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Abstract: The fault diagnosis of wind turbines includes extremely challenging aspects that
motivate the research issues considered in this paper. In particular, this work studies fault
diagnosis solutions that are considered in a viable way and used as advanced techniques for
condition monitoring of dynamic processes. To this end, the work proposes the design of
fault diagnosis techniques that exploits the estimation of the fault by means of data—driven
approaches. These fuzzy and neural network structures are integrated with auto-regressive
with exogenous input regressors, thus making them able to approximate unknown nonlinear
dynamic functions with arbitrary degree of accuracy. The capabilities of fault diagnosis schemes
are validated by using a real-time simulator of a wind turbine system. Moreover, at this stage
the benchmark is also useful to analyse the robustness and the reliability characteristics of the
developed tools in the presence of model-reality mismatch and modelling error effects featured
by the wind turbine simulator. This realistic simulator relies on a hardware—in—the—loop tool
that is finally implemented for verifying and validating the performance of the developed fault

diagnosis strategies in an actual environment.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Fault diagnosis, fuzzy logic, neural network, data—driven approach,
hardware-in-the—loop tool, wind turbine system.

1. INTRODUCTION

Horizontal Axis Wind Turbines (HAWTSs) have dominated
the Wind Energy Conversion (WEC) industry over the last
few decades [1,2]. Modern HAWTs are designed larger and
are located in remote places, e.g. offshore sites, to increase
the WEC capacity. The HAWT is a complex highly nonlin-
ear dynamic system. So, in the presence of high wind speed
variation, it is challenging to retain HAWT operation with
the prescribed WEC efficiency. The high wind speed may
cause HAWT out-of-control operation with catastrophic
overspeeding of the rotor. In this case, either the HAWT
is stalled to stop, or the mechanical brake is engaged. As
a result, only a conservative WEC is achieved and the
efficiency is cumulatively less than that desired.

The HAWT efficiency is a trade-off between capturing the
maximum energy and satisfying the structural /operational
safety. In this regard, modern HAWT manufacturers define
the so-called ideal power curve, which characterizes the
HAWT operation with optimal efficiency. The key solution
for the enhancement of the HAWT efficiency relies on
the development of proper strategies to retain the oper-
ation on the ideal power curve. Accordingly, in high wind
speed conditions, the generated power is regulated at its
nominal value to maintain safe operation and to avoid
overspeeding. This region of operation is known as the full
load region, where power regulation represents the main
objective. In the HAWT, the power regulation is fulfilled
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by adjusting the pitch angle of the blades, which leads
to regulating the rotor speed. Therefore, it is crucial to
control the pitch angle such that the rotor speed is kept
within the predefined safe-to-operate bound around the
nominal value and, consequently, to avoid conservative
WEC control solutions. To this end, advanced control
solutions relying on Fault Detection and Isolation (FDI)
and Fault Tolerant Control (FTC) approaches represent
the key point for WEC systems.

In the last decades several papers have investigated the
problem of fault diagnosis for wind turbine systems, as
addressed e.g. in (Lan et al. (2018); Harrabi et al. (2018)).
Some of them have investigated the diagnosis of particular
faults, see e.g. (Hossain et al. (2018); Leite et al. (2018);
Lan et al. (2018)). In fact, sometimes the FDI can be
enhanced if the WT subsystems are compared to other
modules of the whole plant (Niemann et al. (2018)).

The first data—driven strategy proposed in this work
exploits Takagi—-Sugeno (TS) fuzzy prototypes (Babuska
(1998)), which are estimated via a clustering algorithm
and exploiting the data—driven algorithm developed in
(Simani et al. (1999)). For comparison purpose, a further
approach is designed, which exploits Neural Networks
(NNs) to derive the nonlinear dynamic relations between
the input and output measurements acquired for the
process under diagnosis and the faults affecting the plant.
The selected structures belong to the feed—forward Multi—
Layer Perceptron (MLP) neural network class that include
also Auto-Regressive with eXogenous (ARX) inputs in

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2022.07.111



92 Silvio Simani et al. / [FAC PapersOnLine 55-6 (2022) 91-95

order to model nonlinear dynamic links among the data.
In this way, the training of these Nonlinear ARX (NARX)
prototypes for fault estimation can exploit standard back—
propagation training algorithm, as recalled e.g. in (Korbicz
et al. (2004)).

The designed fault diagnosis schemes are tested via a
high—fidelity simulator of a wind turbine process, which
describes its behaviour in healthy and faulty conditions.
This simulator, which represents a benchmark (Odgaard
et al. (2013)), includes the presence of uncertainty and dis-
turbance effects, thus allowing to verify the reliability and
robustness characteristics of the proposed fault diagnosis
methodologies. Moreover, this work proposes to validate
the efficacy of the designed fault diagnosis techniques by
exploiting a more realistic scenario, which consists of a
Hardware—In—the-Loop (HIL) tool.

2. WIND TURBINE SYSTEM

The Wind Turbine (WT) benchmark considered in this
work for validation purposes was earlier presented in
(Odgaard et al. (2009)) and motivated by an international
competition. Despite its quite simple structure, it is able
to describe quite accurately the actual behaviour of a
three-blade horizontal-axis wind turbine that is working
at variable—speed and it is controlled by means of the
pitch angle of its blades. The plant includes several in-
terconnected subsystems, namely the wind process, the
wind turbine aerodynamics, the drive—train, the electric
generator/converter, the sensor and actuator systems and
the baseline controller. The overall system is sketched in
Figure 1, which represents the fault diagnosis target devel-
oped in this work. Further details of the WT benchmark
will not be provided here, as they were described in detail
in (Odgaard and Stoustrup (2015)) and the references
therein.

Rotor
Pitch | ] b || Pitch
actuator sensor
Power system

Drive-train
Low . High |+ Generator
Gear
speed speed | Converter
shaft box shaft Power
— Speed
sensor

sensor

| Fullload |

| Fullload |
i controller i

ey Partial load

Switch § controller Switch

Fig. 1. The WT benchmark and its functional subsystems.

3. FAULT DIAGNOSIS DATA-DRIVEN SCHEMES

This section recalls the fault diagnosis strategy proposed in
this paper that relies on F'S and NN tools, as summarised
in Section 3.1. These architectures are able to represent
NARX models exploited for estimating the nonlinear dy-
namic relations between the input and output measure-
ments of the WT process and the fault signals. In this
sense, these NARX prototypes will be employed as fault
estimators for solving the problem of the fault diagnosis
of the WT system.

Under these assumptions, the fault estimators derived by
means of a data—driven approach represent the residual

generators r(k), which provide the on-line reconstruction

f(k) of the fault signals as described e.g. in (Farsoni and
Simani (2021); Simani et al. (2021); Farsoni et al. (2021)).

3.1 Fault Estimators via Artificial Intelligence Tools

The unknown dynamic relations between the selected
input and output measurements of the WT plant and
the faults are represented by means of FSs, which rely on
a number of rules, antecedent and consequent functions.
These rules are used to represent the inference system
for connecting the measured signals from the system
under diagnosis to its faults, in form of IF = THEN
relations, implemented via the so—called Fuzzy Inference
System (FIS) (Babuska (1998)). The implementation of
these schemes follows the results alreadly achieved e.g. in
(Farsoni and Simani (2021); Simani et al. (2021); Farsoni
et al. (2021)).

4. SIMULATION AND EXPERIMENTAL TESTS

This section presents and discusses the numerical sim-
ulations conducted on the high-fidelity 4.8 MW HAWT
benchmark to evaluate the effectiveness of the proposed so-
lutions. Different fault scenarios are applied to the bench-
mark, i.e., single and simultaneous faults. It is shown that
in both cases the considered constraints are not violated,
satisfying the operation requirements. Uncertainties repre-
sent the key point in the case of offshore HAWTSs. Indeed,
in remote harsh locations, conversion and drivetrain effi-
ciency reduction are unavoidable. This issue is important,
as this may lead to less captured power. Accordingly, to
assess the robustness of the proposed scheme, a Monte-
Carlo analysis is performed with different measurement
errors, modelled as Gaussian processes, and the model-
reality mismatch.

4.1 Simulated Results

The considered wind speed sequence with the mean 17.84
(m/s) and the standard deviation of 1.94 (m/s). It is worth
noting that other wind sequences can be used to study
the robustness of the performance. In this work, however,
the robustness is analysed via the Monte-Carlo tool in the
presence of measurement errors. Therefore, for the sake
of brevity, the wind speed sequence is only used. Under
single and simultaneous fault scenarios, the results are also
shown.

It can be seen that the tracking errors are within the
considered constraints, considering the achieved results.
Accordingly, both the rotor and the generator speed sig-
nals, as illustrated in the addressed solutions, are quite
close to the corresponding nominal values despite the wind
speed variation and faults. As a result, the generated
power is regulated at the nominal value, as shown here.
These results imply that the wind turbine is successfully
controlled by pitch angle regulation, ¢.e. the nominal power
is generated, despite the wind speed high variation and the
faults. Furthermore, the given operation bounds are not vi-
olated. This enables safe operation and avoids conservative
WEC. Especially, considering the bounded rotor speed,
the engagement of the mechanical brake on the rotor shaft
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can be avoided. On the other hand, as indicated below, the
proposed scheme is able to construct the bounds to handle
the initial conditions outside of these bounds, as discussed
in Section 2.

The reference pitch angle computed by the proposed con-
troller is shown. The pitch angles are very similar to each
other. Therefore, to accurately investigate the performance
of the proposed solutions, the difference between these
two pitch angles is considered. Considering the achieved
results, it is clear that the main difference is in the periods
that the pitch actuator bias and effectiveness loss com-
mence. Considering the results below, the effects of the
pitch actuator dynamic change have led to more variations.

Note that these reconstructed signals f (k) can be directly
used as diagnostic residuals in order to detect and isolate
the faults affecting the WT. Moreover, each fuzzy model
with a number of delayed inputs and outputs n = 3 and
nc = 4 clusters. The results are shown in Figure 2.
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Fig. 2. Reconstructed faults f(k).

Indeed, the dynamic change causes the slower pitch ac-
tuator dynamic response. In this case, the controller has
to vary the pitch angle faster with larger values to retain
the rotor speed within the bounds. Now to extensively
evaluate the performance, the Monte-Carlo analysis is
per-formed to assess the robustness and reliability of the
proposed controller, in terms of nominal power generation,
considering different measurement errors and the VAF%
index. Additionally, it is included as a 10% reduction in
the power coefficient.

On the other hand, the drivetrain decreased efficiency is
considered by a 5% reduction in this parameter. Accord-
ingly, two cases with and without FDI and drivetrain effi-
ciency reduction are represented by the considered cases.
The Monte-Carlo analysis is performed under a single fault
scenario. For each case, 100 simulations are performed.
For each simulation, the VAF% is computed over the
simulation time. Then, the maximum, minimum, standard
deviation and mean values of each VAF% index for each
simulation are computed.

Therefore, the worst, the average and the best values
represent the largest, average and smallest values, re-
spectively. The rationale behind this is that the largest
VAFY% represents the largest deviation from the nominal
power generation. Therefore, this is selected as the worst
performance index. Similar justifications can be given for

average and the best values. All Monte-Carlo simulation
results reported below highlight that the proposed control
scheme is robust with respect to the model efficiency re-
duction, measurement errors, wind speed variations as well
as faults. Indeed, in terms of nominal power generation,
which is the main operational objective of the wind turbine
in the full load region, the proposed pitch angle controller
is able to keep the generated power very close to the
nominal value.

As for the FS case, it is reported also the values of the
standard deviation of the estimation errors achieved by
the neural network fault estimators.

Also in this case, Figure 3 depicts some of the residual
signals f(k) = r;(k) provided by the NARX NNs for the
fault conditions 6, 7, 8, and 9, and compared with respect
to the fixed detection thresholds (dotted lines).
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Fig. 3. Estimated faults for cases 6, 7, 8, and 9.

4.2 Hardware—In—The—Loop FExperiments

The considered test—bed allows to reproduce experimental
tests that are oriented to the verification of the results
achieved in simulations. This test—bed is sketched in Fig-
ure 4, which highlights its 3 main modules.
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Fig. 4. HIL tool for real-time validation.

Table 1 summarises the Monte-Carlo analysis results.
As these simulations are performed under random noise
processes 600 times, cumulatively, it can be concluded that
the achievement of this objective is guaranteed by using
the proposed controller. This highlights the robustness and
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reliability of the developed solution, in terms of nominal
power generation. This is verified considering the VAF%.
The deviation of the generated power from the nominal
value is negligible for all the simulations with different
measurement errors and faults. Even the worst cases, i.e.,
the largest VAF%, have led to small deviations.

The results achieved via this HIL tool are reported in Table
1 that summarises the capabilities of the fault diagnosis
algorithms by means of the NSSE % performance index.

Table 1. RMSE % index for the HIL tool.

Fault Case 1 2 3 4 5
TS FSs 1.69% 2.29% 2.01% 1.94% 1.99%
NARX NNs  0.99% 0.98% 0.99% 1.28% 1.21%
Fault Case 6 7 8 9

TS FSs 2.22%  1.81% 2.21%  2.03%

NARX NNs 1.69% 1.02% 1.01% 1.51%

5. CONCLUSION

This paper proposed a novel approach to improve the
power regulation efficiency of the horizontal axis wind
turbine. It also guaranteed safe operation with efficient
wind energy conversion. The constrained control was de-
signed to retain the rotor speed and the generated power
within the safe-to-operate bounds. Therefore, the rotor
overspeeding, the mechanical brake engagement, and the
conservative energy conversion are avoided. The proposed
controller was able to handle the uncertain wind speed
variation effects without requiring accurate wind speed
measurement, using data—drive approaches. It was also
able to compensate for pitch actuator faults and aero-
dynamic characteristic change. Accordingly, unplanned
maintenance and consequent cost are reduced. Numerical
simulations were performed to validate the effectiveness of
the proposed controller under various faults. The Monte-
Carlo tool was exploited for the evaluation of reliability
and robustness against the model uncertainty and mea-
surement noise. This paper suggests some future research
issues that need to be investigated. One of the most cru-
cial issues is the experimental analysis of the proposed
scheme, which needs to be conducted before industrial
applications. However, the development of the proposed
solution for real wind turbines is promising. Furthermore,
the numerical calculation of the captured wind energy can
be evaluated, considering the reduced downtime, operation
and maintenance costs. This can further highlight the
economic benefits of the proposed controller.
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