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Abstract
The paper deals with the random time-dependent oligopolistic market equilibrium 
problem. For such a problem the firms’ point of view has been analyzed in Barba-
gallo and Guarino Lo Bianco (Optim. Lett. 14: 2479–2493, 2020) while here the 
policymaker’s point of view is studied. The random dynamic optimal control equi-
librium conditions are expressed by means of an inverse stochastic time-dependent 
variational inequality which is proved to be equivalent to a stochastic time-depend-
ent variational inequality. Some existence and well-posedness results for optimal 
regulatory taxes are obtained. Moreover a numerical scheme to compute the solu-
tion to the stochastic time-dependent variational inequality is presented. Finally an 
example is discussed.

Keywords  Inverse stochastic time-dependent variational inequality · Random 
dynamic optimal control equilibrium problem · Existence results · Well-posedness 
analysis

1  Introduction

In the recent years stochastic dynamic optimization models received a lot of 
attention and have applications in many different areas. In particular stochastic 
variational inequalities arise from problems with conditions of randomness where 
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the data are affected by a certain degree of uncertainty (see [17]). Such topics 
involved a lot of authors: see for example [14] or the recent paper [24] where 
stochastic variational inequalities with anticipativity in a dynamic multistage set-
ting have been studied. Moreover, it is worth to highlight that inverse and con-
trol problems associated with stochastic PDEs also lead to stochastic variational 
inequalities (see [18]).

The purpose of this note is to analyze an effective oligopolistic market equilib-
rium model using the theory of stochastic and time-dependent variational inequali-
ties combined with the Nash equilibrium theory. Similar analysis has been obtained 
in [7] where the authors studied a random time-dependent oligopolistic market 
equilibrium problem in presence of both production and demand excesses from the 
firms’ point of view. Here we focus our attention on the policymaker’s point of view. 
More precisely, control policies are implemented by imposing higher taxes or sub-
sidies in order to restrict or encourage exportations. We prove that the equilibrium 
conditions can be formulated by means of an inverse stochastic time-dependent vari-
ational inequality. We investigate also the well-posedness of the inverse stochastic 
time-dependent variational inequality and the connection between the well-posed-
ness of a stochastic time-dependent variational inequality and its inverse. Moreover 
we present a numerical method to compute the random dynamic oligopolitistic mar-
ket equilibrium distribution. In the literature numerical methods to solve stochastic 
variational inequalities are available. A first numerical method was proposed in [21] 
but the convergence was ensured under very strong hypothesis on the function of 
the variational inequality. Later many other stochastic approximation methods for 
stochastic variational inequalities have been developed (see for instance [16, 20]). 
In our case we deal with a stochastic time-dependent variational inequality prob-
lem. Then we introduce a first instance of an iterative procedure for such inequalities 
which is based on the stochastic continuity result obtained in [7]. Thanks to that, a 
discretization of the time interval can be performed and, then, a projection method 
to solve the stochastic variational inequalities can be applied. Some reference for the 
numerical resolution of dynamic variational inequalities can be found, for instance, 
in [2, 3].

The time-dependent oligopolistic market equilibrium problem was intensively 
studied in the deterministic setting. It was introduced and deep analyzed starting by 
[4]. After that several variations of the model have been considered. More precisely 
in [11, 12] the presence of production and demand excesses, occurring during an 
economic crisis period or when the physical transportation of commodity between 
a firm and a demand market is evidently limited, has been introduced. Recently, the 
oligopolistic market model has been extended by allowing the possibility to a com-
pany to produce more than one good: the theoretical tools is based, in this case, on 
the tensor variational inequality theory (see [8–10] and the reference therein). The 
attention on the policymaker’s point of view (whose aim is to control the commod-
ity exportations by means of the imposition of taxes or incentives) was studied in 
[13] where the authors formulate the resulting optimization problem as an inverse 
variational inequality. Inverse variational inequalities can be considered as a special 
case of general variational inequalities and can be used to model various control 
problems (see [15] for details). Note that only recently the strict connection between 
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classical variational inequalities and inverse variational inequalities has been studied 
(see, e.g., [25]).

The introduction of uncertainty in the oligopolistic market equilibrium problem 
arises because the constraints or the data vary in a non-regular and unpredictable man-
ner (think about unpredictable events). Thus a suitable model has to permit to handle 
random constraints. The models in presence of uncertainty have been analyzed in [6] 
while in [5] the authors add production and demand excesses.

The mathematical setting is the one of Hilbert spaces, which allows us to obtain 
existence and regularity results. In this paper we study inverse stochastic time-
dependent variational inequalities: results are obtained concerning existence and 
well-posedness.

The paper is organized as follows. In Sect.  2, the random oligopolistic market 
equilibrium problem is presented. We describe the firms’ point of view obtaining the 
equivalence between the random Cournot-Nash equilibrium condition and an appro-
priate stochastic time-dependent variational inequality. Then we introduce the policy-
maker’s point of view, proving that the random dynamic optimal regulatory tax is a 
solution to an inverse stochastic time-dependent variational inequality. In Sect. 3 some 
existence results are obtained. In Sect. 4 we study the well-posedness of an inverse 
stochastic time-dependent variational inequality, which is, under suitable conditions, 
equivalent to the existence and uniqueness of its solution. In Sect.  5 a numerical 
scheme to compute the random dynamic oligopolistic market equilibrium distribution, 
based on a combination between a discretization procedure and a projection method, is 
presented. Finally an example is provided.

2 � The random dynamic oligopolistic market equilibrium model

The aim of the section is to present the random dynamic oligopolistic market equi-
librium problem. This is the problem of finding a trade equilibrium in a supply-
demand market between a finite number of spatially separated firms which produce 
a homogeneous commodity and ship the commodity to some demand markets. We 
suppose that the data are affected by a certain degree of uncertainty and depend-
ing on the time. We analyze first the firms’ point of view of the problem and then 
we introduce the policymaker’s point of view, namely the random dynamic optimal 
control equilibrium problem.

2.1 � The firms’ point of view

Let us start to consider the firms’ point of view of the random dynamic oligopo-
listic market equilibrium problem. Let T > 0 , let Ω be an open subset of ℝ and let 
(Ω,F,ℙ) be a probability space. Let ([0, T] × Ω,B([0, T])⊗ F,L1 ⊗ ℙ) be the 
product measure space, where B([0, T]) is the Borel �-field of [0, T] and L1 is the 
1-dimensional Lebesgue measure on [0, T]. A point in [0, T] × Ω will be denoted by 
the couple (t,�) . If Y = Y(t,�) is a measurable function on [0, T] × Ω , then the func-
tion defined as
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is a random variable on Ω and its expectation is given by

A stochastic process is a family of random variables Xt(�) = X(t,�) on Ω indexed 
by the time variable t ∈ [0, T] . Correspondingly, the random function t ⟼ X(t,�) , 
� ∈ Ω is called sample path at � . Let us denote by L2([0, T] × Ω,ℝk,ℙ) the Hil-
bert space of stochastic processes X from [0, T] × Ω to ℝk such that the expectation 
�(X) < ∞ . Moreover, we define in L2([0, T] × Ω,ℝk,ℙ) the following bilinear form 
on (L2([0, T] × Ω,ℝk,ℙ))∗ × L2([0, T] × Ω,ℝk,ℙ), through the expectation, by

where Ξ ∈ (L2([0, T] × Ω,ℝk,ℙ))∗ = L2([0, T] × Ω,ℝk,ℙ), 
X ∈ L2([0, T] × Ω,ℝk,ℙ) and

Let us consider m firms Pi , i = 1,… ,m , which produce a homogeneous com-
modity and n demand markets Qj , j = 1,… , n, which are generally spatially sepa-
rated. Assume that the homogeneous commodity, produced by the m firms and 
consumed by the n markets, depends on random variables. Let pi be the random 
time-dependent variable expressing the nonnegative commodity output produced 
by firm Pi and suppose that pi = pi(t,�) , (t,�) ∈ [0, T] × Ω , i = 1,… ,m . Let qj 
be the random time-dependent variable expressing the nonnegative demand for 
the commodity of demand market Qj, namely qj = qj(t,�), (t,�) ∈ [0, T] × Ω , 
j = 1,… , n . Let xij be the random time-dependent variable expressing the nonnega-
tive commodity shipment between the supply producer Pi and the demand market 
Qj , namely xij = xij(t,�) , (t,�) ∈ [0, T] × Ω , i = 1,… ,m , j = 1,… , n . Finally let 
xi be the strategy vector for the firm Pi , namely xi(t,�) = (xi1(t,�),… , xin(t,�)) , 
(t,�) ∈ [0, T] × Ω , i = 1,… ,m . For technical reasons, we analyze the model in the 
Hilbert space L2([0, T] × Ω,ℝmn

+
,ℙ).

Let us assume that the following feasibility conditions hold:

X(�) = ∫
T

0

Y(�,�) d�

𝔼(X) = ∫
Ω

X(�) dℙ.

≪ Ξ,X ≫
𝔼
= ∫

T

0 ∫
Ω

⟨Ξ(t,𝜔),X(t,𝜔)⟩dt dℙ,

⟨Ξ(t,�),X(t,�)⟩ =
k�

l=1

Ξl(t,�)Xl(t,�), a.e. in [0,T], ℙ − a.s.

(1)pi(t,�) =
n∑
j=1

xij(t,�), i = 1,… ,m, a.e. in [0,T], ℙ − a.s.,

(2)qj(t,�) =
m∑
i=1

xij(t,�), j = 1,… , n, a.e. in [0,T], ℙ − a.s.
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The condition (1) expesses that the random time-dependent quantity produced by 
each firm Pi has to be equal to the random commodity shipments from that firm 
to all the demand markets. Instead, condition (2) expresses that the random time-
dependent quantity demanded by each demand market Qj has to be equal to the ran-
dom commodity shipments from all the firms to that demand market.

Furthermore let us assume that the nonnegative random time-dependent commodity 
shipment between the producer Pi and the demand market Qj has to satisfy two capac-
ity constraints, namely there exist two nonnegative random time-dependent variables 
x, x ∈ L2([0, T] × Ω,ℝmn

+
,ℙ) such that

Therefore, the set of feasible distributions x ∈ L2([0, T] × Ω,ℝmn
+
,ℙ) is

It worth to underline that � is a convex closed bounded subset of 
L2([0, T] × Ω,ℝmn

+
,ℙ).

At last we introduce the costs. More precisely, let fi be a random time-depend-
ent variable denoting the production cost of firm Pi such that fi = fi(t,�, x(t,�)) , 
(t,�) ∈ [0, T] × Ω , i = 1,… ,m . Similarly, let dj be a random time-dependent variable 
denoting the demand price for unity of the commodity for the demand market Qj such 
that di = di(t,�, x(t,�)) , (t,�) ∈ [0, T] × Ω , j = 1,… , n . Finally, let cij be the random 
variable expressing the transaction cost, which includes the transportation cost asso-
ciated with trading the commodity between firm Pi and demand market Qj such that 
cij = cij(t,�, x(t,�)) , (t,�) ∈ [0, T] × Ω , i = 1,… ,m , j = 1,… , n . Let �ij be the ran-
dom variable expressing the supply or resource tax imposed on the supply market Pi for 
the transaction with the demand market Qj , namely �ij = �ij(t,�) , (t,�) ∈ [0, T] × Ω , 
i = 1,… ,m , j = 1,… , n . Let �ij be the random variable expressing the incentive pay 
imposed on the supply market Pi for the transaction with the demand market Qj namely 
�ij = �ij(t,�) , (t,�) ∈ [0, T] × Ω , i = 1,… ,m , j = 1,… , n . Moreover, let hij be the 
random variable expressing the difference between the supply tax and the incentive pay 
imposed on the supply market Pi for the transaction with the demand market Qj , namely 
hij(t,�) = �ij(t,�) − �ij(t,�) , (t,�) ∈ [0, T] × Ω , i = 1,… ,m , j = 1,… , n . As a con-
sequence, the profit vi(t,�, x(t,�)) of the firm Pi is

(3)
0 ≤ x

ij
(t,�) ≤xij(t,�) ≤ xij(t,�),

∀i = 1,… ,m, ∀j = 1,… , n, a.e. in [0, T], ℙ − a.s.

𝕂 =

{
x ∈ L2([0, T]×Ω,ℝmn

+
,ℙ) ∶ 0 ≤ x

ij
(t,�) ≤ xij(t,�) ≤ xij(t,�),

∀i = 1,… ,m, ∀j = 1,… , n, a.e. in [0,T], ℙ − a.s.

}
.
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namely, it is equal to the price which the demand markets are disposed to pay minus 
the production costs, the transportation costs and the taxes.

Let us assume the following: 

	 (i)	 vi(⋅) is continuously differentiable for each i = 1,… ,m,

	 (ii)	 ∇Dv(⋅) is a Carathéodory function such that 

	 (iii)	 vi(⋅) is pseudoconcave1 with respect to the variables xi, i = 1,… ,m.

Let us set ∇Dv =

(
�vi
�xij

)
i = 1,… ,m

j = 1,… , n

∈ L2([0, T] × Ω,ℝmn
+
,ℙ).

The model is based on the fact that the m firms supply the commodity in a non-
cooperative fashion, each one tries to maximize its own profit function considered 
the optimal distribution pattern for the other firms. The aim is to find a nonnegative 
commodity distribution for which the m firms and the n demand markets will be in a 
state of equilibrium as defined below.

Definition 1  A feasible distribution x∗ ∈ � is a random time-dependent oligopolis-
tic market equilibrium distribution if and only if, for each i = 1,… ,m , a.e. in [0, T], 
ℙ-a.s., we have

where

The previous definition generalizes the random Cournot-Nash principle in the 
random time-dependent case. Moreover, under assumptions (i), (ii) and (iii), it is 
characterized by means of the stochastic variational inequality (see [7])

vi(t,�, x(t,�)) =
n∑
j=1

dj(t,�, x(t,�))xij(t,�) − fi(t,�, x(t,�))

−

n∑
j=1

cij(t,�, x(t,�))xij(t,�) −
n∑
j=1

hij(t,�)xij(t,�),

i = 1,… ,m, a.e. in [0,T], ℙ − a.s.,

(4)
∃h ∈ L

2(Ω,ℙ) ∶ ��∇D
v(t,�, x(t,�))�� ≤ h(t,�)‖x(t,�)‖,

∀x ∈ L
2([0,T] × Ω,ℝmn

+
,ℙ), a.e. in [0, T], ℙ − a.s. ,

(5)vi(t,�, x
∗(t,�)) ≥ vi(t,�, xi(t,�), x

∗
−i
(t,�)),

x∗
−i
(t,�) = (x∗

1
(t,�),… , x∗

i−1
(t,�), x∗

i+1
(t,�),… , x∗

m
(t,�)).

1  A function v
i
(⋅) , continuously differentiable, is called pseudoconcave with respect to x

i
, i = 1,… ,m , 

(see [22]) if the following condition holds
⟨
�v

i

�x
i

(x1,… , x
i
,… , x

m
), x

i
− y

i

⟩
≥ 0 ⇒ v

i
(x1,… , x

i
,… , x

m
) ≥ v

i
(x1,… , y

i
,… , x

m
).
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namely

2.2 � The policymaker’s point of view

Let us left the producers’ point of view in the analysis of the problem and let us 
introduce the random time-dependent optimal control model in which the term h, 
which is a fixed parameter in the firms’ point of view model, will become a variable. 
The random time-dependent resource exploitations x(t,�, h(t,�)) can be controlled 
by adjusting taxes h(t,�) , a.e. in [0, T], ℙ-a.s. In this prospective, the random time-
dependent tax adjustment has the role of regulating exportation. More precisely, if 
the policymaker wants to reduce exportations and, hence, the production of the com-
modity, then higher taxes will be enforced, otherwise if the policymaker wants to 
force exportations of the commodity, subventions will be provided.

Let x(h) = x(t,�, h(t,�)) be the random time-dependent function of regulatory 
taxes, with h ∈ L2([0, T] × Ω,ℝmn,ℙ) . Let us assume that x(t,�, h(t,�)) is a Car-
athéodory function and there exists � ∈ L2([0, T] × Ω,ℙ) such that

Hence the set of feasible states is given by

We notice immediately that W is a convex closed bounded subset of 
L2([0, T] × Ω,ℝmn

+
,ℙ).

Definition 2  A random dynamic regulatory tax h∗ ∈ L2([0, T] × Ω,ℝmn
+
,ℙ) is a ran-

dom dynamic optimal regulatory tax if x(h∗) ∈ W and, for i = 1,… ,m , j = 1,… , n , 
a.e. in [0, T] and ℙ-a.s. , the following conditions hold:

(6)≪ −∇Dv(x
∗), x − x∗ ≫

�
≥ 0, ∀x ∈ �,

�
T

0 �
Ω

−

m∑
i=1

n∑
j=1

�vi(t,�, x
∗(t,�))

�xij

(
xij(t,�) − x∗

ij
(t,�)

)
dt dℙ ≥ 0, ∀x ∈ 𝕂.

(7)
‖x(t,�, h(t,�))‖ ≤�(t,�) + ‖h(t,�)‖,

∀h ∈ L2([0, T] × Ω,ℝmn
+
,ℙ), a.e. in [0,T], ℙ − a.s.

W =

{
w ∈L2([0, T] × Ω,ℝmn,ℙ) ∶ x

ij
(t,�) ≤ wij(t,�) ≤ xij(t,�),

∀i = 1,… ,m, ∀j = 1,… , n, a.e. in [0,T], ℙ − a.s.

}
.

(8)xij(t,�, h
∗(t,�)) = x

ij
(t,�) ⇒h∗

ij
(t,�) ≤ 0,

(9)x
ij
(t,𝜔) < xij(t,𝜔, h

∗(t,𝜔)) < xij(t,𝜔) ⇒h∗
ij
(t,𝜔) = 0,

(10)xij(t,�, h
∗(t,�)) = xij(t,�) ⇒h∗

ij
(t,�) ≥ 0.
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Definition 2 must be interpreted as follows: the random time-dependent optimal 
regulatory tax h∗ is such that the correspondig state x(t,�, h∗(t,�)) has to satisfy 
capacity constraints, namely x(t,�) ≤ x(t,�, h∗(t,�)) ≤ x(t,�) , a.e. in [0, T], ℙ-a.s. 
Moreover, if xij(t,�, h∗(t,�)) = x

ij
(t,�) , then the random time-dependent exporta-

tions have to be encouraged, namely taxes must be less than or equal to the random 
dynamic incentive pays. If xij(t,�, h∗(t,�)) = xij(t,�), then the random time-depend-
ent exportations have to be reduced, hence random dynamic taxes must be greater 
than or equal to the random dynamic incentive pays. Finally, if 
x
ij
(t,𝜔) < xij(t,𝜔, h

∗(t,𝜔)) < xij(t,𝜔) is satisfied, random dynamic taxes must be 
equal to random dynamic incentive pays.

Let us establish the inverse stochastic time-dependent variational formulation of 
the random dynamic optimal equilibrium control problem.

Theorem 1  A random dynamic regulatory tax h∗ ∈ L2([0, T] × Ω,ℝmn
+
,ℙ) is a ran-

dom dynamic optimal regulatory tax if and only if it solves the inverse stochastic 
time-dependent variational inequality

Proof  For the reader’s convinience, we present the details of the proof. Let h∗ be a 
random dynamic optimal regulatory tax and let w ∈ W . For i ∈ {1,… ,m} and 
j ∈ {1,… , n} fixed, it results that x

ij
(t,�) ≤ wij(t,�) ≤ xij(t,�) , a.e. in [0, T], ℙ-a.s. 

One has 

1.	 If xij(t,�, h∗(t,�)) = x
ij
(t,�) , a.e. in [0,  T], ℙ-a.s., by (8) it follows that 

h∗
ij
(t,�) ≤ 0  ,  a .e .  in  [0 ,   T ] ,  ℙ-a . s . ,  and,  as  a  consequence , 

h∗
ij
(t,�)

(
wij(t,�) − xij(t,�, h

∗(t,�))
) ≤ 0, a.e. in [0, T], ℙ-a.s.;

2.	 If x
ij
(t,𝜔) < xij(t,𝜔, h

∗(t,𝜔)) < xij(t,𝜔) , a.e. in [0, T], ℙ-a.s., by using (9) we get 
h∗
ij
(t,�) = 0 , a.e. in [0, T], ℙ-a.s., and, then, h∗

ij
(t,�)

(
wij(t,�) − xij(t, h

∗(�))
)
= 0 , 

a.e. in [0, T], ℙ-a.s.;
3.	 If xij(t,�, h∗(t,�)) = xij(t,�) , a.e. in [0,  T], ℙ-a.s., by (10) we deduce that 

h∗
ij
(t,�) ≥ 0  ,  a . e .  i n  [ 0 ,   T ] ,  ℙ - a . s . ,  a n d ,  h e n c e , 

h∗
ij
(t,�)

(
wij(t,�) − xij(t,�, h

∗(t,�))
) ≤ 0, a.e. in [0, T], ℙ-a.s.

We have shown that for every i = 1,… ,m, j = 1,… , n and w ∈ W, we have

By summing over i = 1,… ,m , j = 1,… , n and integrating both on [0, T] and on Ω, 
we obtain the inverse stochastic time-dependent variational inequality (11).

Vice versa, let h∗ be satisfied the inverse stochastic time-dependent variational ine-
quality (11). We fix i ∈ {1,… ,m}, j ∈ {1,… , n} and set whk(t,�) = xij(t,�, h

∗(�)), 
a.e. in [0, T], ℙ-a.s., for every h ≠ i, k ≠ j . Making use of (11), it results

(11)�
T

0 �
Ω

m∑
i=1

n∑
j=1

h∗
ij
(t,�)

(
wij(t,�) − xij(t,�, h

∗(t,�))
)
dt dℙ ≤ 0, ∀w ∈ W.

h∗
ij
(t,�)

(
wij(t,�) − xij(t,�, h

∗(t,�))
) ≤ 0, a.e. in [0,T], ℙ − a.s.
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We claim that if xij(t,�, h∗(t,�)) = x
ij
(t,�) , a.e. in [0, T], ℙ-a.s., then, h∗

ij
(t,�) ≤ 0 , 

a.e. in [0, T], ℙ-a.s. Indeed, by contradiction, we suppose that there exists or a set 
I ⊂ [0, T] either a set Ξ ⊆ Ω , with ℙ(Ξ) > 0 , such that h∗

ij
(t,𝜔) > 0 , or a.e. in I, either 

ℙ-a.s. in Ξ . Let us suppose that we are in the case in which there exists a set I ⊂ [0, T] 
such that h∗

ij
(t,𝜔) > 0 , a.e. in I, ℙ-a.s. Then we choose

Therefore we obtain

which is in contradiction with (12). The case in which there exists a set Ξ ⊆ Ω , with 
ℙ(Ξ) > 0 , such that h∗

ij
(t,𝜔) > 0 , a.e. in [0, T], ℙ-a.s. in Ξ , is analogous.

Similarly we can proceed in the other cases deducing:

•	 if xij(t,�, h∗(t,�)) = xij(t,�) , a.e. in [0, T], ℙ-a.s., then h∗
ij
(t,�) ≥ 0 , a.e. in [0, T], ℙ

-a.s.,
•	 if x

ij
(t,𝜔) < xij(t,𝜔, h

∗(t,𝜔)) < xij(t,𝜔) , a.e. in [0, T], ℙ-a.s., then h∗(�) = 0 , a.e. in 
[0, T], ℙ-a.s.

	�  ◻

We are interested to express the random dynamic optimal equilibrium control prob-
lem by means of a suitable stochastic time-dependent variational inequality. For this 
reason we set

Let us highlight that Z is a closed, convex (as product of convex sets) and not 
bounded subset of L2([0, T] × Ω,ℝ2mn

+
,ℙ). The following result holds.

(12)

�
T

0 �
Ω

h∗
ij
(t,�)

(
wij(t,�) − xij(t,�, h

∗(t,�))
)
dt dℙ ≤ 0,

∀wij(t,�) ∈ L2([0, T] × Ω,ℙ) ∶ x
ij
(t,�) ≤ wij(t,�) ≤ xij(t,�).

wij(t,�) =

{
xij(t,�), a.e. in I, ℙ − a.s.,

xij(t,�, h
∗(t,�)), a.e. in [0,T] ⧵ I, ℙ − a.s.

(13)
∫

T

0 ∫
Ω

h∗
ij
(t,𝜔)

(
wij(t,𝜔) − xij(t,𝜔, h

∗(t,𝜔))
)
dt dℙ

= ∫I ∫Ω

h∗
ij
(t,𝜔)(xij(t,𝜔) − x

ij
(t,𝜔)) dt dℙ > 0,

Z = L2([0, T] × Ω,ℝmn,ℙ) ×W, F ∶ [0, T] × Ω × Z → L2([0, T] × Ω,ℝ2mn,ℙ),

z(t,�) =

(
h(t,�)
w(t,�)

)
∈ Z, a.e. in [0,T], ℙ − a.s.,

F(t,�, z(t,�)) =

(
w(t,�) − x(t,�, h(t,�))

−h(t,�)

)
, a.e. in [0,T], ℙ − a.s..
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Theorem  2  The inverse stochastic time-dependent variational inequality (11) is 
equivalent to the stochastic time-dependent variational inequality

Proof  We suppose that (14) holds true. Therefore, one has z∗ = (h∗,w∗)T ∈ Z , and

Let us take h(t,�) = h∗(t,�) − w∗(t,�) + x(t,�, h∗(t,�)) , a.e. in [0, T], ℙ-a.s., and 
w(t,�) = w∗(t,�) , a.e. in [0, T], ℙ-a.s., in (15). As a consequence, we get

then x(t,�, h∗(t,�)) = w∗(t,�), a.e. in [0, T], ℙ-a.s. Hence x(h∗) ∈ W and, by using 
(15), we obtain (11).

Vice versa if h∗ ∈ L2([0, T] × Ω,ℝmn
+
,ℙ) is a solution to (11), it results

Hence, z∗ = (h∗, x(h∗))T ∈ Z is a solution to (14). 	�  ◻

3 � Existence results

Let us establish some existence results for the random time-dependent oligopolis-
tic market equilibrium problem. For what concerns the firms’ point of view model, 
we refer to [7]. Here, we investigate on the existence of the random dynamic opti-
mal regulatory tax. First of all, let us remark that thanks to the equivalent stochastic 
time-dependent variational formulation of (11), the existence can be obtained apply-
ing the results shown in [7]. In the sequel, we concentrate our investigation on the 
inverse stochastic time-dependent variational inequality (11).

(14)�
T

0 �
Ω

2m∑
l=1

n∑
j=1

Flj(t,�, z
∗(t,�))

(
zlj(t,�) − z∗

lj
(t,�)

)
dt dℙ ≥ 0, ∀z ∈ Z.

(15)

�
T

0 �
Ω

(
m∑
i=1

n∑
j=1

(w∗
ij
(t,�) − xij(t,�, h

∗(t,�)))(hij(t,�) − h∗
ij
(t,�))

)
dt dℙ

− �
T

0 �
Ω

(
m∑
i=1

n∑
j=1

h∗
ij
(t,�)(wij(t,�) − w∗

ij
(t,�))

)
dt dℙ ≥ 0, ∀z = (h,w)T ∈ Z.

−�
T

0 �
Ω

m∑
i=1

n∑
j=1

(w∗
ij
(t,�) − xij(t,�, h

∗(t,�)))2 dt dℙ ≥ 0,

�
T

0 �
Ω

m∑
i=1

n∑
j=1

(xij(t,�, h
∗(t,�)) − xij(t,�, h

∗(t,�)))(hij(t,�) − h∗
ij
(t,�)) dt dℙ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

−�
T

0 �
Ω

m∑
i=1

n∑
j=1

h∗
ij
(t,�)(wij(t,�) − xij(t,�, h

∗(t,�))) dt dℙ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

≥ 0.
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In order to prove an existence result for the inverse stochastic time-dependent var-
iational inequality (11), we assume the following: 

(a)	 x(t,�, h) ∶ [0, T] × Ω × L2([0, T] × Ω,ℝmn,ℙ) → L2([0, T] × Ω,ℝmn,ℙ) is a Car-
athéodory function such that there exists a function � ∈ L2([0, T] × Ω,ℝ,ℙ) ∶

(b)	 x(t,�, h) ∶ [0, T] × Ω × L2([0, T] × Ω,ℝmn,ℙ) → L2([0, T] × Ω,ℝmn,ℙ) is anti-
monotone with respect to h, namely 

(c)	 there exists a constant M > 0 such that for any h ∈ L2([0, T] × Ω,ℝmn,ℙ) with 
‖h‖L2([0,T]×Ω,ℝmn,ℙ) > M , it results 

 where wproj

0
 is the projection of w0(t,�) = x(t,�, 0) onto the feasible set W, 

namely 

Assumption (16) means that if we adjust the price in a suitable way (so if w0(t,�) is 
enough positive for w0(t,�) ≤ x(t,�) and is enough negative for w0(t,�) ≤ x(t,�) ), 
then the resultant curve x(t,�, h(t,�)) will be strictly controlled in the interior of 
the feasible set W. Now, we are able to prove an existence result under the above 
assumptions and making use of Corollary 3.7 in [23].

Theorem  3  Let us assume that conditions (a), (b) and (c) are satisfied. Then the 
inverse stochastic time-dependent variational inequality (11) admits a solution.

Proof  Making use of assumptions (b) and (c), we have that any 
h ∈ L2([0, T] × Ω,ℝmn,ℙ) with ‖h‖L2([0,T]×Ω,ℝmn,ℙ) > M is too large to be a solution 
to (11). Let us set L2

M
= {x ∈ L2([0, T] × Ω,ℝmn,ℙ) ∶ ‖h‖L2([0,T]×Ω,ℝmn,ℙ) ≤ M} . 

Consequently, we consider the stochastic time-dependent variational inequality on 
the bounded set Z� = L2

M
×W , namely

‖x(t,�, h(t,�))‖ ≤ �(t,�) + ‖h(t,�)‖,
∀h ∈ L2([0, T] × Ω,ℝmn,ℙ), a.e. in [0,T], ℙ − a.s.;

⟨h1(t,�) − h2(t,�), x(t,�, h1(t,�)) − x(t,�, h2(t,�))⟩ ≤ 0,

∀h1, h2 ∈ L2([0, T] × Ω,ℝmn,ℙ), a.e. in [0,T], ℙ − a.s.;

(16)∫
T

0 ∫
Ω

⟨h(t,𝜔),wproj

0
(t,𝜔) − x(t,𝜔, h(t,𝜔))⟩ dt dℙ > 0,

w
proj

0
(t,�) =

⎧⎪⎨⎪⎩

x(t,�), if w0(t,�) ≤ x(t,�), a.e. in [0,T], ℙ − a.s.,

w0(t,�), if x(t,�) ≤ w0(t,�) ≤ x(t,�), a.e. in [0,T], ℙ − a.s.,

x(t,�), if w0(t,�) ≥ x(t,�), a.e. in [0,T], ℙ − a.s.

�
T

0 �
Ω

2m∑
l=1

n∑
j=1

Flj(t,�, z
∗(t,�))(zlj(t,�) − z∗

lj
(t,�)) dt dℙ ≥ 0, ∀z ∈ Z�.
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By assumption (b), it is easy to prove

for every z = (h,w)T , ẑ = (ĥ, ŵ)T ∈ Z� , a.e. in [0,  T], ℙ-a.s. Let us set 
C ∶ Z�

→ (L2([0, T] × Ω,ℝmn
+
,ℙ) × L2([0, T] × Ω,ℝmn

+
,ℙ))∗ such that

By using (17), it results

and, then, the operator C is monotone2. Taking into account assumption (a) and the 
Lebesgue theorem, we can prove that

holds for every sequence {𝜆n} ⊂ [0, 1] , such that �n → � ∈ [0, 1] and for every 
z, ẑ ∈ W � . Therefore we deduce

namely the operator C(z) is hemicontinuous along line segments3. Moreover, since 
W is convex closed bounded and for the definition of L2

M′ , Z′ is also a convex closed 
bounded set. Hence, taking into account Corollary 3.7 in [23], (14) admits a solu-
tion. As a consequence, by Theorem 2, (11) has also a solution. 	�  ◻

4 � Well‑posedness conditions

Let us investigate on the well-posedness of (11) and, then, we establish its relation-
ship with the well-posedness of (14).

(17)
⟨z(t,�) − ẑ(t,�),F(t,�, z(t,�)) − F(t,�, ẑ(t,�))⟩ = ⟨x(t,�, h(t,�)) − x(t,�, ĥ(t,�)), h(t,�) − ĥ(t,�)⟩ ≥ 0,

≪ C(z), u ≫
𝔼
= ∫

T

0 ∫
Ω

⟨F(t,𝜔, z(t,𝜔)), u(t,𝜔)⟩ dt dℙ,
∀z ∈ Z�, ∀u ∈ L2([0, T] × Ω,ℝmn

+
,ℙ) × L2([0, T] × Ω,ℝmn

+
,ℙ).

�
T

0 �
Ω

⟨F(t,�, z(t,�)) − F(t,�, ẑ(t,�)), z(t,�) − ẑ(t,�)⟩ dt dℙ ≥ 0, ∀z, ẑ ∈ Z�,

lim
n ∫

T

0 ∫
Ω

‖F(t,�, �nz(t,�) + (1 − �n )̂z(t,�)) − F(t,�, �z(t,�) + (1 − �)̂z(t,�))‖2 dt dℙ = 0

lim
n ∫

T

0 ∫
Ω

⟨F(t,�, �nz(t,�) + (1 − �n)̂z(t,�)), z(t,�) − ẑ(t,�)⟩ dt dℙ

= ∫
T

0 ∫
Ω

⟨F(t,�, �z(t,�) + (1 − �)̂z(t,�)), z(t,�) − ẑ(t,�)⟩ dt dℙ,

2  Let X be a reflexive Banach space over the reals, let K be a nonempty closed convex subset of X and let 
X∗ be the dual space of X equipped with the weak∗ topology. A mapping C ∶ K ⟶ X∗ is called mono-
tone if and only ⟨C(u) − C(v), u − v⟩ ≥ 0 , for all u, v ∈ K.
3  A mapping C ∶ K ⟶ X∗ is called hemicontinuous along line segments if and only if the function 
� ↦ ⟨C(�), u − v⟩ is continuous on the line segments [u, v] , for all u, v ∈ K.
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Let us define that a sequence {hn} ⊂ L2([0, T] × Ω,ℝmn,ℙ) is called an approxi-
mating sequence for (11) if and only if there exists a sequence {�n} , with 𝜀n > 0 , for 
every n ∈ ℕ , and �n → 0 , such that

Definition 3  We say that (11) is well-posed if and only if (11) has a unique solution 
and every approximating sequence converges to the unique solution.

The following well-posedness result for the inverse stochastic time-dependent 
variational inequality holds.

Theorem  4  Let x ∶ [0, T] × Ω × L2([0, T] × Ω,ℝmn,ℙ) → L2([0, T] × Ω,ℝmn,ℙ) be 
an hemicontinuous along line segments and anti-monotone mapping. Then, (11) is 
well-posed if and only if it has a unique solution.

Proof  The necessity holds trivially. Let us prove that the sufficiency holds also true. 
Hence we assume that (11) has a unique solution h∗ . Consequently, we have

Since x is anti-monotone, we get

Let {hn} ⊂ L2([0, T] × Ω,ℝmn
+
,ℙ) be an approximating sequence for (11). This 

means that there exists a sequence {�n} , with 𝜀n > 0 , for every n ∈ ℕ , and �n → 0 
such that

For the anti-monotonicity of x, we deduce

�
T

0 �
Ω

⟨hn(t,�),w(t,�) − x(t,�, hn(t,�))⟩ dt dℙ ≤ �n, ∀w ∈ W, ∀n ∈ ℕ.

�
T

0 �
Ω

⟨h∗(t,�),w(t,�) − x(t,�, h∗(t,�))⟩dt dℙ ≤ 0, ∀w ∈ W.

(18)

�
T

0
�
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − h
∗(t,�)⟩dt dℙ

+ �
T

0
�
Ω

⟨h(t,�),w(t,�) − x(t,�, h∗(t,�))⟩dt dℙ

≤ �
T

0
�
Ω

⟨h∗(t,�),w(t,�) − x(t,�, h∗(t,�))⟩dt dℙ ≤ 0,

∀h ∈ L
2([0, T] × Ω,ℝmn

+
,ℙ), ∀w ∈ W.

�
T

0 �
Ω

⟨hn(t,�),w(t,�) − x(t,�, hn(t,�))⟩dt dℙ ≤ �n, ∀w ∈ W, ∀n ∈ ℕ.
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Let us consider

and

If {zn} is unbounded, without loss of generality, we can assume that ‖zn‖ → +∞ . Let 
us set

and

Without loss of generality, we can assume that �n ∈ (0, 1] and �n → � = (k, y) ≠ z∗ . 
Moreover it results that y ∈ W , being W closed and convex. For any w ∈ W and any 
h ∈ L2([0, T] × Ω,ℝmn

+
,ℙ) , we get

(19)

�
T

0
�
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − h
n
(t,�)⟩dt dℙ

+ �
T

0
�
Ω

⟨h(t,�),w(t,�) − x(t,�, h
n
(t,�))⟩dt dℙ

≤ �
T

0
�
Ω

⟨h
n
(t,�),w(t,�) − x(t,�, h

n
(t,�))⟩dt dℙ ≤ �

n
,

∀h ∈ L
2([0, T] × Ω,ℝmn

+
,ℙ), ∀w ∈ W.

z∗(t,�) = (h∗(t,�), x(t,�, h∗(t,�)))T , a.e. in [0,T], ℙ − a.s.

zn(t,�) = (hn(t,�), x(t,�, hn(t,�)))
T , ∀n ∈ ℕ, a.e. in [0,T], ℙ − a.s.

�n =
1

‖zn − z∗‖ ,

�n(t,�) = (kn(t,�), yn(t,�)) = z∗(t,�) + �n(zn(t,�) − z∗(t,�))

= (h∗(t,�) + �n(hn(t,�) − h∗(t,�)), x(t,�, h∗(t,�))

+ �n(x(t,�, hn(t,�)) − x(t,�, h∗(t,�)))).



1 3

A random time‑dependent noncooperative equilibrium problem﻿	

By using (18)–(20), it follows

(20)

∫
T

0
∫
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − k(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨h(t,�),w(t,�) − y(t,�)⟩dt dℙ

= ∫
T

0
∫
Ω

⟨w(t,�) − x(t,�, h(t,�)), kn(t,�) − k(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨w(t,�) − x(t,�, h(t,�)), h∗(t,�) − kn(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − h∗(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨h(t,�),w(t,�) − x(t,�, h∗(t,�))⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨h(t,�), x(t,�, h∗(t,�)) − yn(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨h(t,�), yn(t,�) − y(t,�)⟩dt dℙ

=

�
∫

T

0
∫
Ω

⟨w(t,�) − x(t,�, h(t,�)), kn(t,�) − k(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨h(t,�), yn(t,�) − y(t,�)⟩dt dℙ
�

+

�
∫

T

0
∫
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − h∗(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨h(t,�),w(t,�) − x(t,�, h∗(t,�))⟩dt dℙ

+ �n

�
∫

T

0
∫
Ω

⟨w(t,�) − x(t,�, h(t,�)), h∗(t,�) − hn(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨h(t,�), x(t,�, h∗(t,�)) − x(t,�, hn(t,�))⟩dt dℙ
�

=

�
∫

T

0
∫
Ω

⟨w(t,�) − x(t,�, h(t,�)), kn(t,�) − k(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨h(t,�), yn(t,�) − y(t,�)⟩dt dℙ
�

+ (1 − �n)
�
∫

T

0
∫
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − h∗(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨h(t,�),w(t,�) − x(t,�, h∗(t,�))⟩dt dℙ

+ �n

�
∫

T

0
∫
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − hn(t,�)⟩dt dℙ

+ ∫
T

0
∫
Ω

⟨h(t,�),w(t,�) − x(t,�, hn(t,�))⟩dt dℙ
�
.
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Passing to the limit as n → +∞ in the above inequality, we obtain

For any h� ∈ L2([0, T] × Ω,ℝmn
+
,ℙ) and any y� ∈ W , define 

k�(t,�) = k(t,�) + �(h�(t,�) − k(t,�)) and y�(t,�) = y(t,�) + �(y�(t,�) − y(t,�)) , 
for all � ∈ [0, 1] , a.e. in [0, T], ℙ-a.s. Making use of (21), it results

which implies

Being x hemicontinuous along line segments, passing to the limit as � → 0+ in the 
above inequality, we obtain

By using (22) and being h′ arbitrary, it results

�
T

0
�
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − k(t,�)⟩dt dℙ

+ �
T

0
�
Ω

⟨h(t,�),w(t,�) − y(t,�)⟩dt dℙ

≤ �
T

0
�
Ω

⟨w(t,�) − x(t,�, h(t,�)), kn(t,�) − k(t,�)⟩dt dℙ

+ �
T

0
�
Ω

⟨h(t,�), yn(t,�) − y(t,�)⟩dt dℙ + �n�n,

∀w ∈ W, ∀h ∈ L2([0, T] × Ω,ℝmn
+
,ℙ), ∀n ∈ ℕ.

(21)

�
T

0 �
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − k(t,�)⟩dt dℙ

+�
T

0 �
Ω

⟨h(t,�),w(t,�) − y(t,�)⟩dt dℙ ≤ 0,

∀w ∈ W, ∀h ∈ L2([0, T] × Ω,ℝmn
+
,ℙ).

�
T

0 �
Ω

⟨y�(t,�) − x(t,�, k�(t,�)), k�(t,�) − k(t,�)⟩dt dℙ

+�
T

0 �
Ω

⟨k�(t,�), y�(t,�) − y(t,�)⟩dt dℙ ≤ 0,

�
T

0 �
Ω

⟨y�(t,�) − x(t,�, k�(t,�)), h
�(t,�) − k(t,�)⟩dt dℙ

+�
T

0 �
Ω

⟨k�(t,�), y�(t,�) − y(t,�)⟩dt dℙ ≤ 0, ∀h� ∈ L2([0, T] × Ω,ℝmn
+
,ℙ), ∀y� ∈ W.

(22)

�
T

0 �
Ω

⟨y(t,�) − x(t,�, k(t,�)), h�(t,�) − k(t,�)⟩dt dℙ

+�
T

0 �
Ω

⟨k(t,�), y�(t,�) − y(t,�)⟩dt dℙ ≤ 0, ∀h� ∈ L2([0, T] × Ω,ℝmn
+
,ℙ), ∀y� ∈ W.
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for every real s and every v ∈ L2([0, T] × Ω,ℝmn,ℙ) . Taking into account (23) and 
the arbitrary of s and v, we can deduce that x(t,�, k(t,�)) = y(t,�) , a.e. in [0, T], ℙ
-a.s. As a consequence, we have

By using (24), we get that k solves (11) and then k(t,�) = h∗(t,�) , a.e. 
in [0,  T], ℙ-a.s., since h∗ is the unique solution to (11), which contradicts 
(h∗(t,�), x(t,�, h∗(t,�)))T ≠ (k(t,�), x(t,�, k(t,�)))T , a.e. in [0, T], ℙ-a.s.

Hence we can suppose that {zn} is bounded. Let {znr} be any subsequence of {zn} 
such that znr → (h, y) , as r → +∞ . By virtue of (19), it follows

Passing to the limit as r → +∞ in the above inequality, we obtain

By using same arguments as in (21)–(24), we deduce

and

This means that h solves (11). For the uniqueness of solution to (11), it results that 
h(t,�) = h∗(t,�) , a.e. in [0, T], ℙ-a.s. As a consequence, {hn} converges to h∗ and, 
hence, (11) is well-posed. 	� ◻

The well-posedness for the stochastic time-dependent variational inequal-
ity (14) can be introduced as done in Definition 3. More precisely, a sequence 
{zn} ⊂ L2([0, T] × Ω,ℝmn,ℙ) is called an approximating sequence for (14) if and 

(23)s�
T

0 �
Ω

⟨y(t,�) − x(t,�, k(t,�)), v(t,�)⟩dt dℙ ≤ constant,

(24)�
T

0 �
Ω

⟨y�(t,�) − x(t,�, k(t,�)), k(t,�)⟩dt dℙ ≤ 0, ∀y� ∈ W.

�
T

0 �
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − hnr (t,�)⟩dt dℙ

+�
T

0 �
Ω

⟨h(t,�),w(t,�) − x(t,�, hnr (t,�))⟩dt dℙ ≤ �nr ,

∀h ∈ L2([0, T] × Ω,ℝmn
+
,ℙ), ∀w ∈ W.

�
T

0 �
Ω

⟨w(t,�) − x(t,�, h(t,�)), h(t,�) − h(t,�)⟩dt dℙ

+�
T

0 �
Ω

⟨h(t,�),w(t,�) − y(t,�)⟩dt dℙ ≤ 0,

∀h ∈ L2([0, T] × Ω,ℝmn
+
,ℙ), ∀w ∈ W.

x(t,�, h(t,�)) = y(t,�), a.e. in [0,T], ℙ − a.s.,

�
T

0 �
Ω

⟨h(t,�), x�(t,�) − x(t,�, h(t,�))⟩dt dℙ ≤ 0, ∀x� ∈ W.
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only if there exists a sequence {�n} , with 𝜀n > 0 , for every n ∈ ℕ , and �n → 0 , such 
that

Similarly, we say that (14) is well-posed if and only if (14) has a unique solution and 
every approximating sequence converges to the unique solution.

Theorem  5  Let x ∶ [0, T] × Ω × L2([0, T] × Ω,ℝmn,ℙ) → L2([0, T] × Ω,ℝmn,ℙ) be 
a continuous mapping. Then, (11) is well-posed if and only if (14) is well-posed.

Proof  Let us start supposing that (11) is well-posed. Hence (11) has a unique 
solution h∗ ∈ L2([0, T] × Ω,ℝmn,ℙ) . Making use of Theorem  2, it follows that 
z∗ = (h∗, x(h∗))T ∈ Z is the unique solution to (14). Let us consider an approximat-
ing sequence {zn} = {(hn,wn)

T} ⊂ Z for (14). Then there exists a sequence {�n} , 
with 𝜀n > 0 , for every n ∈ ℕ , and �n → 0 , such that

As a consequence, we have

Then, we deduce

Fix w ∈ W , v ∈ L2([0, T] × Ω,ℝmn,ℙ) and consider h(t,�) = hn(t,�) − sv(t,�) , a.e. 
in [0, T], ℙ-a.s., then

where s is arbitrary. Consequently x(t,�, hn(t,�)) = wn(t,�) , and then by (25) we 
get

�
T

0 �
Ω

⟨F(t,�, zn(t,�)), zn(t,�) − z(t,�)⟩ dt dℙ ≤ �n, ∀z ∈ Z, ∀n ∈ ℕ.

�
T

0 �
Ω

⟨F(t,�, zn(t,�)), zn(t,�) − z(t,�)⟩ dt dℙ ≤ �n, ∀z = (h, x(h))T ∈ Z, ∀n ∈ ℕ.

(25)
�

T

0 �
Ω

⟨wn(t,�) − x(t,�, hn(t,�)), hn(t,�) − h(t,�)⟩dt dℙ

−�
T

0 �
Ω

⟨hn(t,�),wn(t,�) − w(t,�)⟩dt dℙ ≤ �n,

∀z = (h,w)T ∈ Z, ∀n ∈ ℕ.

�
T

0 �
Ω

⟨wn(t,�) − x(t,�, hn(t,�)), hn(t,�) − h(t,�)⟩dt dℙ

≤ �n + �
T

0 �
Ω

⟨hn(t,�),wn(t,�) − w(t,�)⟩dt dℙ,
z = (h,w)T ∈ Z, ∀n ∈ ℕ.

s�
T

0 �
Ω

⟨wn(t,�) − x(t,�, hn(t,�)), v(t,�)⟩dt dℙ ≤ constant,
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We have that {hn} ⊂ L2([0, T] × Ω,ℝmn,ℙ) is an approximating sequence 
for (11). Since (11) is well-posedness, it results hn → h∗ . Therefore, 
zn = (hn, x(hn)) → (h∗, x(h∗)) and, hence, (14) is well-posed.

Vice versa, let us suppose that (14) is well-posed. Hence it has a unique solution 
z∗ = (h∗, x(h∗))T ∈ Z . By Theorem 2, it results that h∗ is the unique solution to (11). 
Let {hn} ⊂ L2([0, T] × Ω,ℝmn,ℙ) be an approximating sequence for (11). Then there 
exists a sequence {�n} , with 𝜀n > 0 , for every n ∈ ℕ , and �n → 0 , such that

Let us consider

and

By using (26), one has

This means that {zn} is an approximating sequence for (14). Making use of the well-
posedness of (14), we obtain that zn → z∗ . As a consequence, the sequence {hn} con-
verges to h∗ . Then the claim is completely achieved. 	�  ◻

5 � Numerical method

In this section we present an algorithm for solving stochastic time-dependent varia-
tional inequalities as (6) based on a combination between a discretization procedure 
and a projection method. The algorithm we present is a generalization of the one in 
[19] extended to the evolutionary case.

In the deterministic setting, the classical projection method for the following vari-
ational inequality

− �
T

0
�
Ω

⟨h
n
(t,�),w

n
(t,�) − w(t,�)⟩dt dℙ

= −�
T

0
�
Ω

⟨h
n
(t,�), x(t,�, h

n
(t,�)) − w(t,�)⟩dt dℙ ≤ �

n
,

∀w ∈ W, ∀n ∈ ℕ.

(26)

−�
T

0 �
Ω

⟨hn(t,�), x(t,�, hn(t,�)) − w(t,�)⟩ dt dℙ ≤ �n, ∀w ∈ W, ∀n ∈ ℕ.

wn(t,�) = x(t,�, hn(t,�)), a.e. in [0,T], ℙ − a.s.,

zn(t,�) = (hn(t,�),wn(t,�))
T , a.e. in [0,T], ℙ − a.s.

�
T

0 �
Ω

⟨F(t,�, zn(t,�)), zn(t,�) − z(t,�)⟩ dt dℙ ≤ �n, ∀z = (h, x(h))T ∈ Z, ∀n ∈ ℕ.

⟨F(x∗), x − x∗⟩ ≥ 0, ∀x ∈ K,
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where K is a nonempty closed convex subset of ℝm and F ∶ K → ℝ
m is a mapping, 

akin to the projection method for convex optimization, is

where PK is the projection operator onto K and � is a suitable real number. The con-
vergence of this method is guaranteed assuming F is strongly monotone, Lipschitz 
continuous and the real number � satisfies a strong condition depending on the mod-
ulus of strong monotonicity and the Lipschitz constant. Nevertheless the require-
ment of strong monotonicity is heavy and often fails to be satisfied in applications. 
More refined extragradient methods are available in the literature.

In the stochastic setting, the first method for stochastic variational inequalities, 
proposed in [21], updates iteratively xk according to the formula

where {vk} is a sample of v and {�k} is a sequence of positive stepsizes. Again the 
convergence is ensured under strong hypotesis on monotonicity of F, Lipschitz con-
stant and tight conditions on the stepsize. After this first instance, the recent research 
on stochastic approximation methods for stochastic variational inequalities had 
remarkable developments.

We introduce here an extragradient method for stochastic time-dependent vari-
ational inequalities as (6) based on [19]. In [7, Theorem 4] it is proved that under 
the assumptions (i),  (ii),  (iii), and assuming the continuity of the data, the solu-
tion to (6) is stochastic continuous on [0,  T]. The stochastic continuity allows 
us to carry out a discretization procedure in order to reduce the time-dependent 
problem to some static problems. That is, firstly we consider a partition of [0, T] 
such that:

For each value tr , r = 0, 1, ..., n , we apply an extragradient method to solve the point-
to-point stochastic variational inequality

where

with t = tr , r = 0, 1, ..., n . More precisely we have the following:

xk+1 = PK(xk − �F(xk)),

xk+1 = PK(xk − �kF(vk, xk)),

0 = t0 < t1 < ⋯ < tr < ⋯ < tn = T .

(27)�
Ω

⟨F(t,�, x∗(t,�)), x(t,�) − x∗(t,�)⟩dℙ ≥ 0, ∀x(t,�) ∈ 𝕂(t), in [0, T],

𝕂(t) =

{
x(t,�) ∈ ℝ

mn ∶ x
ij
(t,�) ≤ xij(t,�) ≤ xij(t,�),

∀i = 1,… ,m, ∀j = 1,… , n, ℙ − a.s.

}
,
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Algorithm

•	 Discretize the interval [0, T]: 0 = t0 < t1 < ⋯ < tr < ⋯ < tn = T .
•	 For each r = 1,… , n , choose an initial point x0

r
 , a positive stepsize sequence 

{�k} , the sample rate {Nk} and initial samples {�0
j
}
N0

j=1
 and {�0

j
}
N0

j=1
 of the random 

variable �.
•	 Given the iterate xk

r
 , generate the samples {�k

j
}
Nk

j=1
 and {�k

j
}
Nk

j=1
 of � and define 

•	 Interpolate the numerical solutions for every r = 1,… , n.

For each r = 1,… , n , the convergence of the method to the solution to the cor-
responding stochastic variational inequality (27) is guarantees by the conver-
gence results proved in [19]. In order to obtain the convergence of our scheme in 
the time interval [0,  T], we consider a sequence {�s} of (not necessarily equidis-
tant) partitions of the time interval [0,  T] such that �s = (t0

s
, t1
s
,… , t

Ns

s ) , where 
0 = t0

s
< t1

s
< … < t

Ns

s = T  and assume that

approaches zero, as s → +∞ . Now we construct the approximate solution to (27) by 
considering

where x(tr
s
,�) is the solution to the stochastic variational inequality (27) at t = tr

s
 , 

which is computed by means of the projection method. It is possible to show the L1
-convergence of such approximate solutions by making use of same arguments in [1].

5.1 � Example

An example of the random dynamic oligopolistic market equilibrium problem which 
emphasizes the central role in the study of the model of the uncertainty is provided. 
To this aim, let us analyze an economic network made up of two firms and two 
demand markets, as in Fig. 1.

Let xij(t,�) be the commodity shipment from Pi to Qj , i = 1, 2, j = 1, 2 , and 
assume that x

ij
(t,�) ≤ xij(t,�) ≤ xij(t,�) holds, where x

ij
(t,�) and xij(t,�) are func-

tion on [0, 25] × Ω representing the capacity constraints. Assume that 

zk
r
= P

�(tr)

(
xk
r
−

�k
Nk

Nk∑
j=1

F(tr,�
k
j
, xk

r
)

)
,

xk+1
r

= P
�(tr)

(
xk
r
−

�k
Nk

Nk∑
j=1

F(tr, �
k
j
, zk

r
)

)
.

ks = max{tr
s
− tr−1

s
∶ r = 1, 2,… ,Ns},

xs(t,�) =

Ns∑
r=1

x(tr
s
,�)�[tr−1

s
,tr
s
[(t),
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x
ij
(t,𝜔) = t2x̌ij(𝜔) and xij(t,𝜔) = t2x̂ij(𝜔) , where x̂ij(𝜔) and x̌ij(𝜔) are uniformly dis-

tributed random variables with probability density functions given by:

Set now the maximal commodity production of Pi , i = 1, 2 , and the maximal 
commodity demand of Qj , j = 1, 2 . Let us define pi(t,�) = t2pi(�) , i = 1, 2 , and 
qj(t,�) = t2qj(�) , j = 1, 2 , where the density function of pi(�) , i = 1, 2 , and qj(�) , 
j = 1, 2 , are defined by

The feasible set � is then as in (4) with the above definitions of x
ij
(t,�) , xij(t,�) , 

pi(t,�) , qj(t,�) , i = 1, 2 , j = 1, 2.
Then we left to define the profit function vi(t,�, x(t,�)) for the firms Pi , 

i = 1, 2 . We set

fx̂i1 (z) =

{
1

2
, if 0 ≤ z ≤ 2,

0, elsewhere,

fx̂i2 (z) =

{
1

5
, if 0 ≤ z ≤ 5,

0, elsewhere,

fx̌i1 (z) =

{
1

25
, if 75 ≤ z ≤ 100,

0, elsewhere,

fx̌i2 (z) =

{ 1

20
, if 80 ≤ z ≤ 100,

0, elsewhere.

fp1 (z) =

{
1

20
, if 80 ≤ z ≤ 100,

0, elsewhere

fp2 (z) =

{
1

10
, if 90 ≤ z ≤ 100,

0, elsewhere

fq1(z) =

{
1

30
, if 240 ≤ z ≤ 270,

0, elsewhere

fq2(z) =

{ 1

40
, if 150 ≤ z ≤ 190,

0, elsewhere

Fig. 1   Network structure of 
the numerical dynamic spatial 
oligopoly problem
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where ai , bi , i = 1, 2 are uniformly distributed random variables with supports:

Let us compute the operator ∇Dv

where here, and in the following, we omit the arguments of the variables, simply 
writing xij instead of xij(t,�).

The equilibrium conditions is expressed by the following variational inequality 
problem: find x∗ ∈ L2([0, 25] × Ω,ℝ4

+
,ℙ) such that

At first we observe that the  existence and uniqueness to  the solution to problem 
above is guaranteed by the theoretical result of [7] and Sect.  3. Moreover all the 
assumptions to ensure the convergence of the above computational method are satis-
fied. As a consequence, we can apply the method described before to obtain the 
numerical solutions x∗

ij
 , i = 1, 2 , j = 1, 2 , for different random evaluation of ai, bi , 

i = 1, 2 , evolving in time. We plot the x∗
ij
 , i = 1, 2 , j = 1, 2 , in the figures of Table 1 

for different random variables. Observe that the solution x∗ = (x∗
ij
) verifying the 

following

and, hence, x∗ belongs to � proving that x∗ is the solution of the random dynamic 
oligopolistic market equilibrium problem.

v1(t,�, x(t,�)) = − 3x2
11
(t,�) − x2

12
(t,�) + tx12(t,�)x21(t,�)+

t2a1(t,�)x11(t,�) + b1(t,�)x12(t,�)

v2(t,�, x(t,�)) = − 2etx2
21
(t,�) − 3tx2

22
(t,�) + x11(t,�)x22(t,�)+

a2(t,�)x21(t,�) + b2(t,�)x22(t,�)

spt a1 = [36, 108], spt b1 = [10, 40]

spt a2 = [40, 120], spt b2 = [10, 40]

−∇Dv(x) =

(
6x11 − t2a1 2x12 − tx21 − b1
4etx21 − a2 6tx22 − x11 − b2

)
,

≪ −∇Dv(x
∗), x − x∗ ≫

�
≥ 0, ∀ x ∈ �.

spt x∗
11

= [6, 18], spt x∗
12

= [20, 60]

spt x∗
21

= [10, 30], spt x∗
22

= [16, 58]
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