurred by the truck to go from node i to node j is denoted as tT

ij , while the time required

by a drone to serve a customer i (back-and-forth trip) is denoted as tU
i . The truck and the

drones start from the depot at time 0; the objective of the PDSTSP is to minimize the time
required to complete all the deliveries and to have the truck and all the drones back at
the depot. Note that, since the truck and drones work in parallel, the objective function
translates into minimizing the maximum time required by the vehicles. In the remainder of
the paper, we refer to this quantity as cost.

An example of a PDSTSP instance is provided in Figure 1.
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Figure 1. An example of PDSTSP is provided on the left; we assume that two drones are available
(travel times are omitted for the sake of simplicity). A solution is provided on the right. The black
arcs represent the tour of the truck that visits nodes 1 and 3 before going back to the depot. The red
arcs depict the missions of the first drone (that serves nodes 2 and 6), while the blue arcs depict the
missions of the first drone (that serves nodes 4 and 5).

3. A Constraint Programming Model

The PDSTSP can be formally described by the following CP model. The variables
are defined as follows: A binary variable yij, with i, j ∈ V, takes value 1 if node i is visited
right before node j by the truck during its tour, and value 0 otherwise. Note that, in case a
customer i ∈ CD is visited by a drone, then yii is set to 1, 0 otherwise. A binary variable xdi,
with d ∈ D and i ∈ CD, takes value 1 if the drone-eligible customer i is visited by the drone
d, and value 0 otherwise. Finally, a variable α is used to capture the objective function
value, which is the time taken by the last vehicle to go back to the depot after completion
of its tasks.
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(PDSTSP) min α (1)

s.t. Circuit(yij; i, j ∈ V) (2)

∑
d∈D

xdi = yii i ∈ CD (3)

α ≥ ∑
i∈V

∑
j∈V,i 6=j

tT
ijyij (4)

α ≥ ∑
i∈CD

tD
i xdi d ∈ D (5)

yij ∈ {0; 1} i, j ∈ V (6)

xdi ∈ {0; 1} d ∈ D, i ∈ CD (7)

The objective function (1) minimizes α that will be assigned the time of the longest
tasks among the vehicles. Constraint (2) implements a circuit that imposes y variables to
take values in such a way as to form a feasible truck tour, and eventually self-loops for
the variables associated with customers not visited by the truck. Constraint (3) requires
that, if a customer i ∈ CD is not visited by the truck (which means yii = 1), then a drone
d must visit it. Constraint (4) sets α to be at least as large as the length of the truck tour.
Constraint (5) requires α to take a value larger than or equal to the time spent by each drone
d to execute the tasks assigned to it. Finally, constraints (6) and (7) define the domain of the
binary variables.

4. Computational Experiments

The constraint programming model described in Sections 3 was implemented in
Python 3.9 and solved via the CP-SAT solver of Google OR-Tools (https://developers.
google.com/optimization, accessed on 8 January 2023) 9.4. Note that this CP solver,
like most modern versions, relies heavily on bounds from linear programming during
computations. The experiments were run on a laptop computer equipped with 8GB of
RAM, an Apple M1 chip and using all eight CPU cores available—four performance cores
running up to 3.204 GHz and four efficiency cores running up to 2.064 GHz—unless
otherwise indicated.

The outcomes of the extensive experimental program that was undertaken are dis-
cussed in the remainder of this section.

A quite vast literature related to solving methods for the PDSTSP exists. We com-
pare our results with the exact methods (namely, MILPs attacked via commercial solvers)
presented in [3,10,13], and, for the larger instances, with the heuristic methods discussed
in [7,10–12,14]. The results are organized by benchmark sets, after some preliminary con-
siderations are presented and experiments on solver-related aspects are described. The
optimal solutions obtained in the study are available in the Supplementary Materials.

4.1. Preliminary Experiments

In this section, we report the results of some preliminary experiments aimed at tuning
a parameter of the solving procedure implemented and understanding the behaviour of
the CP-SAT solver while running in a multi-threading environment.

4.1.1. Scaling and Precision

For technical reasons, the CP solver requires the use of integer coefficients in the
constraints; then, scaling is necessary to represent floating point values for the coefficients
that appear in constraints (4) and (5) of our model. In practice, the coefficients need to be
multiplied by a constant F and, then, only the integer part is considered. Once the optimal
solution is found, the value of α has to be scaled back by dividing by F. The choice of the
scaling factor F has a double impact on the performance of the solver: high values for the
factor guarantee higher numerical precision in the results (once scaled back), but, at the

https://developers.google.com/optimization
https://developers.google.com/optimization
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same time, lower numerical precision leads to faster execution. Therefore, a trade-off has to
be found.

We carried out a preliminary study to identify a suitable value for the factor F that
would then be adopted for the rest of the experiments. A representative instance to
illustrate our results was identified in berlin52_0_80_2_2_1 (originally proposed in [7]
and with an optimal solution of cost 5290.652). The results obtained by considering
F ∈ {1; 10; 100; 1000; 10, 000; 100, 000; 1, 000, 000} are reported in Figure 2. In the first chart,
we report the computation time (in seconds) required by the solver for different values of
F; in the second chart, the value of the optimal cost affected by precision errors (estimated),
and the value of the real cost of the same solution, are plotted.

Figure 2. Times and optimal objective function cost for different values of the scaling factor F—
instance berlin52_0_80_2_2_1 from [7].
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From Figure 2, it can be observed that smaller scaling factors correspond to shorter
computing times, both to retrieve the optimal solution and to confirm its optimality. On
the other hand, the precision associated with a smaller scaling factor is not sufficient, as
shown by the poor quality of the estimation of the cost of the tentative optimal solution
retrieved. The results presented are illustrative and representative. Based on the results, we
chose to use F = 10, 000 for the remaining experiments. This value guarantees acceptable
computation times and sufficiently safe precision for floating point numbers. Note that,
from the results, the choice can appear as over-conservative, since values such as 100
and 1000 for F have already been shown to be good approximations; however, since the
computation time associated with 10, 000 is only marginally increased, we preferred it, to
be sure to avoid any numerical instability problems in our results.

4.1.2. Multi-Threading Computation

CP solvers notoriously benefit greatly from the use of multi-threading computation,
typically substantially more than MILP solvers, due to the different nature of the solving
routines. On the other hand, nowadays, home-computers and laptops offer multi-core
architectures, making parallel computation affordable. In this section, we assess the effect
of multi-threading on the performance of solvers while running on the PDTSP.

For the test reported, we selected the instance eil101_0_0_1_2_1 first proposed in [7]
since it reduces to a classic traveling salesman problem, with no drone-eligible customers.
This also enables previously proposed MILP-based solvers for the PDSTSP to close the
instance. A maximum running time of 180 s was set. We solve the CP model described in
Section 3 with the CP-SAT solver and the MILP model described in [10] attacked by the
Gurobi (https://www.gurobi.com, accessed on 5 January 2023) 9.1.1 solver. For both cases,
we allow the use of a number of parallel threads between 1 and 8; in Figure 3, we report on
the time required by the solvers (180 is reported when the time limit is reached).

Figure 3. Time required by the MILP solver and by the CP solver with different numbers of threads
(180 s maximum time)—instance eil101_0_0_1_2_1 from [7].

The results reported in Figure 3 indicate that the CP approach is able to benefit
substantially from the use of multi-threading computation. This result was expected, given
the general characteristics of routines solving constraint programming and their scalability
properties. More surprising is the drastic change in performance between four and five
threads. This behaviour was observed in several other instances (although the jump was

https://www.gurobi.com
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not always between four and five) and is likely a consequence of activation of crucial
sub-solvers on newly available parallel cores. In general, the chart also testifies to the
importance of the heuristic routines used to distribute the computation economically and
efficiently and to select the alternative solvers that are eventually run in parallel. On the
other hand, the MILP solver does not seem to benefit from multi-threading in these short
tests, possibly due to the overhead of distributing tasks and collecting results and to the
reduced variety of the methods run in parallel. It should be noted that the situation might
be less extreme when more challenging instances are considered, but this is difficult to
observe, since, even with longer computation times (hours) allowed and eight threads,
generic instances were not closed.

In conclusion, multi-threading appears to be the basis of the success of modern CP
solvers; therefore, all the experiments reported in Section 4.2 were run on eight cores.

4.2. Main Experimental Results

In this section, we consider the instances commonly adopted in the previous PDSTSP
literature. We also present optimal solution costs and the computation times required by
the CP model discussed in Section 3 to retrieve these solutions.

It should be noted that the optimal solution costs were only already published for
the 720 small instances discussed in Section 4.2.1 and for two of the instances addressed
in Section 4.2.2. For all remaining 96 instances, optimality was demonstrated here for the
first time.

4.2.1. Instances Proposed in [3]

The first instances analysed were those originally proposed in [3]. A total of 120 con-
figurations with 10 customers and 120 configurations with 20 customers were created; these
instances were solved with a single truck and either one, two, or three drones, resulting in
720 test instances.

In Table 1, we compare the results published in [3,10,13] with the new CP-based
approach. The rows give the average values over the 360 instances with 10 customers
and the 360 instances with 20 customers. For each instance size, and for each algorithm,
we give the average computing time in seconds required to solve the instances and the
standard deviations. It should be noted that the experiments were run on different hardware
configurations, so the comparison might not be fair. In addition, the experiments for the
methods based on MILP models discussed in [10,13] were run on a single core, while those
from [3] and our CP model were run using eight cores. This might make the comparison
even less fair, but it has also to be considered that, according to the experiments reported
in Section 4.1.2, it is very unlikely that the MILP solvers could achieve a real substantial
advantage by running in parallel for the problem considered. This is not true for the CP
solver, which is designed to exploit as much as possible from any multi-core architecture
(in our case, a laptop computer).

Table 1. Instances from [3]. Comparison of exact methods.

Instances Murray and Chu [3] Dell’Amico et al. [10] Raj et al. [13] CP
Size Sec Sec Sec Sec

Avg StDev Avg StDev Avg StDev Avg StDev

10 0.32 2.02 0.08 0.57 0.03 0.31 0.02 0.20
20 77.78 a 180.00 a 109.55 28,698.71 0.86 47.95 0.17 1.89

a 352 instances (over 360) solved to optimality within the 180 s considered.

The results presented in Table 1 highlight the substantial improvements in exact
methods for the PDSTSP that have occurred in the last few years. The CP model discussed
in Section 3 (bold entries) is the fastest, with a clear advantage (especially in terms of
standard deviation) for the instances with 20 customers.
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4.2.2. Instances Proposed in Mbiadou Saleu et al. in [7]

A second program of experiments to test the new CP model was carried out on the
instances originated from TSPLIB [21] in [7]. For each original TSPLIB instance considered,
several PDSTSP instances were created; we refer the reader to [7,14] for the details. The
results cover instances with 48 to 229 customers (first number in the name of each instance);
the results are presented for several methods (we show the best results disclosed in a single
publication where alternative methods are discussed) together with those of the new CP
model. It should be noted that the latter is the first effective exact solving method used for
these instances. The results are grouped by original TSPLIB instance and are summarized
in Tables 2–7. For each heuristic method, the best upper bound is reported, while, for the
CP method, the optimal solution cost, the time required to retrieve the optimal solution
(Sec found), and the time to prove its optimality (Sec opt) are annotated. In the tables, we
report in italics any suboptimal result, and, in bold, newly improved upper bounds. In this
case, the results are taken from the original papers and, therefore, are likely to have been
obtained on different hardware configurations.

Examining the results reported in Tables 2–7, several observations can be made. The
first is that the heuristic methods are extremely effective. The last methods particularly
retrieved almost all the optimal solutions (without proving their optimality). The CP solver
was able to marginally improve one solution over the previously best known results. It
should be noted that this result indirectly validates the quality of the heuristic methods
previously proposed. The times required to solve instances to optimality varied from
a few seconds for the smaller instances to more than 17,000 s for the largest and most
difficult instance.

4.2.3. Instances Proposed in [13]

A third set of experiments to test the model presented in Section 3 was carried out on
the instances originated from TSPLIB [21] in [13]. Since this dataset partially overlaps with
that discussed in Section 4.2.2, only the results on the uncovered instances are reported
here. We rename the instances according to the logic followed in previous publications for
the instances presented in [7]. We refer the reader to [13] for full details about the instances
(the mapping of the naming notation should also be straightforward). The results again
cover instances with 48 to 229 customers served with six drones. We report figures for
the methods previously applied on these instances, namely a MILP, a branch-and-price
approach (B&P) and a matheuristic algorithm (matheuristic), all discussed in [13]. The
results are summarized in Table 8.

The results show that CP was able to find three new optimal solutions, with improve-
ments of up to 15% over the previous solution values. For the hardest instances, however,
significant computing time was required—more than 32 h of computation.

In Figure 4 the optimality gaps are reported for all the methods available for these
instances. For each method M, the gap is calculated in terms of the percentage deviation
from the optimal solution as cost(M)−cost(CP)

cost(CP) · 100, where cost(M) is the cost of the best
solution retrieved by method M. From the chart, it is possible to see how the methods
previously introduced in [13] have difficulty finding high quality solutions for the larger
instances, with substantial gaps with respect to CP in some cases. From the results on these
instances, the best method among those discussed in [13] appears to be the MILP-based
method, although it performed poorly on one of the instances.
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Table 2. Instances originated from att48 in [7]. Optimal solution costs.

Instance Mbiadou Saleu et al. Dell’Amico et al. Dinh et al. Lei and Chen Nguyen et al. Raj et al. CP
[7]—UB [10]—UB [11]—UB [12]—UB [14]—UB [13]—UB Opt Cost Sec Found Sec Opt

att48_0_80_1_2_1 29,954.0 29,954.0 29,954.0 29,954.0 - - 29,954.0 0.7 1.3
att48_1_80_1_2_1 33,798.0 33,798.0 33,798.0 33,798.0 - - 33,798.0 2.7 3.3
att48_0_0_1_2_1 42,136.0 42,136.0 42,136.0 42,136.0 - - 42,136.0 0.3 0.3
att48_0_20_1_2_1 38,662.0 38,662.0 38,662.0 38,662.0 - - 38,662.0 0.8 0.8
att48_0_40_1_2_1 31,592.0 31,592.0 31,592.0 31,592.0 - - 31,592.0 0.5 0.5
att48_0_60_1_2_1 30,788.8 30,788.8 30,788.8 30,788.8 - - 30,788.8 2.0 2.2
att48_0_100_1_2_1 27,784.0 27,784.0 27,784.0 27,784.0 - - 27,784.0 4.1 5.2
att48_0_80_1_1_1 33,234.0 33,234.0 33,234.0 33,234.0 - - 33,234.0 1.4 2.1
att48_0_80_1_3_1 29,142.0 29,142.0 29,142.0 29,142.0 - - 29,142.0 2.4 5.3
att48_0_80_1_4_1 28,686.0 28,686.0 28,686.0 28,686.0 - - 28,686.0 3.8 7.1
att48_0_80_1_5_1 28,610.0 28,610.0 28,610.0 28,610.0 - - 28,610.0 2.9 7.6
att48_0_80_2_2_1 28,686.0 28,686.0 28,686.0 28,686.0 - 28,796.0 28,686.0 11.1 13.6
att48_0_80_3_2_1 28,610.0 28,610.0 28,610.0 28,610.0 - - 28,610.0 2.0 18.0
att48_0_80_4_2_1 28,610.0 28,610.0 28,610.0 28,610.0 - 28,610.0 28,610.0 5.9 22.6
att48_0_80_5_2_1 28,610.0 28,610.0 28,610.0 28,610.0 - - 28,610.0 3.5 27.3

Table 3. Instances originated from berlin52 in [7]. Optimal solution costs.

Instance Mbiadou Saleu et al. Dell’Amico et al. Dinh et al. Lei and Chen Nguyen et al. Raj et al. CP
[7]—UB [10]—UB [11]—UB [12]—UB [14]—UB [13]—UB Opt Cost Sec Found Sec Opt

berlin52_0_80_1_2_1 6386.5 6386.5 6386.5 6386.5 - - 6386.5 3.5 4.5
berlin52_1_80_1_2_1 7830.0 7830.0 7830.0 7830.0 - - 7830.0 0.7 1.0
berlin52_0_0_1_2_1 9675.0 9675.0 9675.0 9675.0 - - 9675.0 0.4 0.5
berlin52_0_20_1_2_1 9350.0 9350.0 9350.0 9350.0 - - 9350.0 1.1 1.1
berlin52_0_40_1_2_1 8300.0 8300.0 8300.0 8300.0 - - 8300.0 1.0 1.1
berlin52_0_60_1_2_1 7410.0 7410.0 7410.0 7410.0 - - 7410.0 3.0 6.7
berlin52_0_100_1_2_1 6192.0 6192.0 6192.0 6192.0 - - 6192.0 13.7 19.6
berlin52_0_80_1_1_1 7450.0 7450.0 7450.0 7450.0 - - 7450.0 1.5 5.4
berlin52_0_80_1_3_1 5656.6 5656.6 5656.6 5656.6 - - 5656.6 1.9 2.4
berlin52_0_80_1_4_1 5290.7 5290.7 5290.7 5290.7 - - 5290.7 1.0 1.8
berlin52_0_80_1_5_1 5190.0 5190.0 5190.0 5190.0 - - 5190.0 2.0 2.1
berlin52_0_80_2_2_1 5299.8 5290.7 5290.7 5290.7 - 5290.7 a 5290.7 2.8 5.3
berlin52_0_80_3_2_1 5190.0 5190.0 5190.0 5190.0 - - 5190.0 2.2 2.2
berlin52_0_80_4_2_1 5190.0 5190.0 5190.0 5190.0 - 5190.0 a 5190.0 2.2 2.2
berlin52_0_80_5_2_1 5190.0 5190.0 5190.0 5190.0 - - 5190.0 1.2 1.3

a Optimality first proven in [13].
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Table 4. Instances originated from eil101 in [7]. Optimal solution costs.

Instance Mbiadou Saleu et al. Dell’Amico et al. Dinh et al. Lei and Chen Nguyen et al. Raj et al. CP
[7]—UB [10]—UB [11]—UB [12]—UB [14]—UB [13]—UB Opt Cost Sec Found Sec Opt

eil101_0_80_1_2_1 564.0 564.0 564.0 564.0 564.0 - 564.0 34.3 39.5
eil101_1_80_1_2_1 650.0 649.0 649.0 649.0 649.0 - 649.0 71.4 80.8
eil101_0_0_1_2_1 819.0 819.0 819.0 819.0 819.0 - 819.0 5.9 6.0
eil101_0_20_1_2_1 738.0 736.0 736.0 736.0 736.0 - 736.0 15.7 20.2
eil101_0_40_1_2_1 646.0 646.0 646.0 646.0 646.0 - 646.0 21.4 38.8
eil101_0_60_1_2_1 578.0 578.0 578.0 578.0 578.0 - 578.0 31.4 35.9
eil101_0_100_1_2_1 561.4 560.0 560.0 560.0 560.0 - 560.0 54.8 92.4
eil101_0_80_1_1_1 650.0 650.0 650.0 650.0 650.0 - 650.0 70.3 92.5
eil101_0_80_1_3_1 504.0 504.0 503.9 503.2 503.2 - 503.2 22.2 44.2
eil101_0_80_1_4_1 456.0 456.0 456.0 456.0 456.0 - 456.0 16.0 36.0
eil101_0_80_1_5_1 420.8 421.0 420.8 420.8 420.8 - 420.8 29.6 35.5
eil101_0_80_2_2_1 456.0 456.0 456.0 456.0 456.0 458.8 456.0 57.7 276.0
eil101_0_80_3_2_1 395.0 395.0 395.0 395.0 395.0 - 395.0 29.9 65.9
eil101_0_80_4_2_1 346.7 346.0 346.0 346.0 346.0 354.0 346.0 25.5 36.7
eil101_0_80_5_2_1 319.7 318.0 318.0 318.0 318.0 - 318.0 11.9 33.5

Table 5. Instances originated from gr120 in [7]. Optimal solution costs.

Instance Mbiadou Saleu et al. Dell’Amico et al. Dinh et al. Lei and Chen Nguyen et al. Raj et al. CP
[7]—UB [10]—UB [11]—UB [12]—UB [14]—UB [13]—UB Opt Cost Sec Found Sec Opt

gr120_0_80_1_2_1 1414.0 1420.8 1414.0 1414.0 1414.0 - 1414.0 168.7 206.2
gr120_1_80_1_2_1 1730.0 1726.0 1726.0 1726.0 1726.0 - 1726.0 99.0 113.6
gr120_0_0_1_2_1 2006.0 2006.0 2006.0 2006.0 2006.0 - 2006.0 7.9 8.1
gr120_0_20_1_2_1 1736.0 1736.0 1736.0 1736.0 1736.0 - 1736.0 48.1 52.0
gr120_0_40_1_2_1 1624.0 1624.0 1624.0 1624.0 1624.0 - 1624.0 142.0 152.6
gr120_0_60_1_2_1 1494.0 1494.0 1494.0 1494.0 1494.0 - 1494.0 27.5 69.8
gr120_0_100_1_2_1 1414.8 1416.0 1414.0 1414.0 1414.0 - 1414.0 138.2 775.5
gr120_0_80_1_1_1 1592.0 1592.0 1592.0 1592.0 1592.0 - 1592.0 119.7 288.1
gr120_0_80_1_3_1 1289.3 1291.0 1284.7 1284.7 1284.7 - 1284.7 75.7 97.8
gr120_0_80_1_4_1 1189.7 1192.0 1186.0 1186.0 1186.0 - 1186.0 87.4 139.7
gr120_0_80_1_5_1 1112.0 1114.0 1112.0 1112.0 1112.0 - 1112.0 91.8 403.8
gr120_0_80_2_2_1 1188.5 1197.0 1186.0 1186.0 1186.0 1202.2 1186.0 234.0 368.3
gr120_0_80_3_2_1 1044.7 1050.0 1044.0 1044.0 1044.0 - 1044.0 330.4 700.9
gr120_0_80_4_2_1 946.0 946.0 943.0 943.0 943.0 949.0 943.0 627.9 663.9
gr120_0_80_5_2_1 880.0 881.0 878.9 878.9 878.9 - 878.7 6036.6 6037.3



Algorithms 2023, 16, 40 11 of 13

Table 6. Instances originated from pr152 in [7]. Optimal solution costs.

Instance Mbiadou Saleu et al. Dell’Amico et al. Dinh et al. Lei and Chen Nguyen et al. Raj et al. CP
[7]—UB [10]—UB [11]—UB [12]—UB [14]—UB [13]—UB Opt Cost Sec Found Sec Opt

pr152_0_80_1_2_1 76,008.0 76,008.0 76,008.0 76,008.0 76,008.0 - 76,008.0 316.2 324.4
pr152_1_80_1_2_1 76,556.0 76,556.0 76,556.0 76,556.0 76,556.0 - 76,556.0 259.8 1045.9
pr152_0_0_1_2_1 86,596.0 86,596.0 86,596.0 86,596.0 86,596.0 - 86,596.0 29.8 42.1
pr152_0_20_1_2_1 82,504.0 82,504.0 82,504.0 82,504.0 82,504.0 - 82,504.0 622.3 1120.8
pr152_0_40_1_2_1 77,372.0 77,316.0 77,236.0 77,236.0 77,236.0 - 77,236.0 23.5 39.8
pr152_0_60_1_2_1 76,786.0 76,786.0 76,786.0 76,786.0 76,758.0 - 76,758.0 47.0 74.1
pr152_0_100_1_2_1 74,468.0 74,302.0 74,302.0 74,302.0 74,302.0 - 74,302.0 708.5 775.0
pr152_0_80_1_1_1 80,164.0 79,952.0 79,952.0 79,952.0 79,952.0 - 79,952.0 94.3 106.0
pr152_0_80_1_3_1 72,936.0 72,936.0 72,936.0 72,936.0 72,936.0 - 72,936.0 243.8 398.1
pr152_0_80_1_4_1 70,412.0 70,328.0 70,148.0 70,148.0 70,148.0 - 70,148.0 431.2 553.7
pr152_0_80_1_5_1 67,798.0 67,798.0 67,798.0 67,798.0 67,858.0 - 67,798.0 1472.0 2260.9
pr152_0_80_2_2_1 70,244.0 70,405.5 70,148.0 70,148.0 70,148.0 79,686.0 70,148.0 195.4 483.6
pr152_0_80_3_2_1 65,062.1 64,720.3 64,626.0 64,550.9 64,550.0 - 64,550.0 393.4 575.6
pr152_0_80_4_2_1 60,027.4 59,772.0 59,772.0 59,772.0 59,756.0 63,990.0 59,756.0 325.4 366.8
pr152_0_80_5_2_1 56,336.1 56,262.0 56,262.0 56,180.0 56,178.0 - 56,178.0 742.9 941.0

Table 7. Instances originated from gr229 in [7]. Optimal solution costs.

Instance Mbiadou Saleu et al. Dell’Amico et al. Dinh et al. Lei and Chen Nguyen et al. Raj et al. CP
[7]—UB [10]—UB [11]—UB [12]—UB [14]—UB [13]—UB Opt Cost Sec Found Sec Opt

gr229_0_80_1_2_1 1794.8 1785.9 1781.2 1783.1 1780.9 - 1780.9 1697.6 1817.6
gr229_1_80_1_2_1 1913.7 1911.6 1911.6 1911.6 1911.6 - 1911.6 2084.8 2355.3
gr229_0_0_1_2_1 2020.2 2017.2 2017.2 2017.2 2017.2 - 2017.2 125.6 127.7
gr229_0_20_1_2_1 1862.8 1860.1 1860.1 1860.1 1860.1 - 1860.1 279.4 316.1
gr229_0_40_1_2_1 1828.0 1827.0 1824.8 1825.9 1824.8 - 1824.8 1517.3 1595.4
gr229_0_60_1_2_1 1807.5 1797.4 1796.9 1796.6 1796.6 - 1796.6 691.8 794.1
gr229_0_100_1_2_1 1498.1 1496.3 1697.0 1496.3 1496.3 - 1496.3 316.4 358.9
gr229_0_80_1_1_1 1865.0 1863.1 1862.0 1862.0 1862.0 - 1862.0 558.5 723.8
gr229_0_80_1_3_1 1735.2 1725.5 1717.9 1719.9 1716.7 - 1716.7 806.8 1371.6
gr229_0_80_1_4_1 1679.3 1675.8 1668.1 1669.9 1664.8 - 1664.8 2748.8 3940.5
gr229_0_80_1_5_1 1642.0 1629.4 1623.1 1622.9 1620.2 - 1620.2 1895.6 2434.2
gr229_0_80_2_2_1 1686.8 1673.7 1668.3 1666.9 1664.8 1851.5 1664.8 2139.1 3644.9
gr229_0_80_3_2_1 1603.9 1592.5 1582.9 1582.4 1580.9 - 1580.9 4103.6 6480.7
gr229_0_80_4_2_1 1518.6 1526.9 1516.7 1515.1 1511.7 1899.9 1511.7 6109.2 7528.1
gr229_0_80_5_2_1 1483.7 1467.8 1465.0 1460.7 1458.7 - 1458.7 15,361.5 17,367.1
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Table 8. Instances originated from TSPLIB in [13]. Optimal solution costs.

Instances
Raj et al. [13] Raj et al. [13] Raj et al. [13] CP

MILP B&P Matheuristic Opt Sec Sec
UB UB UB Cost Found Opt

att48_0_80_6_2_1 28,610.0 28,784.0 30,708.0 28,610.0 9.8 43.0
berlin52_0_80_6_2_1 5190.0 a 5190.0 5685.0 5190.0 4.8 4.9
eil101_0_80_6_2_1 314.0 320.0 365.0 314.0 43.6 78.2
gr120_0_80_6_2_1 851.4 889.0 851.5 820.0 666.9 2232.0
pr152_0_80_6_2_1 65,140.0 57,794.0 57,794.0 53,478.0 1401.2 1446.9
gr229_0_80_6_2_1 1664.6 1883.8 1883.8 1415.1 3214.2 115,622.3

a Optimality first proven in [13].

Figure 4. Optimality gap for the different methods tested on the instances proposed in [13].

5. Conclusions

The aim of the investigation was to show the potential of constraint programming
solvers on optimization problems that—like the parallel drone scheduling traveling sales-
man problem—extend the concepts of a traditional traveling salesman problem. The
new constraint programming model we propose leads—by exploiting multi-threading
computation—to a very effective exact algorithm for the problem considered. The method
was able to find the optimal solution for all the instances normally considered in the litera-
ture, and this was the first optimality proof for most of the instances. During the process,
four of the previously best-known solution costs were also improved.

Finally, we believe that straightforward adaptations of the model we propose could
lead to state-of-the-art results for many of the several extensions proposed to the basic
problem considered here, although this is beyond the scope of the present paper. From a
more general perspective, we also believe that constraint programming has potential for
use in effectively attacking many other optimization problems arising in different fields.
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