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Abstract: Motivated for improving the efficiency and reliability of wind turbine energy conversion,
this paper presents an advanced control design that enhances the power regulation efficiency and
reliability. The constrained behavior of the wind turbine is taken into account, by using the barrier
Lyapunov function in the analysis of the Lyapunov direct method. This, consequently, guarantees that
the generated power remains within the desired bounds to satisfy the grid power demand. Moreover,
a Nussbaum-type function is utilized in the control scheme, to cope with the unpredictable wind
speed. This eliminates the need for accurate wind speed measurement or estimation. Furthermore,
via properly designed adaptive laws, a robust actuator fault-tolerant capability is integrated into
the scheme, handling the model uncertainty. Numerical simulations are performed on a high-
fidelity wind turbine benchmark model, under different fault scenarios, to verify the effectiveness
of the developed design. Furthermore, a Monte-Carlo analysis is exploited for the evaluation of the
reliability and robustness characteristics against the model-reality mismatch, measurement errors
and disturbance effects.

Keywords: Adaptive Constrained Control; barrier lyapunov function; fault-tolerant control; Nussbaum-
type function; power regulation; wind turbine benchmark

1. Introduction

Horizontal Axis Wind Turbines (HAWTs) have dominated the Wind Energy Conver-
sion (WEC) industry over the last few decades [1,2]. Modern HAWTs are designed larger
and are located in remote places, e.g., offshore sites, to increase the WEC capacity. The
HAWT is a complex highly nonlinear dynamic system [3]. So, in the presence of high
wind speed variation, it is challenging to retain HAWT operation with the prescribed
WEC efficiency [4]. The high wind speed may cause HAWT out-of-control operation with
catastrophic overspeeding of the rotor. In this case, either the HAWT is stalled to stop, or
the mechanical brake is engaged. As a result, only a conservative WEC is achieved and the
efficiency is cumulatively less than that desired [1].

The HAWT efficiency is a trade-off between capturing the maximum energy and satis-
fying the structural/operational safety [1]. In this regard, modern HAWT manufacturers
define the so-called ideal power curve, which characterizes the HAWT operation with
optimal efficiency. The key solution for the enhancement of the HAWT efficiency relies on
the development of proper control strategies to retain the operation on the ideal power
curve [4]. Accordingly, in high wind speed conditions, the generated power is regulated
at its nominal value to maintain safe operation and to avoid overspeeding. This region of
operation is known as the full load region, where power regulation represents the main
objective. In the HAWT, the power regulation is fulfilled by adjusting the pitch angle of
the blades, which leads to regulating the rotor speed [5]. Therefore, it is crucial to control
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the pitch angle such that the rotor speed is kept within the predefined safe-to-operate
bound around the nominal value and, consequently, to avoid conservative WEC control
solutions [1].

The long-term operation of HAWTs may increase the incidence of pitch actuator
faults [1]. The fault occurrence reduces the availability of the plant and increases the WEC
cost. Pitch actuator bias, effectiveness loss and dynamic change are the most commonly
reported pitch actuator fault types [1,6]. In WTs with hydraulic actuators, the dynamic
change is caused by a pressure drop due to hydraulic oil leak, high air content in the oil
and pump wear, for those installations using hydraulic actuation. In the case of electric
actuators, dynamic change is due, for example, to the wear or ageing of the electric motor,
whose response becomes slower due to the friction increase [1,6]. This, in turn, leads to a
slower response of the pitch actuator, and, consequently, inefficient power regulation. The
pitch actuator bias can be caused when blades are installed to the pitch actuator, and small
misalignments can be thus generated. This problem can be present in both electric and
hydraulic actuators. The effectiveness loss can be derived from a mechanical fault affecting
the electric motor actuating the blades, e.g., some deflection angles (for the complete range
of motion) are no longer available due to the wear out of the bearings. The same issue arises
also in hydraulic actuators, where the increased friction of the mechanical parts is due to
the aging of the hydraulic cylinders. On the other hand, debris build-up and blade erosion
are inevitable, which leads to the Blade Aerodynamic Profile Change (BAPC) [1]. These
issues motivate the need for maintenance procedures. However, the increased maintenance
downtime leads to reduce the power generation rate at a higher cost, especially for offshore
installations, due to the reachability difficulties of harsh environments [5]. Therefore, the
pitch angle control should integrate fault-tolerance capabilities to compensate possible fault
effects [6].

The power regulation control design has gained significant attention and viable so-
lutions are proposed (see, e.g., [7] and the references therein). However, most of the
available solutions fail to operate satisfactorily in the presence of pitch actuator faults.
Consequently, Fault-Tolerant Control (FTC) has emerged recently and different schemes
have been designed, such as robust linear parameter varying control [6], adaptive sliding
mode control [5], and fuzzy control [8,9]. Nevertheless, in all the aforementioned works,
the constrained rotor speed has not been considered. The constrained HAWT performance
may be tackled using Model Predictive Control (MPC) approaches [10–13]. However, as
mentioned in [12], if the constraints are selected inadequately the optimization problem
is difficult or even impossible to solve, or the closed-loop system may become unstable.
Furthermore, most MPC approaches may suffer from the heavy online computation burden
as the solution should be obtained between every two sampling times [14]. The pitch
angle control design for efficient power regulation represents a long-lasting challenge,
i.e., the mathematical relationship between aerodynamic torque and the pitch angle is not
completely known as it is a function of the uncertain wind speed variation [1,15]. This is
considered as the unknown control gain problem [16]. It is worth noting that wind speed
can be roughly measured on-site by an anemometer, placed on the rotor hub, or by Light
Detection and Ranging (LiDAR) devices. However, the accurate measurement of the effec-
tive wind speed over the blades is impossible, due to spatial/temporal distribution of the
effective wind speed over the blade plane, turbulence, wind shear and tower shadow effects,
which is even more important for large rotor installations [1,4]. On the other hand, different
numerical approaches have been proposed for wind speed estimation (see, e.g., [17] and
references therein), though they remain complicated for practical implementation and,
thus, ineffective. Finally, BAPC can be tackled by feeding the measured power into a
controller with an integral action [18,19]. However, constructing the pitch angle control on
the measured power basis requires the design of generator torque control simultaneously,
which is mainly reserved for the low wind speed region [1]. Furthermore, in the mentioned
works other pitch actuator faults, and consequent unknown control gain are not considered.
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Moreover, the control integral action might be dangerous in the presence of faults, caused
by the integration of the error, which can be due to a fault.

Motivated by these considerations, in this paper, a pitch angle control is designed
for the safe and reliable power regulation purpose, constraining the rotor speed and the
generated power within the safe-to-operate bounds. This is a resolution to the overspeeding
and the conservative WEC problems. In the proposed controller the unknown control gain
is resolved. Furthermore, the designed control tolerates the pitch angle faults, without the
need for complex wind estimation schemes. The main features of the proposed controller
are summarized in Figure 1.
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To highlight the main contributions, the following comments can be drawn.
The unknown control gain problem, due to uncertain wind speed variation, is tack-

led by utilizing the Nussbaum-type function. In contrast to the available solutions,
e.g., [15,17,20], no computationally expensive and complicated algorithm for the wind
speed estimation is required. Therefore, this paper presents an industrially viable scheme.

The constrained power generation is achieved in the control design by the develop-
ment of a Barrier Lyapunov Function (BLF) to constrain the rotor speed and the generated
power, with guaranteed stability and no online optimization burden, in contrast to MPC
approaches [10–13]. Furthermore, the assumption of bounded initial conditions is relaxed.
The control parameter selection is formulated as an offline optimization problem.

The fault tolerance capability is inherently included in the proposed solution. By
that means, contrary to [15,21,22], the designed control automatically and systematically
compensates for the pitch actuator faults. In this manner, neither fault detection nor
control reconfiguration schemes are needed. In contrast to the robust solutions, e.g., H∞
optimization [1], in which the worst-case scenario is presumed, the conservatism is avoided.

The rest of this paper is organized as follows. Section 2 briefly recalls the HAWT model
with some technical preliminaries. In Section 3, a baseline Nonlinear Adaptive Constrained
Control (NACC) approach is constructed, with the assumption of known control gain. This
restrictive assumption is relaxed in Section 4 and the Modified NACC (MNACC) approach
is proposed. In Section 5, asymmetric time variable constraints are constructed to handle
arbitrary initial conditions. The fault tolerance characteristics of the proposed MNACC are
analysed in Section 6. In Section 7, the feasibility of the proposed solution is studied. The
numerical evaluation is addressed in Section 8, and the results are discussed. Furthermore,
a Monte-Carlo analysis is exploited for the evaluation of the reliability and robustness
features against the model-reality mismatch and measurement errors. The Monte-Carlo
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analysis represents an effective tool for the preliminary validation of the proposed solution
prior to application to real systems. Finally, some concluding remarks and future research
issues are summarized in Section 9.

2. HAWT Operational Model and Preliminaries

In this section, the HAWT operational model is briefly introduced with the pitch
actuator faults. Furthermore, BAPC is also considered. Finally, some technical preliminaries
are given. Hereafter, to simplify the subsequent notation if there is no confusion, function
arguments are omitted.

2.1. HAWT Operational Model

The wind energy is converted into the rotor kinetic energy by the blades. The effective
wind speed Vr(t) induces the aerodynamic torque Ta(t), thrust Ft(t), and power Pa(t)
modelled as [1]:

Ta(t) = 0.5ρaπR3V2
r (t)Cq(β(t), λ(t))

Ft(t) = 0.5ρaπR2V2
r (t)Ct(β(t), λ(t))

Pa(t) = 0.5ρaπR2V3
r (t)Cp(β(t), λ(t))

(1)

where ρa and R are the air density and the rotor radius, respectively. Additionally, Cq(•),
Cp(•) and Ct(•) are torque, power and thrust coefficients, respectively. These factors
are functions of the blade pitch angle, β(t), and the tip speed ratio, λ(t), defined as
λ(t) = Rωr(t)/Vr(t) [1]. ωr(t) is the rotor angular speed. Furthermore, the aerodynamic
power is as Pa(t) = Ta(t)ωr(t), which leads to the relation Cp(•) = Cq(•)λ(t). The effect
of Ft(t) on the tower causes a bending oscillation [6]. The displacement of the nacelle is
represented by xt(t), measured from its equilibrium position. The effective wind speed
at the rotor plane is then obtained as Vr(t) = Vw(t)−

.
xt(t), where Vw(t) is the free wind

speed, i.e., the wind speed before the blades [23].
The kinetic energy of the rotor shaft is transferred into the generator shaft, via the

drivetrain, with efficiency ηdt and speed ratio Ng. The rotor and generator shafts inertia are
represented by Jr and Jg, respectively. Furthermore, the rotor and the generator speeds are
denoted by ωr(t) and ωg(t), respectively. Moreover, the drivetrain is modelled as a two-
mass system, including the torsion stiffness Kdt and the torsion damping Bdt. Therefore, a
torsion angle θ∆(t) = θr(t)− θg(t)/Ng is considered, where θr(t) and θg(t) are the rotation
angle of the rotor and generator shafts, respectively. On the other hand, the bearings of the
rotor and generator shafts impose the viscous friction, modelled by the coefficients Br and
Bg, respectively. The generator converts kinetic energy into electrical energy. Additionally,
between the generator and the electrical grid, a converter is placed, regulating the power
frequency [6]. The internal electronic controller of the generator is much faster than the
HAWT mechanical dynamic behaviour. So, it is reasonable to assume that the generator
torque Tg(t) is adjusted according to the generator reference torque fast enough to ignore
the generator dynamic response. As a result, the electrical power Pg(t) can be approximated
by the following static function [6]:

Pg(t) = ηgωg(t)Tg(t) (2)

where ηg is the generator efficiency. The power regulation objective can be stated as the
generation of the nominal power Pg,N under uncertain wind speed variation, while avoiding
overspeeding and consequent brake engagement. Accordingly, taking Equation (2) into
account, this objective is achieved by the following operation requirements: (i) setting Tg(t)
at its nominal value Tg,N ; (ii) regulating ωg(t) at its nominal value ωg,N .

The nominal power generation is then achieved as Pg(t) = Pg,N , where
Pg,N = ηgTg,Nωg,N [6]. The operation requirement (i) can be simply fulfilled by setting
the generator reference torque at Tg,N . The operation requirement (ii) can be fulfilled by
the pitch angle control. In this manner, the induced aerodynamic torque is controlled.
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Consequently, the rotor and the generator angular speeds are regulated [5]. Therefore, the
main objective of this paper is to satisfy the requirement (ii).

In order to reduce drivetrain stress, the drivetrain torsion angle variation
.
θ∆(t) is to be

kept as small as possible. In this regard, the ideal case can be stated as Ngωr(t) = ωg(t),
i.e., keeping the rotor and generator speeds at the drivetrain ratio [24]. As the generator

speed is kept at ωg,N , then the rotor speed is maintained at ωr,N = ωg,N/Ng. This represents
the reduced drivetrain stress trajectory. Accordingly, the HAWT operational model is given
by [16]:

..
ωr(t) = c1ωr(t) + c2ωg(t) + c3Ta(t) + c4Tg(t) + a3

.
Ta(t) (3)

where, c1 = a1
2 + a2b1, c2 = a1a2 + a2b2, c3 = a1a3, c4 = a2b3, a1 = −(Bdt + Br)/Jr,

a2 = Bdt/Ng Jr, a3 = 1/Jr, b1 = ηdtBdt/Ng Jg, b2 =
(
−ηdtBdt/Ng

2 − Bg
)
/Jg and b3 = −1/Jg.

Considering Equations (1) and (3), the pitch angle control leads to the adjustment
of Cq(β(t), λ(t)), and consequently, the aerodynamic torque. This, in turn, regulates the
rotor speed. The aerodynamic torque is not a singular function in the operational range of
HAWT [16]. By that means, in the presence of wind speed variation, there always exists
a given pitch angle β∗(t), and by setting the reference pitch angle βre f (t) at β∗(t), the
consequent aerodynamic torque leads to the nominal power generation [23]. Therefore,
the pitch angle controller has to maintain the reference pitch angle βre f (t) at β∗(t), which
retains ωr at nominal values ωr,N . This, consequently, regulates ωg(t) at ωg,N , which
meets the operation requirement (ii). However, due to uncertain wind speed variation,
retaining ωr exactly at ωr,N is impossible and there is always an error [1]. Therefore, the
main aim of this paper is to retain the tracking error as close as possible to zero within the
safe-to-operate bounds, i.e., to avoid hazardous overspeeding.

As this work considers a hydraulic pitch actuator, it moves the blades to regulate β(t)
at the actuated angle βu(t). The pitch actuator is modelled as [5]:

..
β(t) = −ωn

2β(t)− 2ωnξ
.
β(t) + ωn

2βu(t) (4)

with the natural frequency ωn and the damping ratio ξ. The pitch actuator operational
ranges are limited as

.
βmin ≤

.
β(t) ≤

.
βmax and βmin ≤ β(t) ≤ βmax. In this paper Xmax and

Xmin indicate the maximum and minimum allowable value of the variable X, respectively.
Note that HAWT operation in a harsh environment may lead to pitch actuator dynamic
change, which reduces the power regulation efficiency. This causes the variation in the
natural frequency and the damping ratio of the pitch actuator, which in turn leads to a
slower pitch actuator response [6]. The dynamic change is modelled by the additive signal
fβ(t) in the pitch actuator model, defined later [5]. Moreover, the pitch actuator may suffer
from bias, and effectiveness loss. These lead to the deviation of the actuated pitch angle
βu(t) from the reference one βre f (t), defined by the pitch angle controller [16], modelled as:

βu(t) = ρ(t)βre f (t) + Φ(t) (5)

with the unknown pitch actuator bias Φ(t) and the unknown effectiveness ρ(t) [9]. Note
that 0 < ρ ≤ ρ(t) ≤ 1, where ρ(t) = 1 represents full effectiveness and ρ(t) = 0 is total
loss [9,25]. More importantly, ρ is an unknown lower bound of the actuator effectiveness,
below which the actuator is unable to keep controlling the system and it practically becomes
uncontrollable [26]. The signal βre f (t) is the reference pitch angle, which is generated by the
pitch angle controller. Clearly, in the case of full effectiveness and no bias, βu(t) = βre f (t).
Associating the pitch actuator dynamic behaviour of Equation (4), with the pitch actuator
dynamic change, bias and effectiveness loss, yields:

..
β(t) = −ωn

2β(t)− 2ωnξ
.
β(t) + ωn

2ρ(t)βre f (t) + ωn
2Φ(t) + fβ(t) (6)

Environmental situations, such as rain, snow and dirt, lead to erosion or debris build-
up on blades. This, in turn, causes BAPC. As a result, the captured aerodynamic power is
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reduced [15]. Consequently, the power regulation is not efficiently achieved. BAPC can be
modelled as an aerodynamic torque change fTa(t), due to a change in the power coefficient
described as C̃p(t) = Cp(β(t), λ(t)) + ∆Cp(t) [18]. These changes are challenging to detect
due to their slow-developing (incipient) characteristics. Therefore, it is difficult to determine
if the decreased generated power is due to BAPC or reduced wind speed. However, as
BAPC occurs slowly, this change is mostly assumed to be solved by the planned annual
maintenance, when the blades are cleaned or replaced. Therefore, this paper aims to design
a pitch angle controller that is insensitive to BAPC, thus guaranteeing nominal power
generation up to the next planned maintenance.

Considering Equations (1) and (3), the rotor dynamic relation is represented by a non-affine
function of the pitch angle [23]. As stated earlier, Ta(t) is not a singular function. Accordingly,
this problem is resolved by using the mean value theorem [15], i.e., for any given pair of
(Vr(t), ωr(t)), there exists Ξ ∈ (0, 1) such that Ta(t) = Ta(t)| β∗(t)+( β(t)− β∗(t))Ta,β(t)

∣∣
βk(t)

,
where Ta,β(t) = ∂Ta(t)/∂β(t) and βk(t) = Ξβ(t) + (1−Ξ)β∗(t). It is worth noting that−L ≤
Ta,β(t) ≤ −U < 0, with constants 0 < U < L. It can be seen that as effective wind speed Vr
increases, by increasing pitch angle, the aerodynamic torque decreases. Therefore, by taking the
time derivative of Ta(t), the following relation is obtained:

.
Ta(t) =

.
β(t)Ta,β(t) + fTa(t) (7)

where fTa(t) is an aerodynamic torque change due to BAPC [18]. Moreover, it is worth
noting that, as the wind speed is not accurately measurable, Ta,β(t) in Equation (7) is an
unknown variable. Now, by using Equations (6) and (7) in Equation (3), one can obtain:

..
ωr(t) = c1ωr(t) + c2ωg(t) + c3Ta(t) + c4Tg(t) + a3 fTa(t)−

a3ωnTa,β(t)
2ξ β(t)+

− a3Ta,β(t)
2ωnξ

..
β(t) +

a3ωnTa,β(t)
2ξ ρ(t)βre f (t) +

a3ωnTa,β(t)
2ξ Φ(t) +

a3Ta,β(t)
2ξωn

fβ(t),
(8)

This describes the HAWT rotor dynamic response, which takes into account possible
pitch actuator dynamic change, bias, effectiveness loss and BAPC. It is worth noting that
the HAWT sensor is affected by measurement error, modelled by stochastic processes.
For the sake of notation, the measured variable X is represented by the signal Xs, with
Xs = X + νX , where νX represents a Gaussian white noise process [1,27]. Considering this
measurement error, the computable expression of the rotor dynamic of Equation (8) has the
following form:

..
ωr,s(t) = F(x(t)) + ρ(t)G(x(t))βre f (t) (9)

where x(t) =
[
ωr(t), ωg(t), β(t), Tg(t)

]
, G(x(t)) = a3ωnTa,β(t)/2ξ,

F(x(t)) = c1ωr,s(t) + c2ωg,s(t) + c3Ta(t) + c4Tg,s(t)− Ta,β(t) f1(t) + f2(t),

f1(t) = a3ωnβs(t)/2ξ + a3
..
βs(t)/2ωnξ,

f2(t) = a3Ta,β(t)ωnΦ(t)/2ξ + a3 fTa(t) + a3Ta,β(t) fβ(t)/2ξωn + f3(t),

and f3(t) = c1νωr + c2νωg + c4νTg + a3ωnTa,β(t)νβ/2ξ + a3Ta,β(t)ν..
β
/2ωnξ.

Assumption 1. The bounded achievable values of pitch angle, i.e., β(t) and
.
β(t), are limited

which leads to the boundedness of Φ(t) as |Φ(t)| ≤ Φ [28]. As fβ(t) varies due to the variation

in β(t) and
.
β(t), the signal fβ(t) is bounded as

∣∣ fβ(t)
∣∣ ≤ f β [5,16]. The debris build-up and

erosion occur very slowly when compared to the scheduled maintenance of the blades. Therefore, it is
reasonable to assume that fTa(t) is bounded as | fTa(t)| ≤ f Ta

[18]. It should be noted that Φ, f β

and f Ta are unknown positive constants. Moreover, it is assumed that the noise processes used to
represent the measurements errors have a limited bandwidth [1,24]. By considering the bounded
variation in Ta,β(t), i.e., −L ≤ Ta,β(t) ≤ −U < 0, f2(t) is bounded as | f2(t)| ≤ f 2, where f 2 is a
positive unknown constant. It can be shown that G(x(t)) in Equation (9) is unknown yet bounded,
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due to the presence of Ta,β(t) as well as ρ(t) [15]. More importantly, it is assumed that there is
always a pitch actuator effort, i.e., ρ(t) 6= 0, the control gain G(x(t)) never becomes zero. Finally,
considering the limited generator torque and drivetrain dynamic response of the industrial HAWTs
with limited operation range, it can be shown that the induced aerodynamic torque is bounded as
|Ta(t)| ≤ NgTg,max/ηdt [16].

Considering Assumption 1, based on the information extraction technique from the
system nonlinearities [16], there is an unknown non-negative constant ϑF and a computable
non-negative function ϕF(x(t)), i.e., a core function, such that the following inequality
is satisfied:

|F(x(t))| ≤ ϑF ϕF(x(t)) (10)

where ϑF = max
{

1, f 2

}
and ϕF(t) = |c1ωr,s(t)|+

∣∣c2ωg,s(t)
∣∣+ ∣∣c3NgTg,max/ηdt

∣∣+∣∣c4Tg,s(t)
∣∣+ L| f1(t)|+ 1.

2.2. Technical Preliminaries

The following definitions and lemmas are introduced, which are used for the
stability analysis.

The BLF function is defined as follows, which is used for the design of the
constrained control.

Definition 1 [29]. Let’s assume that V(x(t)) is positive definite continuous with respect to the
solution of the system

.
x(t) = f (x(t)) on an open region D. If V(x(t)) approaches to infinity, as

x(t) approaches to the boundary of the region D, then V(x(t)) is a BLF with continuous first order
partial derivatives within all D. Consequently, the inequality V(x(t)) ≤ W , ∀t ≥ 0 holds along
with the solution of

.
x(t) = f (x(t)) for x(0) ∈ D, and some positive constantW .

The following definition is given, thus demonstrating the boundedness of the closed-
loop system.

Definition 2 [30]. x(t) is Uniformly Ultimately Bounded (UUB) if there exists a number
T(K, x(t0)), and a K > 0 such that for any compact set S and all x(t0) ∈ S , ‖x(t)‖ ≤ K,
for all t ≥ t0 + T.

Definition 3 [16]. Any continuous function N(s) ∈ R is a Nussbaum-type function of s ∈ R,
satisfying lim

s→∞
sup

∫ s
s0

N(τ)dτ = +∞ and lim
s→∞

in f
∫ s

s0
N(τ)dτ = −∞, for s0 ∈ R.

Lemma 1 [16]. Let’s assume that V(t) > 0 and F (t) are smooth functions for any t ∈
[
0 t f

)
.

Then, if

V(t) < c0 + exp(−c1t)
∫ t

0
(g(τ)N(F (τ)) + 1)

.
F (τ)exp(c1τ)dτ,

where c0 and c1 are positive constants, and the function g(τ) takes values in the unknown closed
intervals L ∈ [l+, l−] with 0 /∈ L. Then V(t), F (t) and

∫ t
0 g(τ)N(F (τ))

.
F (τ)exp(c1τ)dτ must

be bounded on
[
0 t f

)
.

Lemma 2 [15]. For a real variable ψ in |ψ| < 1, the inequality tan
(
πψ2/2

)
< πψ2sec2(πψ2/2

)
holds true.

3. Baseline NACC Design

In this section, the baseline NACC of the pitch actuator is designed to achieve the
control operation requirement (ii), as described in Section 2. Furthermore, the constrained
rotor speed and generated power requirements are guaranteed, with the closed-loop stabil-
ity analysis. In this section the control gain is assumed to be known, i.e., the aerodynamic
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torque variation with respect to pitch angle is available. This assumption will be relaxed
in Section 4 and the NCCA is modified. Moreover, in this section, the design procedure
is developed on the fault-free case, i.e., ρ(t) = 1, Φ(t) = 0, fTa(t) = 0, and fβ(t) = 0. The
fault-tolerance capability is discussed in Section 6.

The baseline NACC is designed based on the rotor speed tracking error e1 and its time
derivative e2, defined as:

e1(t) = ωr,s(t)−ωr,d
e2(t) =

.
ωr(t)− α1(t)

(11)

where ωr,d is the desired rotor speed. The measured rotor speed ωr,s is affected by noise.
So, its differentiation might lead to noise amplification. Therefore, the rotor acceleration
.

ωr(t) is obtained via a Gaussian regression of ωr,s [31–33]. As stated earlier, ωr,d in the full
load region is ωr,N . The function α1(t) corresponds to a virtual control, designed as:

α1(t) = −κ1e1(t)−
1
2

e1(t)sec2(Y1(t)) (12)

where κ1 is a positive design parameter and Y1(t) = πχ2
1(t)/2, with χ1(t) = e1(t)/δ1 is the

modified tracking error and δ1 is a constraint on e1(t). A BLF is chosen as:

V1(t) =
δ2

1
π

tan(Y1(t)) (13)

which is positive definite and continuous in the set C1 = {e1(t) : |e1(t)| < δ1}. This imposes
the constrained characteristic on χ1(t), according to Definition 1. Taking the first-time
derivative of χ1(t), the following expression is obtained:

.
χ1(t) =

e2(t) + α1(t)
δ1

(14)

On the other hand, the first-time derivative of V1(t) has the following form:

.
V1(t) = e1(t)e2(t)sec2(Y1(t)) + e1(t)α1(t)sec2(Y1(t)) (15)

By replacing Equation (12) into Equation (15), the following relation is obtained:

.
V1(t) = e1(t)e2(t)sec2(Y1(t))− κ1e2

1(t)sec2(Y1(t))−
1
2

e2
1(t)sec4(Y1(t)) (16)

Based on Young’s inequality, it is easy to show that

e1(t)e2(t)sec2(Y1(t)) ≤ 0.5e2
1(t)sec4(Y1(t)) + 0.5e2

2(t).

Considering Lemma 2, the inequality−κ1e2
1(t)sec2(Y1(t)) < −κ1δ2

1tan(Y1(t))/π holds.
Consequently, Equation (16) is rewritten as:

.
V1(t) < −κ1V1(t) +

1
2

e2
2(t) (17)

Now, the baseline NACC is designed as:

βre f (t) = H(x(t))α2(t) (18)

with the control gain defined as:

H(x(t)) = − 1
G(x(t))

(19)

and α2(t) is a virtual control designed as:
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α2(t) = ϑ̂F(t)e2(t)sec2(Y2(t))ϕ2
F(x(t)) + κ2e2(t)−

.
α1(t) (20)

where Y2(t) = πχ2
2(t)/2, with χ2(t) = e2(t)/δ2 is the modified tracking error and δ2 is

a constraint on e2(t). κ2 is a positive design parameter. The signal ϑ̂F(t) represents the
estimation of ϑF, updated by the following adaption law:

.
ϑ̂F(t) = σF1 ϕ2

F(x(t))e
2
2(t)sec4(Y2(t))− σF2ϑ̂F(t) (21)

where σF1 and σF2 are positive design parameters. A Lyapunov function is chosen as:

V2(t) =
δ2

2
π

tan(Y2(t)) +
1

2σF1
ϑ̃2

F(t) (22)

where ϑ̃F(t) is the estimation error of ϑF, defined as ϑ̃F(t) = ϑF − ϑ̂F(t). The Lyapunov
function V2(t) is positive definite and continuous in the set C2 = {e2(t) : |e2(t)| < δ2}. This
imposes the constrained characteristic on χ2(t), according to Definition 1. The first-time
derivative of V2(t) is obtained as:

.
V2(t) = e2(t)sec2(Y2(t))

(
F(x(t)) + G(x(t))βre f (t)−

.
α1(t)

)
− 1

σF1
ϑ̃F(t)

.
ϑ̂F(t) (23)

By replacing the baseline NACC of Equation (18) and the adaption law of Equation (21)
into Equation (23), the following expression is obtained:

.
V2(t) = e2(t)F(x(t))sec2(Y2(t))− ϑFe2

2(t)sec4(Y2(t))ϕ2
F(x(t))

−κ2e2
2(t)sec2(Y2(t)) +

σF2
σF1

ϑ̂F(t)ϑ̃F(t)
(24)

Considering the trivial inequality a(2b− 1)2 ≥ 0, ∀a ≥ 0, and Equation (10), it can be
shown that e2(t)F(x(t))sec2(Y2(t)) ≤ ϑFe2

2(t)ϕ2
F(x(t))sec4(Y2(t)) + ϑF/4.

Additionally, considering Lemma 2, the inequality−κ2e2
2(t)sec2(Y2(t)) < −κ2δ2

2tan(Y2(t))
/π holds. Finally, it is easy to show that σF2ϑ̂F(t)ϑ̃F(t)/σF1 ≤ −σF2ϑ̃2

F(t)/2σF1 + σF2ϑ2
F/2σF1.

Consequently, Equation (24) is rewritten as:
.

V2(t) ≤ −c2,1V2(t) + c2,2 (25)

where c2,1 = min{κ2, σF2} and c2,2 = σF2ϑ2
F/2σF1 + ϑF/4, which are positive constants.

The main properties of the baseline NACC are stated in Theorem 1.

Theorem 1. Consider the HAWT dynamic model of Equation (8) for the fault-free case,
i.e., ρ(t) = 1, Φ(t) = 0, fTa(t) = 0, and fβ(t) = 0. If the initial conditions belong to set
ei(0) ∈ Ci for i = 1, 2, by using the pitch angle control of Equation (18), with the gain of
Equation (19), the virtual controls of Equations (12) and (20), together with the adaption law of
Equation (21), then the following propositions hold:

P1. All the closed-loop system states are bounded;
P2. For i = 1, 2, the constraint sets Ci are not violated;
P3. By the proper choice of the design parameters, the tracking error e1(t) can be made arbitrarily small.

Proof. Multiplying Equation (25) by exp(c2,1t), the following inequality is obtained:

d
(
V2(t)ec2,1t)/dt ≤ c2,2ec2,1t (26)

The integration of Equation (26) over [0, t] yields the expression:

V2(t) ≤ D2(t) (27)
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whereD2(t) = c2,2/c2,1 +(V2(0)− c2,2/c2,1)exp(−c2,1t). It should be noted that c2,2/c2,1 > 0
and lim

t→∞
exp(−c2,1t) = 0. Therefore, Equation (27) can be rewritten as:

V2(t) ≤ ∆2 (28)

where ∆2 = c2,2/c2,1 + V2(0) is an unknown positive constant. Accordingly, it can be
stated that the Lyapunov function V2(t) is bounded. Consequently, tan(Y2(t)) and ϑ̃F(t)
are bounded. Therefore, it can be inferred that e2(t) belongs to C2, hence, it is bounded. In
this sense, Equation (17) can be rewritten as:

.
V1(t) < −κ1V1(t) + c1,2 (29)

where c1,2 = 0.5 max
τ∈[0,t]

e2
2(τ) is an unknown positive constant. Multiplying both sides of

Equation (29) by exp(κ1t) the following inequality is obtained:

d
(
V1(t)eκ1t)/dt < c1,2eκ1t (30)

The integration of Equation (30) over [0, t] yields to:

V1(t) < D1(t) (31)

where D1(t) = c1,2/κ1 + (V1(0)− c1,2/κ1)exp(−κ1t). It should be noted that c1,2/κ1 > 0
and lim

t→∞
exp(−κ1t) = 0. Therefore, Equation (31) can be rewritten as:

V1(t) < ∆1 (32)

where ∆1 = V1(0) + c1,2/κ1 is an unknown positive constant. Accordingly, it can be
stated that the Lyapunov function V1(t) is bounded. Consequently, tan(Y1(t)) is bounded.
Therefore, it can be inferred that e1(t) belongs to C1, and hence it is bounded. In the light of
the above-mentioned analysis, Propositions P1, P2 and P3, stated in Theorem 1, are proven
as follows.

P1. Consider the boundedness of V1(t), V2(t), e1(t) and e2(t). Therefore, Y1(t) and
Y2(t) are bounded. Hence, Equation (12) implies the boundedness of α1(t). This, in turn,
leads to the boundedness of ωr(t) and

.
ωr(t), considering Equation (11) and the assumptions

on the error processes affecting the measured signals. Provided the boundedness of ϑ̃F(t),
the boundedness of ϑ̂F(t) is inferred. Therefore, considering Equation (20), α2(t) is bounded.
Consequently, βre f (t) is bounded.

P2. The tracking errors e1(t) and e2(t) belong to the sets C1 = {e1(t) : |e1(t)| < δ1}
and C2 = {e2(t) : |e2(t)| < δ2}, respectively, for t > 0.

P3. Considering Equations (13) and (31), it can be shown that |e1(t)| < δ1√
2tan−1

(
πD1(t)/δ2

1
)
/π. Given D1(t) = c1,2/κ1 + (V1(0)− c1,2/κ1)exp(−κ1t), if

V1(0) = c1,2/κ1, then, it holds that D1(t) = c1,2/κ1. If V1(0) 6= c1,2/κ1, since κ1 > 0,
then it can be concluded that for any given D1(t) > c1,2/κ1, there exists T such that
exp(−κ1t) ≈ 0, for any t > T. Therefore, the expression D1(t) = c1,2/κ1 holds for any
t > T. Since tan−1(•) is an increasing function of its argument, it can be concluded that

|e1(t)| < δ1

√
2tan−1

(
πc1,2/κ1δ2

1
)
/π. As κ1 is a design parameter, this implies that e1(t)

can be made arbitrarily small by an appropriate selection of the design parameter. This
guarantees that the closed-loop system is UUB based on Definition 2. �

4. MNACC Design with Unknown Control Gain

The control gain H(x(t)) in Equation (19) is unknown as it is a function of the pitch
actuator effectiveness, i.e., ρ(t), and the aerodynamic torque variation with respect to pitch
angle, i.e., Ta,β(t). The former is represented by an unknown time-dependent variable.
The latter depends on the wind speed and the aerodynamic blade profile. Some studies,
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e.g., [15,17,20], suggest estimating the effective wind speed and the blade aerodynamic
profile. Besides the computational expensiveness of solutions, the estimation error is un-
avoidable, especially with high wind speed variations. This, in turn, leads to the degraded
performance of the HAWT. On the other hand, some works, e.g., [6], use a look-up table to
compute the Ta,β(t), based on the in-site measurements by a linear interpolation. This has
led to computationally-practical solutions. However, a small amount of measurement data
and the linear interpolation approach cannot capture the nonlinear dynamic response of
HAWTs accurately. More importantly, both approaches fail to operate desirably in the case
of pitch actuator effectiveness loss and BAPC.

The aforementioned unknown control gain problem is resolved in this section, by the
adoption of a Nussbaum-type function for the control gain. The MNACC is designed for
the fault-free pitch actuator, i.e., ρ(t) = 1 and Φ(t) = 0. The fault tolerance capability of
the proposed MNACC is discussed in Section 6. The structure of MNACC is given by
Equation (18), with the control gain, defined as follows:

H(ζ1(t)) = N(ζ1(t)) (33)

where N(•) is a Nussbaum-type function, which satisfies Definition 3. Furthermore, ζ1(t)
is obtained via the following adaption laws:

.
ζ1(t) = e2(t)sec2(Y2(t))α2(t) (34)

Now, the main properties of the MNACC are stated in Theorem 2.

Theorem 2. Consider the HAWT dynamic model of Equation (8) for the fault-free case,
i.e., ρ(t) = 1, Φ(t) = 0, fTa(t) = 0, and fβ(t) = 0. If the initial conditions belong to
set ei(0) ∈ Ci for i = 1, 2, by using the pitch angle control law of Equation (18), with the
gain of Equation (33), the virtual controls of Equations (12) and (20), and the adaption law of
Equations (21) and (34), then Propositions P1, P2 and P3, stated in Theorem 1, hold.

Proof. Consider the Lyapunov functions V1(t) and V2(t), described by Equations (13) and (22),
respectively. By substituting the control law of Equation (18) with the gain of Equation (33)
and the adaption laws of Equations (21) and (34) into the first-time derivative of V2(t), given
in Equation (23), one can obtain:

.
V2(t) = e2(t)F(x(t))sec2(Y2(t)) + G(x(t))N(ζ1(t))

.
ζ1(t)

− ϑF ϕ2
F(x(t))e

2
2(t)sec4(Y2(t)) +

σF2
σF1

ϑ̃F(t)ϑ̂F(t) +
.
ζ1(t)

− κ2e2
2(t)sec2(Y2(t))

(35)

It is readily shown that:

e2(t)F(x(t))sec2(Y2(t)) ≤ ϑFe2
2(t)ϕ2

F(x(t))sec4(Y2(t)) + ϑF/4,

− κ2e2
2(t)sec2(Y2(t)) < −κ2δ2

2tan(Y2(t))/π,

σF2ϑ̂F(t)ϑ̃F(t)/σF1 ≤ −σF2ϑ̃2
F(t)/2σF1 + σF2ϑ2

F/2σF1.

Therefore, from Equation (35) the following inequality can be derived:
.

V2(t) ≤ −c2,1V2(t) + c2,2 + G(x(t))N(ζ1(t))
.
ζ1(t) +

.
ζ1(t) (36)

The multiplication of Equation (36) by exp(c2,1t), yields the following inequality:

d
(
V2(t)ec2,1t)/dt ≤ c2,2ec2,1t +

(
G(x(t))N(ζ1(t))

.
ζ1(t) +

.
ζ1(t)

)
ec2,1t (37)

Therefore, the integration of Equation (37) over [0, t] yields to:
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V2(t) ≤ D2(t) + e−c2,1t
∫ t

0
(G(x(τ))N(ζ1(τ)) + 1)

.
ζ1(τ)e

c2,1τdτ (38)

It should be noted that c2,2/c2,1 > 0 and lim
t→∞

exp(−c2,1t) = 0. Therefore,

Equation (38) can be rewritten as:

V2(t) ≤ ∆2 + e−c2,1t
∫ t

0
(G(x(τ))N(ζ1(τ)) + 1)

.
ζ1(τ)e

c2,1τdτ (39)

Moreover, the variable G(x(t)) in Equation (39) satisfies the conditions stated for
g(τ) in Lemma 1. Furthermore, ∆2 and c2,1 are unknown positive constants. Therefore,
considering Equation (39), it can be shown that V2(t) and ζ1(t) are bounded. The rest of
the proof is similar to that of Theorem 1 and is thus omitted here (see from Equation (29) to
the end of the proof). �

Remark 1. Regarding the MNACC of Equation (18) with the gain of Equation (33), it is worth
noting that in the design procedure of the pitch angle control, there is no need to estimate the
aerodynamic torque variation with respect to pitch angle, i.e., Ta,β, and Propositions P1–P3 are still
satisfied. This represents one significant key of the proposed MNACC.

5. MNACC Control with Arbitrary Initial Conditions

The initial conditions of HAWT are not necessarily close to the desired trajectory,
i.e., ei(0) /∈ Ci for i = 1, 2. In this section, the case of arbitrary initial condition is handled.

If the initial conditions do not belong to the constraint sets, the stability analysis given
in Theorem 2, is no longer valid. This might lead to HAWT over speeding or, even to more
dangerous catastrophic consequences. This requires the initial conditions to be manually
set within the constraint sets, which is not a practical approach. As an example, in [34–37]
the authors adopted too large and conservative constraints to include the initial conditions.
Nevertheless, such a constraint may be ineffective in practice. Instead, it is beneficial to have
a systematic and automatic approach to handle arbitrary initial conditions. To relax this
requirement, the constraints are initially enlarged based on the assigned initial conditions.
Then, the constraints converge exponentially to the intended bounds, in which the desired
performance is achieved. In this manner, the arbitrary initial condition is systematically
handled. The exponential convergence of the constraints to the given bounds offers more
degrees of freedom that can be exploited in the control design. To this end, the constraint δi
for i = 1, 2, are designed according to the following relation:

δi(t) =
{

δi(t), i f ei(t) ≥ 0
δi(t), i f ei(t) < 0

(40)

where
δi(t) = aiexp(−φit) + bi(t),

δi(t) = aiexp(−φit)− bi(t).

Furthermore, if ei(0) ≥ 0, then ai = ei(0) and ai = 0, otherwise ai = 0 and ai = ei(0).
The term φi is a positive design parameter. The terms bi(t) and bi(t) represent positive
upper and lower thresholds, respectively, between the desired trajectory and constraints,
which can be constant or variable. The terms ai and ai are defined based on the initial
condition values. Accordingly, the constraint is initially enlarged to cover the arbitrary
initial condition. On the other hand, exp(−φit) approaches to zero as time increases. This
provides further degrees of freedom in the design, i.e., the rate of the distance vanishes. For
example, for large inertia and slow dynamic systems the term φi < 1 is selected in order to
have a suitable convergence time and avoid a large control effort. Finally, bi and bi define a
small bound, within which desirable performance is achieved.
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The constraint δi(t), defined in Equation (40), is obviously a time variable and thus
.
δi(t) affects the closed-loop performance. This effect leads to extra terms contributing to
the time derivative of V1(t) and V2(t). These functions are represented by the expression:

2δi(t)
.
δi(t)tan(Yi(t))/π − e2

i (t)
.
δi(t)sec2(Yi(t))/δi(t)

for i = 1, 2, which is added to Equations (15) and (23), respectively. Accordingly, in order
to remove their effects, the virtual control α1(t) in Equation (12) and α2(t) in Equation (20)
are modified as follows:

α1(t) = −κ1e1(t)−
1
2

e1(t)sec2(Y1(t))− α1(t) (41)

α2(t) = ϑ̂F(t)e2(t)sec2(Y2(t))ϕ2
F(x(t)) + κ2e2(t)−

.
α1(t) + α2(t), (42)

where
αi(t) = δi(t)

.
δi(t) sin(2Yi(t))/ei(t)π − ei(t)

.
δi(t)/δi(t),

for i = 1, 2. It is worth noting that
.
δi(t) can be defined by the following relation:

.
δi(t) =

{ .
δi(t), i f ei(t) ≥ 0
.
δi(t), i f ei(t) < 0

where .
δi(t) = −aiφiexp(−φit) +

.
bi(t),

.
δi(t) = −aiφiexp(−φit)−

.
bi(t).

The achieved results valid for the arbitrary initial condition are summarized as follows.

Theorem 3. Consider the HAWT dynamic model of Equation (8) for the fault-free case,
i.e., ρ(t) = 1, Φ(t) = 0, fTa(t) = 0, and fβ(t) = 0. The pitch angle control law of Equation (18)
is designed with the gain of Equation (33) and the virtual controls of Equations (41) and (42), the
adaption laws of Equations (21) and (34), and the constraints defined by Equation (40). For any
initial conditions Propositions P1, P2 and P3, stated in Theorem 1, hold.

Proof. The proof is straightforward (similar to that of Theorem 2), and thus omitted here.
�

Remark 2. Considering the definition of αi(t) in Equations (41) and (42) for i = 1, 2,
when ei(t) approaches to zero, the term δi(t)

.
δi(t)sin(2Yi(t))/ei(t)π approaches to zero, by

using L’Hospital’s rule. Therefore, the singularity does not occur. However, since digital
processors are not able to evaluate indeterminate form 0/0, the Maclaurin series with the
first term is used in the implementation step to solve this problem. Accordingly, in αi(t) the
term δi(t)

.
δi(t)sin(2Yi(t))/ei(t)π is replaced with

.
δi(t)ei(t)/δi(t), when |ei(t)| < εi, where

εi is a small positive design constant.

6. Fault-Tolerance Capability of MNACC

The pitch actuator might suffer from effectiveness loss, bias and dynamic change. On
the other hand, the long-term operation might lead to BAPC. This section aims to analyse
the fault-tolerant capability of the proposed controller. It is proven that the control law
of Equation (18), integrated with the gain of Equation (33), is able to compensate for the
fault effects from the closed-loop performance automatically, and no control modification
is required. This represents a key feature of the proposed pitch angle control, i.e., the
constrained power generation is guaranteed, while no redundant hardware components
are required. Furthermore, an extra computationally expensive scheme to detect, isolate
and identify the faults is not needed. This is an important advantage in general for HAWTs,
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especially for offshore deployments. To this end, the main results on the fault tolerance
capability of the proposed MNACC are summarized in the following theorem.

Theorem 4. Consider the HAWT dynamic model of Equation (8) under pitch actuator effectiveness
loss ρ(t), bias Φ(t), dynamic change fβ(t) and the BAPC fTa(t). The pitch angle control exploits
Equation (18), with the gain of Equation (33) and, the virtual controls of Equations (41) and (42),
the adaption law of Equations (21) and (34), and the constraints defined by Equation (40). For any
initial conditions, Propositions P1, P2 and P3, stated in Theorem 1, hold.

Proof. Consider the Lyapunov functions V1(t) and V2(t), given in Equations (13) and (22),
respectively. By using the control of Equation (18) with the gain of Equation (33) and the
adaption laws of Equations (21) and (34), and the virtual control of Equations (41) and (42),
the first-time derivative of V2(t) satisfies the following inequality:

.
V2(t) ≤ −c2,1V2(t) + c2,2 + W(t)N(ζ1(t))

.
ζ1(t) +

.
ζ1(t) (43)

where W(t) = ρ(t)G(x(t)). Therefore, the integration of Equation (43) over [0, t] leads to
the following inequality:

V2(t) ≤ D2(t) + e−c2,1t
∫ t

0
(W(τ)N(ζ1(τ)) + 1)

.
ζ1(τ)e

c2,1τdτ (44)

It should be noted that c2,2/c2,1 > 0 and lim
t→∞

exp(−c2,1t) = 0. Therefore, Equation (44)

can be rewritten as:

V2(t) ≤ ∆2 + e−c2,1t
∫ t

0
(W(τ)N(ζ1(τ)) + 1)

.
ζ1(τ)e

c2,1τdτ (45)

Moreover, as ρ(t) 6= 0, then the term W(t) satisfies the conditions on g(τ) in Lemma 1.
Furthermore, ∆2 and c2,1 are unknown positive constants. Therefore, considering Equation (45),
it can be shown that V2(t) and ζ1(t) are bounded. The rest of the proof is similar to that of
Theorem 1 and is, thus, omitted here (see from Equation (29) to the end of the proof). �

Remark 3. In Theorem 4, Proposition P1 implies that the closed-loop HAWT including the
MNACC controller is stable. Proposition P2 guarantees the fulfilment of the constraints on the
rotor speed and its acceleration. Consequently, the generator speed and the generated power are kept
within the prescribed bounds. Considering Section 3, the efficient power regulation requirements are
also met, hence, the required power grid demand is satisfied. Moreover, both the rotor overspeeding
and the mechanical brake engagement is avoided. Proposition P3 indicates the expert’s knowledge in
the implementation stage, to satisfactorily make the tracking error small. These objectives are also
satisfied in the presence of uncertain wind speed variation, pitch actuator effectiveness loss, bias,
dynamic change, and BAPC, for any initial conditions. So, efficient power regulation is satisfied
without the need for unplanned maintenance. Accordingly, the reliability and availability properties
are improved. Furthermore, downtime and maintenance costs are reduced.

Remark 4. It should be noted that in [27], different faults, either sensor or actuator, mechanical
or electrical, were introduced. In the current study, the pitch actuator dynamic change, bias and
effectiveness loss are considered. This is mainly motivated by considering the severity of these
faults [1]. Meanwhile, the effects of BAPC and drivetrain efficiency reduction are evaluated.
However, the rest of the mentioned faults [27] are not included. This stems from two reasons. In
the full load region, the generator control is not active, and the generator torque load is just set at
the nominal value. Therefore, the faults on the generator are not considered. More importantly,
the proposed controller can be used in parallel to the available solutions, which are designed to
compensate, for instance, for the sensor faults (for the other faults see the suggested strategies
in [38]).
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7. Feasibility Check and Design Algorithm

In the proposed controller, the constraints are imposed on the tracking error. However,
from a practical point of view, the state constraints are given directly on the HAWT rotor
speed and its derivative, rather than the tracking error. In that sense, the operational
requirements are defined as |ωr(t)| < δωr and

∣∣ .
ωr(t)

∣∣ < δ .
ωr

. In practice, it is assumed that∣∣ωr,d
∣∣ < δωr,d < δωr . From Equation (41), it can be stated that if the virtual control α1(t) is

bounded with respect to the specified constrained
.

ωr(t), the inequality
∣∣ .
ωr(t)

∣∣ < δ .
ωr

is
guaranteed. As

∣∣ .
ωr(t)

∣∣ < δ .
ωr

, and also since |e2(t) + α1(t)| =
∣∣ .
ωr,s(t)

∣∣, it can be verified
that |α1(t)| < δ .

ωr
. An important issue is that the feasibility condition |α1(t)| < δ .

ωr
may

be violated when the ωr(t) approaches the constraint δωr [30]. Therefore, |α1(t)| < δ .
ωr

must be satisfied by choosing the appropriate design parameter κ1 [29]. On the other
hand, considering effect of

.
α1(t) as in Equation (42), α2(t) may become very large when

e1(t) gets very close to δ1(t) [29]. Therefore, the state constraints cannot be arbitrarily
selected, and a given feasibility constraint has to be satisfied, which is based on α1(t). The
feasibility condition depends on the existence of the design parameters to satisfy the state
constraints. To this end, if the constraints are too small, such a control may not exist. In this
regard, the feasibility condition is formulated as a static optimization and solved prior to
the implementation of the controller. Let us assume there exists an upper bound A1(κ1),
such that:

A1(κ1) = sup
Ω

(α1(ωr(t), e1(t), ωr,d; κ1)) (46)

where Ω =
{

ωr(t), e1(t), ωr,d : |ωr(t)| < δ1 + δωr,d , |e1(t)| < δ1,
∣∣ωr,d

∣∣ < δωr,d

}
. From Propo-

sition P3 in Theorem 3, it is evident that the design parameters are to be selected large enough
to achieve good tracking performance. However, this increases α1(t) in Equation (41), and
consequently, α2(t). This may violate the state constraint

∣∣ .
ωr(t)

∣∣ < δ .
ωr

. Accordingly, a trade-
off has to be defined, which is formulated as a feasibility condition. Specifically, it checks if
there exists a solution κ1

∗ for the following static Optimization Problem (OP).

OP : Given δωr and δ .
ωr

,

Maximize
κ1>0

(κ1),

Subject to δ .
ωr

> A1(κ1).

(47)

It should be noted that this is a sufficient condition. In such a case, with κ1 = κ∗1 the
state constraints are not violated. The design procedure is summarized in Algorithm 1. It
should be noted that this algorithm can be solved by using, e.g., the fmincon routine in
MATLAB [39]. Additionally, the design structure is summarized in Figure 2.
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Algorithm 1 Proposed controller design procedure

1. Offline computation:
1.1. For the given δωr and

.
ωr, solve OP to obtain κ∗1 . Select κ2, σF1, σF2 and εi, for i = 1,2, in

accordance with Remark 2.
1.2. For the given initial condition, compute ai and ai, then select bi, bi and φi, for i = 1,2.

2. Online computation:
2.1. Integrate the virtual controls Equations (41) and (42), the adaptive laws Equations (21) and (34).
2.2. Compute the control gain Equation (33) and then the control signal Equation (18).

8. Simulations and Discussion

This section presents and discusses the numerical simulations conducted on the high-
fidelity 4.8 MW HAWT benchmark to evaluate the effectiveness of the MANCC [6,27].
Different fault scenarios are applied to the benchmark, i.e., single and simultaneous faults.
It is shown that in both cases the considered constraints are not violated, satisfying the
operation requirement (ii). Uncertainties represent the key point in the case of offshore
HAWTs. Indeed, in remote harsh locations, BAPC and drivetrain efficiency reduction are
unavoidable. This issue is important, as this may lead to less captured power. Accordingly,
to assess the robustness of the proposed MANCC, a Monte-Carlo analysis is performed
with different measurement errors, modelled as Gaussian processes, and the model-reality
mismatch. To numerically evaluate the nominal power generation the following normalized
Power Metric (PM) is defined as follows:

PM(%) =
100
∣∣Pg(t)− Pg,N

∣∣
Pg,N

(48)

8.1. Control Parameters

The constraints on the rotor speed and its time derivative are selected as δωr = 1.736 rad/s
and δ .

ωr
= 0.07 rad/s2. Accordingly, by solving OP, the parameters of the MANCC

are κ1 = 0.1, κ2 = 4, σF1 = σF2 = 10. Furthermore, the initial conditions vector
is x(0) = [1.7355, 164.87, 3, 32107]. Consequently, the parameters of the tracking error
constraints in Equation (40) are a1 = 0.025, b1 = 0.02, a1 = 0, b1 = 0.02, φ1 = 0.02,
a2 = 0.055, b2 = 0.05, a2 = 0, b2 = 0.05 and φ2 = 0.02. The Nussbaum-type func-
tion N(ζ1(t)) = ζ2

1(t)cos(ζ1(t)) is used, according to Definition 3. Finally, considering
Remark 2, ε1 = ε2 = 0.001 is selected.

8.2. Fault Model

The fault fβ(t) in Equation (6) is due to the pitch actuator dynamic change, which in
turn causes the variation in the natural frequency ωn and the damping ratio ξ. As described
in [1], the fault fβ(t) can be modelled as a convex functions depending on the nominal
values of the natural frequency and the damping ratio, as described by the following
relation [1,6]:

fβ(t) = −α f1 ∆(ω̃n
2)β(t)− 2α f2 ∆

(
ω̃n ξ̃

) .
β(t) + α f1 ∆(ω̃n

2)βre f (t) (49)

where ∆(ω̃n
2) = ωn,HL

2 −ωn,N
2, ∆

(
ω̃n ξ̃

)
= ωn,HACξHAC −ωn,NξN , α f1 and α f2 are fault

indicators, ωn,X and ξX are the natural frequency and the damping ratio, respectively, in the
condition X. Additionally, the acronyms N, HL, PW, and HAC stand for normal, hydraulic
leaks, pump wear, and high air content conditions, respectively. The parameters of these
conditions are summarized in Table 1. On the other hand, to precisely investigate the effects
of faults and the performance of the proposed controller, different fault types, sizes and
periods are considered.
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Table 1. Pitch actuator dynamic change parameters [1,6].

Pitch Actuator Condition Parameters Indicator

Normal (N)) ωn,N = 11.11, ξN = 0.6 α f1
= α f2 = 0

Pump Wear (PW ) ωn,PW = 7.27, ξPW = 0.75 α f1
= 0.63, α f2 = 0.30

Furthermore, single faults occurring once per time are simulated, as well as simulta-
neous ones. To summarize, two fault scenarios, including single and simultaneous fault
conditions with different sizes and types are implemented, as described in Table 2 and
Table 3, respectively. Additionally, it should be noted that fTa(t) can be implemented as a
reduction in the power coefficient. BAPC is described as a 10% reduction in the power coef-
ficient in the simulations. On the other hand, the drivetrain friction may lead to decreased
efficiency. This is modelled by a 5% reduction in drivetrain efficiency.

Table 2. Single fault scenario.

Pitch Actuator Condition Parameters Indicator

Bias Φ(t) = 10
◦

200 (s) ≤ t ≤ 300 (s)
Effectiveness loss ρ(t) = 0.7 400 (s) ≤ t ≤ 500 (s)

Pump wear α f1
= 0.63, α f2 = 0.30 600 (s) ≤ t ≤ 700 (s)

Hydraulic oil leak α f1
= 1, α f2 = 0.88 800 (s) ≤ t ≤ 900 (s)

High air content in oil α f1
= 0.81, α f2 = 1 900 (s) ≤ t ≤ 1000 (s)

Table 3. Simultaneous fault scenario.

Pitch Actuator Fault Type Fault Effect Fault Period

Bias Φ(t) = 15
◦

100 (s) ≤ t ≤ 400 (s)
Pump wear α f1

= 0.63, α f2 = 0.30

Effectiveness loss ρ(t) = 0.5 500 (s) ≤ t ≤ 800 (s)High air content in oil α f1
= 0.81, α f2 = 1

Hydraulic oil leak α f1
= 1, α f2 = 0.88 900 (s) ≤ t ≤ 1000 (s)

8.3. Parameters of Measurement Errors

To have a realistic simulation analysis, the sensor measurements are affected by
measurement errors, modelled as Gaussian processes, which is a common assumption in
many works [27]. The measurement error parameters are described by the variables of Set 1
in Table 4. It is worth noting that the measurement error of the sensors may be variable
over a long period of operation. These effects are investigated through the evaluation of
the robustness feature via the Monte-Carlo tool. Accordingly, three sets of measurement
errors with different standard deviations are considered, which are reported in Table 4,
i.e., Set 1, Set 2 and Set 3. It should be pointed out that, as the paper focuses on the pitch
angle control, larger variations in pitch angle standard deviation are considered.

Table 4. Parameters of the different measurement error conditions.

Sensor Mean Noise Standard
Deviation

Error Compared to
Nominal Values (%)

Se
t1

Rotor speed 0 σωr = 0.002 0.12
Generator speed 0 σωg = 0.5 0.31
Generator torque 0 σTg = 90 0.28

Pitch angle 0 σβ = 0.2 1.16



Actuators 2022, 11, 102 18 of 23

Table 4. Cont.

Sensor Mean Noise Standard
Deviation

Error Compared to
Nominal Values (%)

Se
t2

Rotor speed 0 σωr = 0.004 0.24
Generator speed 0 σωg = 1 0.62
Generator torque 0 σTg = 100 0.31

Pitch angle 0 σβ = 1 5.8

Se
t3

Rotor speed 0 σωr = 0.008 0.48
Generator speed 0 σωg = 3 1.84
Generator torque 0 σTg = 120 0.37

Pitch angle 0 σβ = 2 11.6

8.4. Simulation Results and Discussion

The considered wind speed sequence is shown in Figure 3, with the mean 17.84 (m/s)
and the standard deviation of 1.94 (m/s). It is worth noting that other wind sequences can
be used to study the robustness of the performance. In this work, however, the robustness
is analysed via the Monte-Carlo tool in the presence of measurement errors. Therefore,
for the sake of brevity, the wind speed sequence depicted in Figure 3 is only used. Under
single and simultaneous fault scenarios, the results are shown in Figures 4–10.
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It can be seen that the tracking errors e1(t) and e2(t) are within the considered con-
straints, considering Figures 4 and 5. Accordingly, both the rotor and the generator speed
signals, illustrated in Figures 6 and 7, are quite close to the corresponding nominal values
despite the wind speed variation and faults. As a result, the generated power is regulated
at the nominal value, as shown in Figure 8. These results imply that the wind turbine
is successfully controlled by pitch angle regulation, i.e., the nominal power is generated,
despite the wind speed high variation and the faults. Furthermore, the given operation
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bounds are not violated. This enables safe operation and avoids conservative WEC. Es-
pecially, considering the bounded rotor speed, the engagement of the mechanical brake
on the rotor shaft can be avoided. On the other hand, as indicated in Figures 4 and 5, the
proposed scheme is able to construct the bounds to handle the initial conditions outside of
these bounds, as discussed in Section 5.
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Se
t 1

 

C1 0.155 0.186 0.277 0.141 0.157 0.198 
C2 0.169 0.197 0.334 0.158 0.168 0.207 

Figure 10. Profile of ∆β.

The reference pitch angle computed by the proposed controller is shown in Figure 9.
The pitch angles in Figure 9 are very similar to each other. Therefore, to accurately investi-
gate the performance of the proposed controller, the difference between these two pitch
angles, defined as ∆β(t) = β(t)single f aults − β(t)simultaneous f aults, is reported in Figure 10.
Considering Tables 1 and 2, and Figure 10, it is clear that the main difference is in the peri-
ods that the pitch actuator bias and effectiveness loss commence, i.e., 100 (s) ≤ t ≤ 400 (s)
and 500 (s) ≤ t ≤ 800 (s). Considering Figure 10 and Tables 2 and 3, the effects of the pitch
actuator dynamic change have led to more variations, compared to bias and effectiveness
loss. Indeed, the dynamic change causes the slower pitch actuator dynamic response. In
this case, the controller has to vary the pitch angle faster with larger values to retain the
rotor speed within the bounds.

Now to extensively evaluate the performance, the Monte-Carlo analysis is performed
to assess the robustness and reliability of the proposed controller, in terms of nominal
power generation, considering different measurement errors and the PM(%) index. Ad-
ditionally, BAPC is included as a 10% reduction in the power coefficient. On the other
hand, the drivetrain decreased efficiency is considered by a 5% reduction in this parameter.
Accordingly, two cases with and without BAPC and drivetrain efficiency reduction are
represented by Case 1 (C1) and Case 2 (C2), respectively. The Monte-Carlo analysis is
performed under a single fault scenario. For each case, 100 simulations are performed. For
each simulation, the PM(%) is computed over the simulation time. Then, the maximum,
minimum, standard deviation and mean values of each PM(%) index for each simulation
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are computed. Accordingly, for the sake of brevity, the Worst (W), the Average (A) and
the Best (B) values over 100 simulations are considered, as indicated in Table 5. It is worth
noting that the PM(%) index, as defined in Equation (48), is ideally close to zero. Therefore,
the worst, the average and the best values represent the largest, average and smallest
values, respectively. The rationale behind this is that the largest PM(%) represents the
largest deviation from the nominal power generation. Therefore, this is selected as the
worst performance index. Similar justifications can be given for average and the best values.
All Monte-Carlo simulation results reported in Table 5 highlight that the proposed control
scheme is robust with respect to the model efficiency reduction, measurement errors, wind
speed variations as well as faults. Indeed, in terms of nominal power generation, which
is the main operational objective of the wind turbine in the full load region, the proposed
pitch angle controller is able to keep the generated power very close to the nominal value.

Table 5. Monte-Carlo simulation results in terms of PM% index. Letters B, A and W stand for best,
average and worst values, respectively.

PM (%)

Maximum Minimum

B A W B A W

Set 1
C1 1.038 1.151 1.422 6.14× 10−8 3.73× 10−4 0.016
C2 1.142 1.268 1.531 7.51× 10−8 6.14× 10−6 2.37× 10−4

Set 2
C1 1.033 1.230 1.641 1.13× 10−8 5.53× 10−4 0.014
C2 1.131 1.359 1.813 2.77× 10−10 1.14× 10−5 1.48× 10−4

Set 3
C1 1.042 1.419 2.428 7.65× 10−9 0.006 0.349
C2 1.136 1.446 2.482 0.21× 10−8 2.72× 10−5 5.39× 10−4

Mean Standard Deviation

B A W B A W

Set 1
C1 0.155 0.186 0.277 0.141 0.157 0.198
C2 0.169 0.197 0.334 0.158 0.168 0.207

Set 2
C1 0.155 0.249 0.576 0.144 0.167 0.209
C2 0.117 0.268 0.629 0.158 0.182 0.228

Set 3
C1 0.155 0.413 1.374 0.143 0.182 0.214
C2 0.171 0.353 1.285 0.158 0.191 0.234

Table 5 summarises the Monte-Carlo analysis results. As these simulations are per-
formed under random noise processes 600 times, cumulatively, it can be concluded that
the achievement of this objective is guaranteed by using the proposed controller. This
highlights the robustness and reliability of the developed solution, in terms of nominal
power generation. This is verified considering the PM(%) in Table 5. The deviation of the
generated power from the nominal value is negligible for all the simulations with different
measurement errors and faults. Even the worst cases, i.e., the largest PM(%), have led to
small deviations.

9. Conclusions

This paper proposed a novel pitch actuator controller to improve the power regulation
efficiency of the horizontal axis wind turbine. It also guaranteed safe operation with
efficient wind energy conversion. The constrained control was designed, using the barrier
Lyapunov function, to retain the rotor speed and the generated power within the safe-to-
operate bounds. Therefore, the rotor overspeeding, the mechanical brake engagement,
and the conservative energy conversion are avoided. The proposed controller was able
to handle the uncertain wind speed variation effects without requiring accurate wind
speed measurement, using the Nussbaum-type function. It was also able to compensate
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for pitch actuator faults and aerodynamic characteristic change. Accordingly, unplanned
maintenance and consequent cost are reduced. Numerical simulations were performed
to validate the effectiveness of the proposed controller under various faults. The Monte-
Carlo tool was exploited for the evaluation of reliability and robustness against the model
uncertainty and measurement noise.

This paper suggests some future research issues that need to be investigated. One
of the most crucial issues is the experimental analysis of the proposed scheme, which
needs to be conducted before industrial applications. However, the development of the
proposed solution for real wind turbines is promising. Furthermore, the numerical calcu-
lation of the captured wind energy can be evaluated, considering the reduced downtime,
operation and maintenance costs. This can further highlight the economic benefits of the
proposed controller.
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