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A Gaussian-Mixture based stochastic framework for the

interpretation of spatial heterogeneity in multimodal fields

Martina Siena1, Chiara Recalcati1, Alberto Guadagnini1, Monica Riva1∗
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bstract

provide theoretical formulations enabling characterization of spatial distributions of variables

ch as, e.g., conductivity/permeability, porosity, vadose zone hydraulic parameters, and reaction

es) that are typical of hydrogeological and/or geochemical scenarios associated with randomly

erogeneous geomaterials and are organized on various scales of heterogeneity. Our approach

ensuing formulations embed the joint assessment of the probability distribution of a target

iable, Y , and its associated spatial increments, ∆Y , taken between locations separated by any

en distance (or lag). The spatial distribution of Y is interpreted through a bimodal Gaussian

xture model. The modes of the latter correspond to an indicator random field which is in turn

ated to the occurrence of different processes and/or geomaterials within the domain of observation.

e distribution of each component of the mixture is governed by a given length scale driving the

ength of its spatial correlation. Our model embeds within a unique theoretical framework the

in traits arising in a stochastic analysis of these systems. These include (i) a slight to moderate

mmetry in the distribution of Y and (ii) the occurrence of a dominant peak and secondary peaks
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the distribution of ∆Y whose importance changes with lag together with the moments of the

tribution. This causes the probability distribution of increments to scale with lag in way that

onsistent with observed experimental patterns. We analyze the main features of the modeling

parameter estimation framework through a set of synthetic scenarios. We then consider two

erimental datasets associated with different processes and observation scales. We start with an

ginal dataset comprising microscale reaction rate maps taken at various observation times. These

evaluated from Atomic Force Microscopy (AFM) imaging of the surface of a calcite crystal in

tact with a fluid and subject to dissolution. Such recent high resolution imaging techniques

key to enhance our knowledge of the processes driving the reaction. The second dataset is

ell established collection of Darcy-scale air-permeability data acquired by Tidwell and Wilson

99)[Water Resour Res, 35, 3375–3387] on a block of volcanic tuff through minipermeameters

ociated with various measurement scales.

Introduction

assumption that often underlies stochastic analyses of hydrogeological, geochemical, or other

rth system quantities of interest is that these can be depicted as Gaussian random fields. Oth-

ise, sets of observations of a broad range of variables are characterized by sample probability

tributions associated with distinctive traits that are not compatible with those typical of Gaus-

n fields. Of particular interest to our study are the following documented patterns: (i) the

ltimodal behavior of probability density function (PDF) of a given quantity, Y , emerging at cer-

n scales of inspection, and (ii) the observation that the shape of the PDF of (spatial) increments

Y , ∆Y (s) = Y (x + s) − Y (x) evaluated over the separation distance (or lag) s, tends to change

h lag.

In this context, a scaling behavior of the sample distribution of increments has been observed

2
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several variables. For example, permeability (Painter, 1996; Riva et al., 2013), porosity (Painter,

6; Guadagnini et al., 2014), hydraulic conductivity (Liu and Molz, 1997; Guadagnini et al.,

3; Meerschaert et al., 2004), and mineral dissolution rates observed at the microscale (Siena

al., 2021) are documented to be characterized by distributions of incremental values (∆Y ) whose

ments and main traits vary with s in a way that is not consistent with the assumption that Y be

deled as a Gaussian field. With specific reference to hydrogeological settings, when considering

orous medium whose internal architecture comprises different zones (or regions), each associated

h a given geomaterial, attributes such as conductivity/permeability within each region can be

wed as characterized by a unimodal distribution (see, e.g., Winter et al., 2003 and references

rein). In this context, Riva et al. (2015) and Guadagnini et al. (2018) suggested that the way

PDF of spatial increments of porosity and permeability scale with lag can be captured through

eneralized Sub-Gaussian (GSG) model. The latter embeds the Gaussian model as a special case.

imilar approach has been adopted by Siena et al. (2020, 2021) in the context of their statistical

lyses of mineral dissolution rates observed at the micro-scale through the use of modern Vertical

nning Interferometry (VSI) and Atomic Force Microscopy (AFM).

Otherwise, conductivity fields in geologic media have sometimes been modeled upon relying on

ultimodal distribution (see, e.g., Winter et al., 2003 and references therein). Since the early

rk of Journel (1983), Desbarats (1987), Rubin and Journel (1991), or Rubin (1995), this behavior

been recognized to arise from a homogenization within a unique population of conductivity

ues that are otherwise linked to regions characterized by differing geological attributes. In this

mework, a stochastic approach based on a model encompassing a unique scale of heterogeneity

ght not be adequate to represent such composite media within which various processes and/or

materials coexist across a given spatial window of observation.

A description of a spatial random field as a statistically stationary system characterized through

3
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ultimodal model entails considering (i) the random geometry of the various regions (or clusters)

ntified across the system and (ii) the spatial distribution of the quantity of interest within each

these regions (Winter et al., 2003). In this setting, Rubin and Journel (1991) view the random

ction of interest, Y (x), as a sum of m = 1, ...,M Gaussian components, Ym(x), each weighted

a (statistically homogeneous random) indicator function. These authors associate the latter with

spatial distribution of the M zones/clusters across the domain. Each random field Ym(x) is

cribed through its spatial structure and is typically assumed to be independent from the others

from the indicator function. Rubin (1995) considers a porous system composed by M = 2

tinct geomaterials and provides analytical formulations for the first two statistical moments (i.e.,

an and variance) and for the covariance of Y (x). Lu and Zhang (2002) further extend the above

ntioned studies to include in the theoretical formulation a relationship between the covariance

ucture of the indicator and a characteristic length describing the spatial arrangement of the zones

ociated with the various geomaterials. Such a length scale is characterized using a Markov chain

del, as expressed by Carle and Fogg (1997). Recent applications of these concepts are illustrated

e.g., Dai et al. (2020), to assess the impact of the internal architecture of a sedimentary porous

dium on solute plume dispersion; Gournelos et al. (2020), for the interpretation of the statistical

avior of monthly water discharge and suspended sediment load; and Jia et al. (2022) for the

ulation of synthetic long-term time series of streamflow data.

Our study aims at extending the theoretical framework underpinning a stochastic description of

omposite random field through a stationary multimodal distribution. In this broad framework,

derive rigorous formulations associated with the PDF of spatial increments of a given quantity of

erest to embed the observed scaling tendencies of such distributions within a unique analytical

deling approach. In this sense, joint analysis of the PDF of data and their increments within

nique theoretical framework that ensures consistency between these two types of information

4
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lds improved characterization of the quantity under investigation. For the purpose of our study,

limit the theoretical formulations to a bimodal Gaussian mixture (GMIX). We then provide a

eral procedure for the estimation of all parameters embedded in the GMIX model. We explore the

efit of our approach upon applying the ensuing theoretical analysis to interpret two experimental

asets. These represent different processes and scales of observation and are characterized by stark

odal traits.

The first experimental dataset considered comprises a collection of reaction rate maps that we

ain from direct observation of (microscale) surface topography of a calcite crystal subject to

solution. Detailed fundamental knowledge about these types of dissolution/precipitation pro-

ses is usually demanded in the context of modeling of hydrogeochemical system dynamics. High

olution imaging techniques such as AFM or VSI enable direct observation of the processes tak-

place at the solid-fluid interface of a mineral. These experimental techniques have contributed

markedly enhance our understanding about reaction kinetics (see, e.g., Lüttge et al., 2019 and

erences therein). Experimental observations reveal that dissolution/precipitation processes at

microscale are affected by a wide variety of factors. These include, e.g., defects in the crystal

tice or inclusions (Fischer et al., 2014), which result in a remarkable heterogeneity in the reac-

n kinetics. Several authors (Lüttge et al., 2013, 2019; Fischer et al., 2012, 2014) suggest to rely

a stochastic approach and treat reaction rates as random fields. Some preliminary studies on

chastic characterizations are available. These are based, e.g., on a Generalized Extreme Value

and et al., 2017) or a GSG (Siena et al., 2021) model. Otherwise, further work is needed to

prehensively address the complex system behavior documented at such scales. In this setting,

erved bimodal (or multimodal) traits of the PDF of reaction rates are linked to the occurrence

diverse mechanisms of dissolution of the solid surface in contact with the reacting fluid. As we

w in Section 4.1, these mechanisms give rise to distinct regions across the observation domain.

5
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e relative proportion of these zones evolves in time and imprints the parameters characterizing

ensuing bimodal random field of reaction rates.

We then consider a dataset representative of a Darcy-scale collection of air-permeability data

idwell and Wilson, 1999, 2002). These are acquired on the faces of a block of volcanic tuff

ough four minipermeameters having different inner radius. As such, each dataset is related to

iven measurement/observation scale. Tidwell and Wilson (1999) show that log-permeability

ues sampled across the whole domain of investigation are characterized by a bimodal frequency

tribution. The latter becomes more and more manifest as the scale of observation increases.

Our study is structured as follows. Section 2 illustrates the theoretical formulation of the GMIX

del and our original developments associated with the probability distributions of incremental

ues of a bimodal Gaussian random field. In Section 3 we propose a parameter estimation procedure

test it on a collection of synthetically generated GMIX fields. Section 4 illustrates the analysis

interpretation of the two experimental datasets described above through the GMIX model. Our

clusions are presented in Section 5.

Stochastic model framework

Multimodal Gaussian Mixture

consider Y (x) to be a spatial random field exhibiting multimodal behavior across a given domain

interest, described as (e.g., Rubin, 1995; Lu and Zhang, 2002; Dai et al., 2020)

Y (x) =

M∑

m=1

Im(x)Ym(x), (1)

ere M is the number of independent and mutually-exclusive modes (or components) of Y (x),

(x) is the m − th component evaluated at (vector) location x, and Im is an indicator random

6
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d independent of Ym and defined as

Im(x) =





1 if component m occurs at x

0 otherwise.

(2)

te that Im follows a Bernoulli distribution with mean pm(x) = E {Im(x)} (which corresponds to

relative proportion of Im across the domain, under ergodic conditions, E{·} denoting ensemble

ectation), and variance Var {Im(x)} = pm(x)(1−pm(x)). Note also that the following constraint

atisfied
M∑

m=1

Im(x) = 1, (3)

any location x in the system.

Focusing on a bimodal field (i.e., M = 2), Eq. (1) reduces to

Y (x) = I(x)YA(x) + (1− I(x))YB(x), (4)

ere subscripts A and B denote the two modes associated with the random field Y (x). Setting

I(x)} = p, the cumulative distribution function (CDF) and the probability density function (PDF)

Y (x) are respectively defined as

FY (y) = Pr {Y ≤ y} = pFYA
(y) + (1− p)FYB

(y), (5)

fY (y) =
∂FY (y)

∂y
= pfYA

(y) + (1− p)fYB
(y). (6)

re, FYm(y) and fYm(y) (with m = A,B) are the CDF and PDF of component m of the mixture,

pectively.

If each component m of Y is characterized by a Gaussian distribution with mean µm and variance

, i.e., Ym ∼ N(µm, σ2
m), the field Y (x) is a bimodal GMIX, and Eq. (6) reads

fY (y) =
p√
2πσA

e
− (y−µA)2

2σ2
A +

(1− p)√
2πσB

e
− (y−µB)2

2σ2
B . (7)

7
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Making use of Eq. (6) the raw moment of Y of order q, ⟨Y q⟩, can be computed as

⟨Y q ⟩ = p⟨Y q
A ⟩+ (1− p)⟨Y q

B ⟩. (8)

erefore the mean of Y can be derived by setting q = 1 in Eq. (8), as

µY = pµA + (1− p)µB , (9)

central moments of order q of Y can be evaluated as

⟨Y ′q ⟩ = ⟨ (Y − µY )
q ⟩ =

q∑

j=0

(
q

j

)
(−1)jµj

Y ⟨ Y q−j⟩ . (10)

particular, variance, σ2
Y , skewness, SkY , and kurtosis, κY , associated with a bimodal GMIX field

evaluated by setting in Eq. (10) q = 2, 3, 4, respectively, as

σ2
Y = ⟨Y ′2 ⟩ = pσ2

A + (1− p)σ2
B + p(1− p)(µA − µB)

2, (11)

SkY =
⟨Y ′3⟩
σ3
Y

=
p

σ3
Y

(1− p)(µA − µB)
[
(1− 2p)(µA − µB)

2 + 3(σ2
A − σ2

B)
]
, (12)

κY =
⟨Y ′4⟩
σ4
Y

=
1

σ4
Y

{
3p(σ4

A − σ4
B) + 3σ4

B

+p(1− p)(µA − µB)
2
[(
1− 3p(1− p)

)
(µA − µB)

2 + 6
(
σ2
A − p(σ2

A − σ2
B)
)]}

.

(13)

Eqs. (12) and (13) clearly show that the PDF of a GMIX field can be (i) non-symmetric (i.e.,

Y ̸= 0) even though each component Ym of Y is symmetric and/or (ii) leptokurtic (κY > 3,

responding to a heavy tailed distribution) or platikurtic (κY < 3), even through components

are mesokurtic (i.e., characterized by κY = 3). In the hydrogeological context, examples of

odal features documented for quantities of interest observed across heterogeneous systems include

osity, conductivity, permeability, vadose zone hydraulic properties, and electrical resistivity (e.g.,

ang et al. (2005); Zhang (2009); Riva et al. (2013); Guadagnini et al. (2013, 2015); Russo (2002);

et al. (2022)).

8
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The extent of these deviations from a Gaussian behavior is controlled by the difference between

component means (i.e., µA − µB), the component variances (i.e., σ2
A and σ2

B), and p.

In order to illustrate the main traits of the field considered, Fig. 1 shows the impact of p on the

F (and related statistical moments) of a GMIX field characterized by µA − µB = 2, σ2
A = 0.15,

σ2
B = 0.05. The PDF of Y (see Fig. 1.a) exhibits two peaks and a local minimum located

hin the interval y ∈ [µB , µA]. As dictated by Eq. (9), the mean of Y varies linearly with p (see

. 1.b, note that µY increases with p in our example, since µA > µB). The variance of Y exhibits

arabolic behavior with p (Fig. 1.c), as prescribed by Eq. (11). It attains a maximum value at

pmax = (1 + α)/2, where α = (σ2
A − σ2

B)/(µA − µB)
2 (with α = 0.05 in our example). This

o implies that σ2
Y monotonically increases with p only when α > 1. The skewness of Y (see

. (12) and Fig. 1.b) vanishes for the two trivial cases p = 0 (where Y = YB) and p = 1 (where

YA) and when p = pSk=0
3 = (1 + 3α)/2. Note that the PDF of Y is right-skewed (SkY > 0) for

(0, pSk=0
3 ) and left-skewed (SkY < 0) for p ∈ (pSk=0

3 , 1). When |α| ≥ 1/3, then pSk=0
3 /∈ (0, 1)

the PDF is right- (for α > 1/3) or left- (for α < 1/3) skewed regardless of the component

portions. Fig. 1.c also depicts the trend of the excess kurtosis (EκY = κY − 3) versus p. It

be shown from Eq. (13) that, in addition to the two trivial cases p = 0, 1, EκY vanishes for

pEk=0
3,4 = 1/2 + α ±

√
(1 + 6α2) /12. Hence, the PDF is platikurtic for p ∈ (pEk=0

3 , pEk=0
4 ) and

tokurtic outside this range. If |α| ≥ (3 +
√
6)/3, then pEκ=0

3,4 /∈ (0, 1) and the PDF is leptokurtic

ardless of the component proportions.

Spatial increments of a Bimodal Gaussian Mixture

Y1 and Y2 denote the bimodal GMIX, Y (x), at two (spatial) locations, x1 and x2, i.e.,

9
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Y1 = Y (x1) = I(x1)YA(x1) + (1− I(x1))YB(x1), (14a)

Y2 = Y (x2) = I(x2)YA(x2) + (1− I(x2))YB(x2). (14b)

We extend the approach illustrated by Rubin (1995) and obtain the joint PDF of Y1 and Y2 as

fY1,Y2(y1, y2) =Pr {I(x1) = 1, I(x2) = 1} fYA,1,YA,2
(y1, y2)

+Pr {I(x1) = 0, I(x2) = 0} fYB,1,YB,2
(y1, y2)

+Pr {I(x1) = 1, I(x2) = 0} fYA,1,YB,2
(y1, y2)

+Pr {I(x1) = 0, I(x2) = 1} fYB,1,YA,2
(y1, y2),

(15)

ere

fYm,1,Ym,2
(y1, y2) =

e−r

2πσ2
m

√
1− ρ2m

, (16)

h

r =
(y1 − µm)2 + (y2 − µm)2 − 2ρm(y1 − µm)(y2 − µm)

2σ2
m(1− ρ2m)

and m = (A,B),

he bivariate PDF of the Gaussian components of the mixture at the two locations. The joint PDF

roduced in Eq. (16) is seen to depend on the spatial correlation ρm = ρm(x1,x2) of each mode.

recall that, as mentioned above, the two components YA and YB are assumed to be uncorrelated.

nce, fYA,1,YB,2
= fYA

(y1)fYB
(y2) and fYB,1,YA,2

= fYB
(y1)fYA

(y2).

Therefore, Eq. (15) leads to

fY1,Y2
(y1, y2) =E {I(x1)I(x2)} fYA,1,YA,2

(y1, y2)

+E {[1− I(x1)][1− I(x2)]} fYB,1,YB,2
(y1, y2)

+E {I(x1)[1− I(x2)]} fYA
(y1)fYB

(y2)

+E {[1− I(x1)]I(x2)} fYB
(y1)fYA

(y2).

(17)

10
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nsidering that

E {I(x1)I(x2)} = [E {I(x)}]2 + CI(x1,x2) = p2 + CI(x1,x2), (18)

ere CI(x1,x2) is the covariance of the indicator field I(x), Eq. (17) can be rewritten as

fY1,Y2
(y1, y2) = [p2 + CI(x1,x2)]fYA,1,YA,2

(y1, y2)

+ [(1− p)2 + CI(x1,x2)]fYB,1,YB,2
(y1, y2)

+ [p(1− p)− CI(x1,x2)] {fYA
(y1)fYB

(y2) + fYB
(y1)fYA

(y2)} .

(19)

In the following we derive the analytical formulation for the PDF of the omnidirectional spatial

rements ∆Y (s) = Y1 − Y2 (s =| x1 − x2 |). Second-order stationarity is assumed for all random

ds, i.e., CI(x1,x2) = CI(s) and ρm(x1,x2) = ρm(s). The probability distribution of ∆Y (s) can

obtained from the joint PDF of Y as

F∆Y (∆y) = Pr{∆Y ≤ ∆y} =

∫ +∞

y2=−∞

∫ ∆y+y2

y1=−∞
fY1,Y2(y1, y2)dy1dy2. (20)

king use of Eq. (19) and recalling that f∆Y (∆y) = dF∆Y (∆y)
d(∆y) leads to

f∆Y (∆y) =
p2 + CI(s)√
4πσ2

A (1− ρA)
e
− ∆y2

4σ2
A

(1−ρA) +
(1− p)2 + CI(s)√
4πσ2

B (1− ρB)
e
− ∆y2

4σ2
B

(1−ρB)

+
p(1− p)− CI(s)√

2π(σ2
A + σ2

B)

(
e
− (∆y−µA+µB)2

2(σ2
A

+σ2
B

) + e
− (∆y+µA−µB)2

2(σ2
A

+σ2
B

)

)
.

(21)

The analytical expression of f∆Y (∆y) depends on (i) variances (σ2
A and σ2

B) and correlation

ctions (ρA and ρB) associated with each of the mixture components, (ii) the difference between

component means (µA−µB) and (iii) mean (p) and covariance (CI) of the indicator field. Fig. 2.a

ws a graphical depiction of Eq. (21) for various lags, obtained upon relying on the exemplary

of parameters used for Fig. 1 and considering p = 0.2. For illustration purposes, we consider

isotropic exponential model to describe the above mentioned indicator covariance function, i.e.,

(s) = σ2
IρI(s) = σ2

Ie
−s/λI , (λI and σ2

I = p(1 − p) being the correlation length and variance

I, respectively) and for ρm, i.e., ρm = e−s/λm(m = A,B), λm being the correlation length of

11
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ponent Ym. Here, for illustration purposes, we set λA = λB = 6 and λI = 6.4. It can be noted

t the PDF of ∆Y is always (i) symmetrical with respect to zero; and (ii) characterized by a

inant central peak (located at ∆y = 0 and controlled by the first two terms in Eq. (21)) and two

eral peaks (controlled by the last term in Eq. (21) and located at ∆y ≈ ±(µA − µB) ). Fig. 2.a

o reveals that the relative importance of the lateral peaks increases (at the expense of the central

k) as lag increases. This behavior is driven by CI(s) and −CI(s) that are seen to multiply terms

ated to the central and lateral peaks in Eq. (21), respectively. As lag increases, CI(s) decreases

the difference between the height of the central and lateral peaks tends to be reduced. One can

o see that the correlation functions ρA and ρB appear only within the first 2 terms of Eq. (21).

us, their dependence on lag can only affect the central peak of the PDF of ∆Y .

Statistical moments of the incremental variables can then be readily evaluated from Eq. (21).

an and all odd-order moments of ∆Y are identically zero. Second moment of ∆Y reads

⟨∆Y 2⟩ = 2
{
p2σ2

A(1− ρA) + (1− p)2σ2
B(1− ρB)

+ p(1− p)
[
(1− ρI)(µA − µB)

2 + σ2
A(1− ρAρI) + σ2

B(1− ρBρI)
] }

.

(22)

ce CY = σ2
Y −γY , where γY = ⟨∆Y 2⟩/2 is the variogram of Y , Eqs. (11) and (22) allow evaluating

covariance of Y as

CY = p2σ2
AρA + (1− p)2σ2

BρB + p(1− p)ρI
[
(µA − µB)

2 + σ2
AρA + σ2

BρB
]

(23)

e integral scale of Y , λY , can be computed by integrating Eq. (23). As also discussed by Lu

Zhang (2002), λY can be larger or smaller than the integral scale of the two modes and of

indicator, depending on the value of p, σ2
A, σ

2
B as well as on the correlation of the indicator

d. Fig. 2.b depicts the variogram as a function of lag for various values of p. Each curve

ains the corresponding sill, σ2
Y (dashed horizontal lines), for large lags. Consistent with Fig. 1.b,

(p = 0.6) > σ2
Y (p = 0.4) > σ2

Y (p = 0.8) > σ2
Y (p = 0.2). It can be noted that the same ordering

ds also for the variogram values at any given lag.

12
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The fourth-order moment of ∆Y is

⟨∆Y 4⟩ = 2
{
6p2σ4

A(1− ρA)
2 + 6(1− p)2σ4

B(1− ρB)
2

+ 6p(1− p)ρI
[
σ4
A(1− ρA)

2 + σ4
B(1− ρB)

2
]

+ p(1− p)(1− ρI)
[
(µA − µB)

4 + 3(σ2
A + σ2

B)(2(µA − µB)
2 + (σ2

A + σ2
B))
] }

.

(24)

e analytical expression for the kurtosis, κ∆Y = ⟨∆Y 4⟩/⟨∆Y 2⟩2, associated with the increments

a Gaussian mixture can then be derived from Eqs. (22) and (24). We recall that this statistical

ment quantifies the tailedness of the distribution and its dependence on lag is a distinctive element

the scaling behavior exhibited by the PDFs of increments of a GMIX field. Fig. 2.c depicts excess

tosis, Eκ∆Y = κ∆Y −3, as a function of lag for various values of p. All curves exhibit a monotonic

nd. The value of Eκ∆Y is seen to increase (indicating tails that become heavier) as s decreases.

is pattern is starkly consistent with the behavior observed for several Earth and environmental

iables (Riva et al., 2015 and references therein). These results clarify that the increments of a

IX field exhibit clear non-Gaussian traits, despite each component of the mixture being Gaussian.

noted above, they also show that the PDFs of increments tend to change with lag due the action

the degree of spatial correlation of the two Gaussian components of the mixture and of the

icator field. Values of EκY are also depicted in Fig. 2.c (dashed horizontal lines) and are such

t EκY (p = 0.2) > EκY (p = 0.8) > EκY (p = 0.4) > EκY (p = 0.6). The same relative order

aintained also by the values of Eκ∆Y . Note that values of Eκ∆Y are negative (i.e., indicating

tikurtic distributions of increments) at large values of s for p > 0.2.

Parameter estimation

our analyses of synthetic and experimental datasets (Section 3 and 4), we assume a given set of N

ervations to be sampled from a GMIX field, Y . We infer the 5 parameters of Y (i.e., µA, µB , σ
2
A,

, and p in Eq. (7)) by relying on a well-established Maximum Likelihood (ML) approach, imple-

13



Journal Pre-proof

me272

200273

ste274

mi275

the276

the277

sto278

a p279

i.e.280

the281

tim282

to283

and284

ana285

eva286

ma287

eac288

un289

spa290

of291

(se292

wit293

un294

spa295
Jo
ur

na
l P

re
-p

ro
of

nted through an iterative Expectation-Maximization (E-M) procedure (McLachlan and Krishnan,

8; Gournelos et al., 2020). According to the latter, each iteration consists of (i) the Expectation

p (E-step), aimed at evaluating the (posterior) probability that each observation belongs to the

xture components, on the basis of an initial GMIX parameter set (or the parameter set obtained at

previous iteration); and (ii) the Maximization step (M-step), which uses the information from

E-step to estimate the GMIX parameter set maximizing the likelihood function. The algorithm

ps when the increase of the likelihood function between two subsequent iterations is smaller than

rescribed threshold. Note that E-M suffers from the typical issues associated with ML approaches,

, uniqueness, identifiability, and stability (Carrera and Neuman, 1986). To address the issue of

sensitivity of results to parameter initialization, application of the E-M algorithm is repeated n

es, each with a new set of initial parameters. Estimates of model parameters are then considered

correspond to the parameter set providing the highest likelihood among the n runs (McLachlan

Krishnan, 2008). The number of runs, n, is case specific and must be set through a stability

lysis of the algorithm output. For the scenario here considered, the selection of n = 40 allows

luating stable estimates of µm, σ2
m, and p. Additional details are provided in the Supplementary

terial. Note that this procedure can be employed to obtain a fuzzy (or soft) clustering of the data:

h observation is assigned to each mixture component with a given probability rather than to a

ique component, as it would result from a hard-clustering approach. It is otherwise noted that the

tial arrangement of the categories must be known to estimate the parameters (λI , λA, and λB)

the correlation functions ρI , ρA, and ρB that drive the statistical behavior of the increments ∆Y

e Eq. (21)). This can be achieved by (i) assigning each observation to the mixture component

h which the largest posterior PDF is associated, (ii) compute the spatial increments ∆I(s) of the

derlying indicator field and the corresponding sample correlation function ρ̃I(s), (iii) compute the

tial increments ∆Ym (m = A,B) within the regions associated with each Gaussian component

14
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the corresponding sample correlation function ρ̃m(s).

An estimate of λ̃I can be obtained according to the following two approaches:

• method 1 - fit ρ̃I(s) with a suitable theoretical model (e.g., an exponential model or other);

• method 2 - evaluate the mean length of the indicator field (lA, see Section 3) and estimate λ̃I

as λ̃I = (1− p)lA (Lu and Zhang, 2002).

estimate of λ̃m can obtained by fitting ρ̃m(s) with a suitable theoretical model.

Synthetic case study

ltiple realizations of synthetic GMIX fields are generated to provide a transparent assessment of

reliability of the parameter estimation strategy described in Section 2.3 to be applied for the

erpretation of the main traits displayed by the key statistics and empirical densities associated

h experimental datasets (see Section 4). The generation procedure relies upon: (i) a Transition

bability simulation approach (which takes advantage of the widely tested code T-PROGS; e.g.,

rle and Fogg, 1996, 1997) for the indicator field, I(x); and (ii) a sequential Gaussian simulation

mework (based on the broadly used and tested code SGSIM; e.g., Deutsch and Journel, 1998) for

Gaussian fields YA(x) and YB(x).

A set of N = 100 unconditional realizations of I(x) are generated on a two-dimensional regular

d comprising 100 × 100 nodes by setting p = 0.2 and lA = 8.0 (i.e., λI = (1 − p)lA = 6.4).

e value of Y in each node of the grid is computed via Eq. (4) where YA and YB are obtained by

sets of N unconditional realizations of Gaussian random fields characterized by and exponential

ariance function with λA= λB = 6, µA = 2.5, µB = 0.5, σ2
A = 0.15 and σ2

B = 0.05. Additional

ails are provided in the Supplementary material.
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Fig. 3.a depicts an exemplary realization of the GMIX field obtained. Each realization is treated

a dataset to which the parameter estimation procedures detailed in Section 2.3 can be applied.

mparison between estimated and input model parameters enables us to assess the reliability of

proposed inference methodology.

Fig. 3.b depicts the binary categorical (i.e., indicator) field that is inferred from the E-M and

stering procedure applied to the synthetic dataset in Fig. 3.a. Given the indicator field and

ensuing sample correlation function ρ̃I(s), an estimate of λ̃I can then be obtained according

method 1 and/or 2 introduced in Section 2.3. Note that one of the categories needs to be

racterized in terms of its mean length, lm, when considering method 2. The white portion of the

ain (category B) in Fig. 3.b corresponds to the so-called background category. In a categorical

dom field, this term is commonly adopted to identify the category that fills in the space within

ich other categories are distributed. As an example, in geostatistical applications associated

h hydrogeological scenarios, categories are represented by the various lithofacies of a depositional

ironment and the background geomaterial is typically associated with the category characterized

the lowest deposition energy (Carle and Fogg, 1997). In our datasets, we evaluate the mean

gth lA of the category that is not in the background (black regions in Fig. 3.b, associated with

egory A) by averaging over all of the connected sets of A (i) the length of the sides of the bounding

(see green lines in Fig. 3.b) and (ii) the diameter of the inscribed maximal balls (red circles in

. 3.b).

Fig. 4 collects values of GMIX parameters estimated for all the N = 100 synthetic realizations.

e average of the estimates is always satisfactorily close to the corresponding input value. The

an squared relative deviation (MSRD) between input and estimated parameter values is evaluated

r the whole collection of realizations. On the basis of this metric one can note that estimates are

rall more accurate for (i) the parameters of the Gaussian distribution associated with category B

16
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cept for the mean value), that occupies a larger portion of the domain as compared to category

nd (ii) the correlation scale λ̃I obtained via method 2 as compared against its counterpart based

method 1. In light of these results, method 2 is considered for the estimation of λI in the context

the experimental datasets analyzed in Section 4.

Application to experimental scenarios

Microscale geochemical dataset

e first dataset we consider is an original collection of experimental microscale dissolution rate

ps. The dataset is obtained from in-situ and real-time high-resolution measurements of topog-

hy, z(x, y, t), of the {104} crystallographic surface of a calcite sample subject to dissolution in

onized water via AFM imaging.

The spatial distribution of reaction rates, R(x, y, t) [mmol cm−2 s−1], can be obtained from

difference between two topography maps associated with two observation times separated by a

poral interval ∆t as

R(x, y, t) =
z(x, y, t)− z(x, y, t+∆t)

Vm∆t
, (25)

ere Vm = 36.9 cm3mol−1 is calcite molar volume.

Estimates of reaction rates via high resolution imaging techniques such as AFM or VSI provide

arkable insights on the complexity of mechanisms involved in these types of reactions. In this

text, calcite {104} is widely studied due to its abundance in natural environments and to its

h reactivity (Heberling et al., 2010). When exposed to a solution, the crystal surface is affected

a variety of dissolution modes. This results in a marked spatial heterogeneity of the dissolution

e. Such variability can be aptly interpreted through a stochastic characterization (e.g., Fischer

al., 2012; Lüttge et al., 2019). The prevailing dissolution mechanism depends on the distance

17
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m chemical equilibrium. The latter is usually assessed in terms of the solution saturation state

IAP/Ks. Here, IAP = aCa2+ · aCo2−3
is the ion activity product, evaluated as the product of

activities of the species in the solution, and Ks = aCa2+,eq · aCo2−3 ,eq is the solubility product

stant, given by the product of the species activities at equilibrium. It is noted that Ω approaches

ity as the system tends to chemical equilibrium. We perform dissolution experiments in far-from-

ilibrium conditions, i.e., Ω ∈ [0, 0.007] in our setting (Teng, 2004). Within this saturation range,

cite dissolves by nucleation of etch-pits, which may form randomly on the terraces of the crystal

/or in the presence of linear defects in the crystal lattice. For a detailed study of the dependence

the dissolution mode on Ω, we refer to Bouissonnié et al. (2018) and Teng (2004). Details on the

erimental acquisition are provided in Appendix A. Prior to analysis, AFM data often require a

nal processing phase, as reported by Marinello et al. (2010). Following Siena et al. (2021), we

form a preliminary detrend subtracting the best fitting second order polynomial function from the

topography data. This enables us to remove the distortion induced by the AFM scanning and to

ain the fluctuation of calcite topography about its mean, i.e. z′(x, y, t) = z(x, y, t)−⟨z(t)⟩. Fig. 5

lects maps of z′ acquired during the dissolution experiment at constant time intervals ∆t = 13

n. These provide a qualitative appraisal of the temporal evolution of the crystal surface during

reaction. We observe two main topography patterns. These are respectively related to: (i) the

eading of a multilayer (deep) etch-pit (MP) in the bottom left corner; and (ii) the nucleation,

eading and coalescence of several monolayer (shallow) etch-pits (mP) taking place on the terrace.

a consequence, topography maps can be subdivided into two regions, namely Multilayer Region

Terrace Region. These patterns are consistent with published literature analyses regarding

solution in far-from-equilibrium conditions (e.g., Teng, 2004; Bouissonnié et al., 2018).

Similar to Siena et al. (2021), we view the dissolution rate as a random field. We express it as the

of an average dissolution rate, ⟨R(t)⟩ = [⟨z(x, y, t)⟩ − ⟨z(x, y, t+∆t)⟩] /Vm∆t, which is constant
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oss the whole spatial domain of investigation, and a local fluctuation, R′(x, y, t), which provides

ormation about the spatial variability of the reaction rate R(t), i.e., R(x, y, t) = ⟨R(t)⟩+R′(x, y, t).

r statistical analysis is conducted on R′(x, y, t), which is evaluated as

R′(x, y, t) =
z′(x, y, t)− z′(x, y, t+∆t)

Vm∆t
. (26)

Figs. 6.A.a-d depict spatial distributions of R′(x, y, t) resulting from the difference between z′

ps separated by ∆t = 13min. The corresponding sample PDFs of R′ are depicted in Figs. 6.B.

PDFs exhibit a prominent peak at R′ ≈ 0 and a secondary peak for R′ > 0. From a qualitative

ndpoint, these results suggest that all points that belong to the same topography region (either

race or Multilayer) at times ti and ti + ∆t contribute to the highest peak. Otherwise, the

ondary peak is driven by values of rate that are associated with locations that transition from

topography region to the other during the time interval ∆t, following the spreading of the

ltilayer etch pit.

The observed bimodal trait of the sample PDFs of R′(x, y, t) is consistent with an interpretation

ed on the GMIX stochastic framework introduced in Section 2. We denote hereafter as components

nd B those associated with the peak at R′ > 0 and at R′ ≈ 0, respectively.

We compute spatial increments of dissolution rate, ∆R, at various separation distances. Sam-

statistics are evaluated considering omnidirectional increments, with the only exception of the

ection parallel to the AFM acquisition (denoted as x in Fig. 5.e), to avoid spurious correlation

ginated from measurement artifacts. This is consistent with the study of Marinello et al. (2010)

o show that AFM measurements are often affected by stripe noise, i.e., a distortion of the signal

urring along the principal scanning direction. Figs. 6.C.a-d depict sample PDFs of increments

for lags s = 16, 32, 64 dl (dl = 11.7 nm; see Appendix A), encompassing short and large dis-

ces relative to the size of the domain. All of these PDFs share some common features with their

nterparts described in Section 2.2 in the context of the GMIX framework, i.e., they display (i) an
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rall symmetric behavior, (ii) the presence of a dominant peak coupled with lateral peaks, and

) a tendency to change their main traits with lag, denoting a scaling behavior.

The GMIX parameters as well as those associated with the distribution of f∆R are assessed

ording to the procedure detailed in Section 2.3, λI being estimated via method 2. The analytical

mulations of fR′ and f∆R (Eqs. (7) and (21)) obtained upon considering the GMIX parameters

imated at each time are juxtaposed to their sample counterparts in Figs. 6.Ba-d and 6.Ca-d,

ealing a remarkably satisfactory agreement.

The analysis of the GMIX parameters at different times provides insights on the temporal evolution

the mechanisms driving the dissolution reaction. Temporal variations of parameter values are

inly linked to component A of the mixture. This is related to the observation that the area

ociated with category A is subject to higher relative variations than the corresponding one related

category B, with an average variation of ∼ 36% and ∼ 4%, respectively, across the total temporal

dow analyzed. The overall temporal increase of p and λI (Fig. 7.a and Fig. 7.b) reflects a

gressive growth of the area associated with category A. Such increasing trend is consistent with

(approximately) constant horizontal spreading rate, ν, of the MP (see Fig. 7.c) evaluated as

uiz-Agudo and Putnis, 2012)

ν =
1

2
(νac + νob) =

1

2

(
∆lac
∆t

+
∆lob
∆t

)
, (27)

ere νac and νob are the horizontal spreading rate of acute and obtuse steps, respectively. These are

imated as the ratio of ∆li [nm], i.e., the separation distance between etch pit edges at subsequent

es (reported in Fig. 7.d), and the time step ∆t [s]. In our case, we can only evaluate the spreading

e of MP acute steps νac because no obtuse step fall inside the observation window. It can be

ed that the order of magnitude of the results depicted in Fig. 7.c is consistent with existing results

ently documented in the literature (e.g., Guren et al., 2020; Dong et al., 2020).

The mean of both components A and B remains almost constant with time (Fig. 7.e). Otherwise,
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ecreasing temporal trend is observed for the variance of component A, whereas σ2
B remains almost

stant (Fig. 7.f). The documented pattern suggests that values of the second moment associated

h component A progressively becomes more similar to that related to component B. This is also

sistent with the observed temporal dampening of the multimodal behavior displayed by the PDF

R′. This trend is also revealed by an observed temporal decrease for SkR and EκR (not shown).

The temporal evolution of the spatial correlation structure of each component of the mixture is

erred from the analysis of ρm (m = A,B). Fig. 8 depicts the sample spatial correlation associated

h regions A and B. The following common traits can be noted at all times: (i) an oscillating

avior at large separation distances for ρA and (ii) the presence of a nugget effect for both ρA

ρB . We relate the oscillations in ρA to the small number of points separated by large lags for

ion A. Otherwise, the second trait could be attributed to the persisting stripe noise, which might

ecially influence short lags. We consider the exponential with nugget as interpretive model for

. Fig. 8 juxtaposes theoretical ρm values and experimentally-based counterparts. The analytical

mulation enables one to grasp the main features associated with the experimental setting. Fig. 7.g

icts λA and λB versus time. An oscillatory behavior can be noticed, in particular for component

We relate this trend to the dynamics of the monolayer etch-pits nucleating and spreading on the

stal terrace.

Fig. 9 juxtaposes the analytical curves associated with the GMIX correlation function (i.e., ρR =

(⟨∆R2⟩/2σ2
R), ⟨∆R2⟩ being evaluated through Eq. (22)) and excess kurtosis, Eκ∆R (evaluated

king use of Eqs. (22) and (24)), of ∆R to their experimental sample counterparts. Theoretical

tial correlation structures shown in Figs. 9.A.a-d exhibit a satisfactory agreement with their

ple counterparts, discrepancies being mainly visible at time t7 = 52 min, for intermediate lags.

re, we notice that sample PDFs of ∆R evaluated for component A appear to deviate, albeit slightly,

m a Gaussian behavior (not shown). Such a deviation from Gaussianity could also be at the basis
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the imperfect agreement observed between sample and theoretical values of Eκ∆R. Given the

rpose of the current study, we envision to further investigate these elements in future works. In

s context, a candidate modeling approach could rely on considering mixtures of Generalized Sub-

ussian processes. These have been analyzed by, e.g., Riva et al. (2015) and Siena et al. (2020), in

context of systems composed by a single region and include the Gaussian model as a particular

e.

The results obtained here through the GMIX modeling framework are remarkably promising

the interpretation of high resolution geochemical data at the microscale. They show that model

ameters are strictly linked to the temporal evolution of the surface features driving the dissolution

ction.

Permeability dataset

consider a collection of air permeability data acquired by Tidwell and Wilson (1999). Data are

pled on the six faces of a 81 × 74 × 63 cm3 block of Topopah Spring Tuff. Each face extends

oss an area of 30 × 30 cm2 and measurements are collected according to a uniform sampling

d of 36 × 36 points (horizontal resolution ∆ = 0.85 cm). Data collection relies on four air

nipermeameters, each with a given tip-seal (inner minipermeameter radii, r, being r1 = 1.5mm,

= 3.1mm, r3 = 6.3mm, r4 = 12.7mm and outer radii being 2ri (i = 1, 2, 3, 4)). We follow

well and Wilson (1999) and Siena et al. (2012) and consider the inner radius to be representative

the measurement scale associated with the corresponding data. As observed by these authors,

-permeability data, Y = ln k, display a bimodal character that becomes increasingly manifest as

tip-seal size increases. Tidwell and Wilson (1999) attribute this behavior to the nature of the

, where regions of high permeability (henceforth associated with component A of the mixture

del we employ for data interpretation) are associated with pumice fragment, and areas of low
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meability (hereafter associated with component B) are related to the background matrix.

Here, we focus on permeability data collected on face 1 of the block (see Tidwell and Wilson, 1999

Figs. 10.A.a-d for a graphical depiction) and interpret Y ′(x) = Y (x)− ⟨Y ⟩ as a GMIX random

d. Sample PDFs of Y ′ and ∆Y are depicted in Figs. 10.B.a-d and Fig. 10.C.a-d, respectively,

ether with the GMIX-based solution. Note that there is a generally good agreement between the

lytical model for both fY ′ and f∆Y and their sample counterparts.

As shown by Tidwell and Wilson (1999), the increase in the tip-seal radius yields an overall

tial homogenization of the observations. This element is related to the smoothing effect of an

reasing sampling scale on permeability. Boundaries of the pumice clusters become more evident

r increases. Such a trend is fully reflected by the sample PDFs and by the behavior of the GMIX

ameters. We observe a decrease in the proportion parameter, p, with increasing r (Fig. 11.a).

is is mainly related to the observation that increasing r essentially contributes to embed (i.e.,

ogenize) in region B isolated pixels attributed to component A, thus reducing the number

data assigned to category A. As a consequence, the length scale characterizing component A,

, lA, increases with r. This leads to a corresponding increase of the correlation scale of the

icator variable, λI (Fig. 11.b). The progressive homogenization of the sample fields is also seen

be conducive to a decrease for both µA and σ2
A, that tend to approach µB and σ2

B , respectively

g. 11.c and Fig. 11.d).

We investigate the evolution of the spatial correlation of the log-permeability fields associated

h each of the two identified clusters / components upon relying on a exponential model. Modeling

ults are depicted against sample data in Fig. 12. These results suggest that the modeling approach

propose yields an overall satisfactory agreement with available observations. We notice that

ple data exhibit oscillations about zero at large lags. This behavior might be captured by more

plex interpretive model, e.g., nested models entailing a hole effect contribution. While this would
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sibly lead to an increased number of model parameters, a rigorous analysis taking into account

ltiple interpretive models (in a multimodel framework) is beyond the scope of the current study

will be subject of future works. Fig. 11.e depicts the dependence of λm on r. As expected, we

e an increase of the correlation length of both components, following the increase of measurement

le and ensuing spatial smoothing of the field.

Fig. 13.a depicts the sample correlation function, ρY , inferred from the available data and its

lytical counterpart based on the GMIX formulation. These results are complemented by Fig. 13.b

ich depicts the dependence of the experimentally- and modeling- based excess kurtosis of the in-

ments with lag for the four available values of r. An overall good agreement between experimental

analytical results is observed. This strengthens our confidence about the ability of the model to

ture the salient features of the system. One can clearly see that Eκ∆Y increases as s decreases.

short separation distances, values of Eκ∆Y associated with a given lag tend to increase with r.

us, PDFs of increments at short lags are characterized by heavier tails (i.e., they strongly depart

m a Gaussian behavior) as the observation scale r increases. This behavior is consistent with

enhanced importance of the secondary peaks displayed by the PDFs of the increments (see also

s. 10.C) as well as by the observed increase of λI with r.

Conclusions

focus on a stochastic characterization of spatial distributions of hydrogeological and hydrogeo-

mical quantities which views these as multimodal Gaussian random fields. Our work extends

sting formulations (e.g., Lu and Zhang (2002) and references therein) to include in a unique

oretical framework the assessment of the probability distribution of a given quantity of interest

its spatial increments associated with various separation distances (or lags). This enables us to

vide a robust characterization of key features of stochastic random fields which are organized on
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erent scales of heterogeneity across the system. These include (i) a slight to moderate asymme-

in the distribution of the target quantity, Y , resulting from the presence of multiple peaks, and

the occurrence of a dominant peak together with multiple secondary peaks in the distribution

increments ∆Y . The relative importance of these peaks tends to vary with the lag at which

rements of Y are taken across the system giving rise to observable scaling behaviors of the PDF

∆Y . We focus on the particular case of a bimodal Gaussian mixture, whose modes are identified

ough an indicator random field. The latter is related to the length scale governing the spatial

angement of zones/regions within which the quantity of interest is randomly distributed. The

sence of such regions can be linked to the occurrence of different processes and/or geomaterials

hin the domain of observation. Each component of the mixture is then characterized by a given

gth scale driving the spatial correlation of its values and spatial increments within each zone.

this sense, our theoretical framework enables one to infer distributions of quantities of interest

ough a joint analysis of data about values of the target quantity and its increments to ensures

sistency between these two sets of observations. We propose a general procedure to estimate

model parameters, which includes partitioning the domain into the two components of the mix-

e, A and B. The robustness of the proposed methodology is assessed through extensive tests

a collection of synthetically generated random fields. The modeling framework is then applied

interpret two experimental datasets associated with different windows of observation. The first

aset is typical of geochemical applications and comprises an original collection of microscale re-

ion rate maps evaluated at various temporal instants from AFM topography measurements of the

face of a calcite crystal subject to dissolution. The second dataset is a collection of (Darcy-scale)

-permeability data acquired by Tidwell and Wilson (1999) on a block of volcanic tuff through

nipermeameters associated with various measurement scales.

Our analysis yields the following key conclusions.
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1. The analytical expression of the PDF of spatial increments, ∆Y , of variables, Y , following a

GMIX model displays a symmetric behavior, with a central dominant peak and two secondary

peaks. The relative importance of these changes with the separation distance, hence reflecting

a clear scaling behavior. This is also documented by the trend of the kurtosis of ∆Y , Eκ∆Y ,

which increases as separation distance decreases.

2. The GMIX model captures the main traits exhibited by both experimental datasets considered.

A satisfactory agreement is also observed between sample and analytical statistical moments

associated with the increments (i.e., correlation function and excess kurtosis) at different lags.

This is particularly evident for the permeability dataset. Otherwise, for the microscale geo-

chemical dataset we observe some discrepancies between sample and modeled values for a

specific range of separation distances. Here, we notice that sample PDFs of increments of reac-

tion rates (∆R) evaluated for component A appear to show slight deviations from a Gaussian

behavior. These deviations could also be at the basis of the imperfect agreement observed

between sample and theoretical values of Eκ∆R.

3. Analysis of the temporal behavior of the GMIX parameters provides quantitative insights on

the experimental scenarios analyzed. In the case of the microscale geochemical dataset, the

temporal behavior of the model parameters is seen to be closely related to the evolution of

the observed dissolution patterns. Having at our disposal a tool capable of encapsulating the

dynamics of the physical mechanisms taking place at the solid-liquid interface within a robust

theoretical framework that can provide a joint accurate description of the statistics of the

variable and its increments can be beneficial to transfer information to other spatial scales.

Our analysis of Darcy scale permeabilities suggests that the trend of the GMIX parameters

can also be related to the characteristic length scale associated with the observations. Here,

the documented behavior of the model parameters reflects the main features associated with
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the increase of a characteristic length of the measuring device that gives rise, in turn, to data

smoothing and homogenization.

As detailed in Section 1, several key environmental variables driving contaminant fate and trans-

t are documented to exhibit non-Gaussian features (even as monitored within the same geoma-

ial/cluster). While Gaussianity of the quantities associated with each cluster is an underlying

othesis of the GMIX theoretical framework, we envision to extend our work to mixtures of Gen-

lized sub-Gaussian fields. Such fields have been introduced by Riva et al. (2015) in the context

systems composed by a single cluster and include the Gaussian model as a particular case. Ad-

ional elements for future research include (a) the assessment of the uncertainty associated with

asurement errors of AFM topography and the way these might affect dissolution rate estimates

/or (b) the exploration of candidate alternatives to be employed in the context of the clustering

orithm, which is a key aspect of the parameter inference framework. In this context, a candidate

ernative methodology could rest on a Bayes classifier, which also provides an estimate of the level

uncertainty associated with the data partitioning.
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cher, C., Arvidson, R. S., and Lüttge, A. (2012). How predictable are dissolution rates of crys-

alline material? Geochimica et Cosmochimica Acta, 98:177–185.

cher, C., Kurganskaya, I., Schäfer, T., and Lüttge, A. (2014). Variability of crystal surface

eactivity: What do we know? Applied Geochemistry, 43:132–157.

urnelos, T., Kotinas, V., and Poulos, S. (2020). Fitting a Gaussian mixture model to bivariate

istributions of monthly river flows and suspended sediments. Journal of Hydrology, 590:125166.

adagnini, A., Neuman, S. P., Nan, T., Riva, M., and Winter, C. L. (2015). Scalable statistics

f correlated random variables and extremes applied to deep borehole porosities. Hydrology and

arth System Sciences, 19(2):729–745.

adagnini, A., P.Neuman, S., M.G.Schaap, and Riva, M. (2013). Anisotropic statistical scaling

f vadose zone hydraulic property estimates near maricopa, arizona. Water Resources Research,

9:8463–8479.

adagnini, A., P.Neuman, S., M.G.Schaap, and Riva, M. (2014). Anisotropic statistical scaling

f soil and sediment texture in a stratified deep vadose zone near maricopa, arizona. Geoderma,

14-215:217–227.

adagnini, A., Riva, M., and Neuman, S. P. (2018). Recent advances in scalable non-Gaussian

eostatistics: The generalized sub-Gaussian model. Journal of Hydrology, 562:685–691.

ren, M. G., Putnis, C. V., Montes-Hernandez, G., King, H. E., and Renard, F. (2020). Direct

maging of coupled dissolution-precipitation and growth processes on calcite exposed to chromium-

ich fluids. Chemical Geology, 552:119770.

berling, F., Trainor, T., Lützenkirchen, J., Eng, P., Denecke, M., and Bosbach, D. (2010). Struc-

29



Journal Pre-proof

t634

3635

Jia636

s637

Jou638

A639

Li,640

s641

E642

Liu643

h644

Lu645

W646

Lü647

k648
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Appendix

employ an AFM (Keysight 5500 apparatus) in contact mode, equipped with silicon tips (Bruker,

SPA-40) and with an Al-coated cantilever (elastic constant k = 5N/m) to sample the evolution

time of the topography of the crystal surface. The calcite sample (volume V ∼ 5 × 3 × 1 mm3)

leaved from an Iceland spar (Mexico) along the {104} plane using a razor blade. The calcite

gment is placed on a glass slide and subsequently fluxed with nitrogen to remove any remains from

cleavage process. The slide is then secured on the AFM support and a Viton O-ring is centered on

sample to seal the cell volume (∼ 2mL). A portion of the crystal surface (6× 6 µm2) is imaged

h a constant scan frequency (1.41Hz, scan time: 6min) along a 512 × 512 uniform grid, with

orizontal resolution of 11.7 nm. We only consider scans in the top-down direction (Figure 5.e),

pping the acquisition between each imaging frame for ∼ 0.5min. Therefore, each topography

age is obtained within a temporal window of width ∆ta = 6.5min. Note that in Section 4.1 we

luate dissolution rate maps across a temporal window ∆t = 2∆ta = 13min. This enables us to

ect a significant variation of the area associated with component A, yielding a robust assessment

incremental data and model parameters therein.

The cell is open to air on the top and is filled with the solution (deionized Milli-Q water

2MΩ·cm). A system of synchronized syringes is connected to the cell. This allows a complete

stitution of the fluid in contact with the sample. A volume of 3mL (∼ 1.5 times the volume of

cell) of solution is replaced in the temporal interval between two consecutive frames. This yields

proximately) constant chemical conditions during the whole data acquisition, as documented by

constant spreading rate of the multilayer etch-pit (Fig. 7.d).
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cronyms

M Atomic Force Microscopy

F probability density function

F cumulative distribution function

IX Gaussian mixture

I Vertical Scanning Interferometry

Maximum Likelihood

G Generalized Sub-Gaussian
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ure 1: (a) Probability density functions (PDFs), fY (y), of the GMIX model evaluated according

Eq. (7) for µA = 2.5, µB = 0.5, σ2
A = 0.15, σ2

B = 0.05, and four values of p. The associated (b)

an, µY , and skewness, SkY ; (c) variance, σ2
Y , and excess kurtosis, EκY , are also depicted as a

ction of p. Empty circles in (b)-(c) correspond to statistical moments associated with the PDFs

icted in (a).
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ure 2: (a) Probability density functions (PDFs) of increments, f∆Y (∆y), evaluated according to

GMIX model Eq. (21) for µA = 2.5, µB = 0.5, σ2
A = 0.15, σ2

B = 0.05, p = 0.2, λA = λB = 6

λI = 6.4, at four values of the dimensionless lags, s/λI . The (b) variogram, γY and (c) excess

tosis, Eκ∆Y , are also depicted versus s/λI for four values of p. Empty circles in (b)-(c) correspond

the statistical moments associated with the PDFs depicted in (a).
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A unique framework for Gaussian Mixtures (GMIX) and their increments is derived

Probability distributions of GMIX increments scale with separation distance

A GMIX parameter estimation method is developed and tested

The GMIX model captures the main traits exhibited by hydrogeochemical datasets

Temporal trends of GMIX parameters reflect dynamics of mineral dissolution patterns
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