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BACKBONE OF BALLISTIC CAPTURE SET

Gianmario Merisio∗, and Francesco Topputo†

Currently, deep-space missions strongly rely on ground-based operations. Al-
though reliable, ground slots will saturate soon, hampering current momentum in
space exploration. EXTREMA, a project awarded an ERC Consolidator Grant in
2019, enables self-driving spacecraft, challenging the current paradigm and aiming
at autonomously engineering ballistic capture. Deep-space GNC applied in a com-
plex scenario is its subject. The paper defines the backbone of a ballistic capture
set and presents a methodology based on Lagrangian descriptors for its derivation.
Orbits belonging to capture sets up to C10

−1 are inferred from the backbone. The
method constitutes a block of the autonomous ballistic capture algorithm.

INTRODUCTION

The space sector is experiencing flourishing growth and evidence is mounting that the near future

will be characterized by a large amount of deep-space missions.1–3 In the last decade, CubeSats

have granted affordable access to space due to their reduced manufacturing costs compared to tra-

ditional missions. At the present-day, most miniaturized spacecraft have thus far been deployed

into near-Earth orbits, but soon a multitude of interplanetary CubeSats will be employed for deep-

space missions as well. However, the current paradigm for deep-space missions strongly relies on

ground-based operations. Although reliable, this approach will rapidly cause saturation of ground

slots, hampering the current momentum in space exploration.

EXTREMA (Engineering Extremely Rare Events in Astrodynamics for Deep-Space Missions

in Autonomy) enables self-driving spacecraft, challenging the current paradigm under which space-

craft are piloted in the interplanetary space.4, 5 Deep-space guidance, navigation, and control (GNC)

applied in a complex scenario is the subject of EXTREMA. Among others, the project aims to engi-

neer ballistic capture in a totally autonomous fashion. EXTREMA is erected on three pillars. Pillar

1 is about autonomous navigation.6–8 Pillar 2 concerns autonomous guidance and control.9, 10 Pillar

3 deals with autonomous ballistic capture,11–13 the focus of this work. The project has been awarded

a European Research Council (ERC) Consolidator Grant in 2019.

Ballistic capture allows a spacecraft to approach a planet and enter a temporary orbit about it with-

out requiring maneuvers in between.14–16 The mechanism is suited for limited-control platforms,

which cannot afford to enter into orbits about a planet because of the lack of proper means.11–13

In Pillar 3, the spacecraft assumed already in deep space has to acquire ballistic capture at Mars

autonomously and without relying on any information provided from the ground. The challenge

is to develop and validate an algorithm compatible with the onboard resources. In this work, the

backbone of a capture set is introduced and the methodology for its derivation is presented. The

methodology constitutes a required building block of the autonomous ballistic capture algorithm.13
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Table 1. Spacecraft parameters for SRP evaluation.21

Parameter Unit Value

Mass–SRP area ratio m/A kgm−2 75

Coefficient of reflectivity Cr - 1.3

BACKGROUND

Dynamics

Following the nomenclature in Reference 15, a target and a primary are defined. The target is

the body around which the ballistic capture is studied. The primary is the main body around which

the target revolves. Target and primary masses are mt and mp, respectively. The mass ratio of the

system is μ = mt/(mt +mp). In this work, Mars is the target and the Sun is primary.

Reference frames. The following reference frames are used: J2000, and RPF.

J2000. Defined on Earth’s mean equator and equinox, J2000 is an inertial frame determined from

observations of planetary motions, which was realized to coincide almost exactly with the Interna-

tional Celestial Reference Frame (ICRF).17 The J2000 inertial frame (also known as EMEJ2000) is

built-in in SPICE.18, 19 In SPICE, the ICRF and J2000 frames are considered the same. The origin

of the J2000 can be chosen arbitrarily.

RTN@ti. The radial-tangential-normal of date frame (RTN@ti) is an inertial frame frozen at a

prescribed epoch ti. The frame is centered at the target. The x-axis is aligned with the primary–

secondary direction, the z-axis is normal to the primary–secondary plane in the direction of their

angular momentum, and the y-axis completes the dextral orthonormal triad.

Ephemerides. The precise states of the Sun and the major planets are retrieved from the Jet

Propulsion Laboratory (JPL)’s planetary ephemerides de440s.bsp∗ (or DE440s).20 Addition-

ally, the ephemerides mar097.bsp of Mars (the target) and its moons are employed†. Unless

otherwise specified, the following generic leap seconds kernel (LSK) and planetary constant kernel

(PCK) were used: naif0012.tls, pck00010.tpc, and gm_de440.tpc‡.

Equations of motion. The Equations of motion (EoM) of the restricted n-body problem are con-

sidered. Unless otherwise specified, the gravitational attractions of the Sun, Mercury, Venus, Earth

(B§), Mars (central body), Jupiter (B), Saturn (B), Uranus (B), and Neptune (B) are taken into ac-

count. Additionally, solar radiation pressure (SRP) is also included in the model. The assumed

spacecraft parameters needed to evaluate the SRP perturbation are collected in Table 1. They are

compatible with the parameters of a 12U deep-space CubeSat.21 EoM are integrated in the J2000

inertial frame.

∗Data publicly available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/
planets/de440s.bsp [retrieved Jan 5, 2023].

†~/spk/satellites/mar097.bsp [retrieved Jan 5, 2023].
‡Data publicly available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/

lsk/naif0012.tls, and ~/generic_kernels/pck/pck00010.tpc [retrieved Jan 5, 2023]. The

gm_de440.tpc PCK kernel was written from scratch, courtesy of Dr. C. Giordano, because the version consis-

tent with ephemerides DE440s is not released yet.
§Here B stands for barycenter.
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Table 2. First set of nondimensionalization units.

Unit Symbol Value Comment

Gravity parameter M̄U 42828.376 km3 s−2 Mars’ gravity parameter μt

Length L̄U 1.085772×106 km Mars–L2,�♂ distance

Time T̄U 5.466913×106 s (L̄U
3
/M̄U)0.5

Velocity V̄U 1.986079×10−1 kms−1 L̄U/T̄U

Table 3. Second set of nondimensionalization units.

Unit Symbol Value Comment

Gravity parameter MU 42828.376 km3 s−2 Mars’ gravity parameter μt

Length LU 3396.0000 km Mars’ radius R♂
Time TU 956.28142 s (LU3/MU)0.5

Velocity VU 3.5512558 kms−1 LU/TU

The EoM in a non-rotating Mars-centered reference frame are15, 22, 23

r̈ =−μt

r3
r−∑

i∈P
μi

(
ri

r3
i
+

r− ri

‖r− ri‖3

)
+

QA
m

r− r�
‖r− r�‖3

(1)

where μt is the gravitational parameter of the target body (i. e., Mars in this work); r and ṙ =
v are the position and velocity vectors of the spacecraft with respect to the target, respectively,

being r and v their magnitudes; P is a set of n−2 indexes (where n concerns the n-body problem)

each one referring to the perturbing bodies; μi and ri are the gravitational parameter and position

vector of the i-th body with respect to the target, respectively; A is the Sun-projected area on the

spacecraft for SRP evaluation; m is the spacecraft mass; r� is the position vector of the Sun with

respect to the target. Then, Q = LCr/(4πc) where Cr is the spacecraft coefficient of reflectivity,

c = 299792458ms−1 (from SPICE18, 19) is the speed of light in vacuum, and L = S�4πd2
AU is the

luminosity of the Sun. The latter is computed from the solar constant∗ S� = 1367.5Wm−2 evaluated

at distance dAU = 1AU.

Numerical propagation. The EoM in Eq. (1) are integrated with the GRATIS24 in their nondi-

mensional form to avoid ill-conditioning.15 Normalization units are reported in Table 2. A second

set of normalization units is used in plots for visualization purposes (see Table 3). Numerical inte-

gration is carried out with the Dormand–Prince 8th-order embedded Runge–Kutta (DOPRI8) propa-

gation scheme,25 also known as RK8(7)13M. This is an adaptive step, 8th-order Runge–Kutta (RK)

integrator with 7th-order error control. Coefficients were derived by Prince and Dormand.26 The

dynamics are propagated with relative and absolute tolerances both set to 10−12 (see Reference 15).

Ballistic capture

Ballistic capture allows a spacecraft to approach a planet and enter a temporary orbit about it

without requiring maneuvers in between. As part of the low-energy transfers, it is a valuable alter-

native to Keplerian approaches. Exploiting ballistic capture (BC) grants several benefits in terms of

∗https://extapps.ksc.nasa.gov/Reliability/Documents/Preferred_Practices/2301.
pdf [last accessed Jan 5, 2023].
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both cost reduction27 and mission versatility,14, 28 in general at the cost of longer transfer times.29, 30

In the past, the BC mechanism was used to rescue Hiten,31 and to design insertion trajectories in

lunar missions like SMART-132 and GRAIL.33 In the near future, BepiColombo will exploit BC or-

bits to be weakly captured by Mercury.34, 35 BC is an extremely rare event16 and requires acquiring

a proper state far away from the target planet.14

BC orbits are characterized by initial conditions (ICs) escaping the target when integrated back-

ward and performing n revolutions about it when propagated forward, neither impacting or escaping

the target. In forward time, particles flying on BC orbits approach the target coming from outside its

sphere of influence (SOI) and remain temporarily captured about it. After a certain time, the particle

escapes if an energy dissipation mechanism does not take place. To make the capture permanent,

either a breaking maneuver or the target atmosphere (if available) could be used.36, 37

When searching for BC opportunities, most of the trajectories found are spurious solutions typ-

ically not useful for mission design purposes.15 Practical solutions are detected via the regularity

index∗ S and regularity coefficient ΔS%.39 The aim is seeking for ideal orbits that present regular

post-capture legs resulting in n revolutions about the target similar in both orientation and shape.

Numerical experiments showed that high-quality, post-capture orbits are associated to small reg-

ularity index and coefficient.15, 16, 38, 39 Capture occurrence is quantitatively measured through the

capture ratio RC .16 Typically, search spaces characterized by a large capture ratio are desirable

when looking for BC orbits.

Weak stability boundary. Over the years, the weak stability boundary (WSB) was defined in

several different ways. It was initially identified as a fuzzy boundary region placed at approximately

1.5×106 km from the Earth in the Sun–Earth direction.31, 40 An algorithmic definition followed

in,41 later extended in References 42–44. Then, it was interpreted as the intersection of three sub-

sets of the phase space.45, 46 The WSB being closely connected to BC,41 a formal definition and

a methodology for its derivation from weakly stable and unstable sets were finally proposed in

Reference 47. The fascinating idea of extending the WSB concept to the interstellar space including

dark matter was discussed in Reference.48 To date, despite the effort put in numerous works (see

References 42, 45, 46, 49, 50), both WSB and BC are still not completely understood. Nonetheless,

a connection between celestial and quantum mechanics was recently found exploiting the WSB,51

providing a fresh perspective to tackle the problem.

Definition of particle stability. A particle stability is inferred using a plane in the 3-dimensional

physical space.27 According to the spatial stability definition provided in Reference 15. The fol-

lowing indications are used to classify stability (see Reference 15 for more details): 1) a particle

completes a revolution around the target according to Remark 1 and Eq. (5) in Reference 15; 2) a

particle escapes from the target according to Remark 2 and Eq. (6) in Reference 15; 3) a particle

impacts with the target according to Remark 3 and Eq. (7) in Reference 15. Variants of Eq. (7) in

Reference 15 can be derived to locate impacts with target’s moons.

Based on its dynamical behavior, a propagated trajectory is said to be: i) weakly stable (sub-set

Wi) if the particle performs i complete revolutions around the target without escaping or impacting

with it or its moons; ii) unstable (sub-set Xi) if the particle escapes from the target before com-

pleting the ith revolution; iii) target–crash (sub-set Ki) if the particle impacts with the target before

∗In previous works, this was referred to as stability index.15, 16, 38 However, the adjustment from stability to regu-
larity index was proposed in Reference 39 to avoid misunderstandings with the periodic orbit stability index. The same

nomenclature introduced in Reference 39 is used in this paper.
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completing the ith revolution; iv) moon–crash (sub-set Mi) if the particle impacts with one of the

target’s moons before completing the ith revolution; v) acrobatic (sub-set Di) if none of the pre-

vious conditions occurs within the integration time span. Conditions ii)-v) apply after the particle

performs (i− 1) revolutions around the target. The sub-sets are defined for i ∈ Z\{0}, where the

sign of i informs on the propagation direction. When i > 0 (i < 0) the IC is propagated forward

(backward) in time. The overall domain, union of all sub-sets, is defined Ω. A capture set is defined

as Cn
−1 :=Wn ∩X−1. Therefore, it is the intersection between the stable set in forward time Wn and

the unstable set in backward time X−1.15

Design of ballistic capture orbits. Currently, two approaches are known for designing BC orbits:

the technique stemmed from invariant manifolds,49, 52 and the method based on stable sets manip-

ulation.15, 47 The former gives insights into the dynamics but it is only applicable to autonomous

systems akin to the circular restricted three-body problem (CR3BP), while the latter can be applied

to more representative, non-autonomous models, although being computationally expensive.16, 43

Lately, the variational theory for Lagrangian coherent structures (LCSs),53, 54 and the Taylor differ-

ential algebra55 were applied to derive BC orbits and the WSB more efficiently.56, 57

Lagrangian descriptors

Lagrangian descriptors (LDs) are a heuristic technique for revealing the underlying template of

geometrical structures that determine transport in phase space for a generic dynamical system.58

They are based on the integration of a bounded, positive property of the trajectory over a finite

horizon. The first definition of LDs relied on the computation of the arc length of particle trajectories

as they evolve forward and backward in time.59 Later, the method was extended to include other

positive quantities. The methodology found several applications in different scientific areas, such

as ocean currents, atmospheric sciences, and chemistry.58, 59

LDs provide insight that appears to be linked with the the geometric pattern of structures that

govern transport in phase space. Their definition and heuristic arguments explaining why they are

effective are presented in Reference 58. A theoretical framework is discussed in Reference 60.

However, the connection between LDs and geometric patterns governing the transport in phase

space is controversial and largely disputed in the literature. Indeed, LDs are not derived from math-

ematically well defined variational principles, thus their relation to invariant manifolds is unclear

and mathematically not well defined.54, 61 Moreover, LDs are not objective, i. e., structures resulting

from the scalar field depend on the frame of the observer, whereas material curves such as periodic

orbits are frame-indifferent.62, 63 Finally, counter-examples to the method of Lagrangian descriptors

are discussed in the literature.62

Let’s consider a general time-dependent vector field on R
n

dx(t)
dt

= f(x, t), with x ∈ R
n, and t ∈ R. (2)

Assuming the velocity field Cr (r ≥ 1) in x and continuous in t, a unique solution allowing for lin-

earization exists. Given the initial time t0 and the integration time span [t0−τ, t0+τ], the Euclidean

arc length M̃ of the curve in the phase space defined by propagating x(t0) = x0 through Eq. (2) is58

M̃(x0, t0,τ) =
∫ t0+τ

t0−τ

√
n

∑
i=1

(dxi(t)
dt

)2

dt =
∫ t0+τ

t0−τ
‖f(x, t)‖dt. (3)
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Table 4. Class of LDs with integrand and norm.58, 60

LD |F(x(t))| Integrand description Norm

M1 ‖v(t)‖ Magnitude of velocity L1

M2 ‖a(t)‖ Magnitude of acceleration L1

M3.1 ‖v(t)‖ Magnitude of velocity L1/2

M3.2 ‖a(t)‖ Magnitude of acceleration L1/2

M4 ‖ȧ(t)‖ Magnitude of acceleration derivative L1

M5 (|κ|+a)−1 Positive quantity related to curvature† L1

M6 ‖x(t)‖ Magnitude of space state L1

M7 ‖x(t)‖ Magnitude of space state L1/2

M8

n
∑

i=1
|xi(t)|p Sum of p-root terms‡ Lp

†
With κ =

(v ·v)(a ·a)− (v ·a)2

v3
and 1 ≤ a ≤ 5 to avoid singularities.58

‡
It is suggested to choose p = 1/τ (see Reference 60).

Results depend on the finite horizon chosen. M̃ can be computed appending its integrand to the

space state equations with a zero initial value and propagating the extended dynamics. Trajectories

propagated from close ICs remaining close as they evolve in time are expected to have similar M̃.58

Differently, abrupt changes in the field are associated to separatrices of the dynamics. Such features

are expected to exhibit a discontinuity in the derivative of M̃ along the direction perpendicular to

the separatrix.58, 60

There exist other positive intrinsic physical or geometrical properties of trajectories that can be

integrated to successfully identify geometric patterns. The general formulation is58

⎧⎪⎪⎨
⎪⎪⎩

M(x0, t0,τ) =
∫ t0+τ

t0−τ
|F(x(t))|γdt for γ ≤ 1

M(x0, t0,τ) =
(∫ t0+τ

t0−τ
|F(x(t))|γdt

) 1
γ

for γ > 1

(4)

where γ defines the Lγ norm of the integrand. An extensive class of different LDs was defined in

Reference 58 based on the integrand, the selected norm, and the integration interval (see Table 4).

The definition of any function Mi can be broken in a natural way into forward and backward inte-

gration to obtain LDs M f
i and Mb

i , respectively. The forward propagation should highlight stable

manifolds of the dynamical system, while the backward one recovers unstable ones.64 Their com-

bination is capable to detect all invariant manifolds simultaneously. A key property common to

all LDs is that they monotonically increase along a trajectory. Indeed, they are integrals of posi-

tive quantities. Being a heuristic approach, similarly to the finite-time Lyapunov exponent (FTLE),

there is the possibility that they may fail in identifying LCSs correctly. This due to the lack of

mathematical proofs providing necessary and/or sufficient conditions supporting LCSs existence.

STATEMENT OF THE PROBLEM

The backbone of a capture set is defined as the locus of points in a capture set C1
−1 also belonging

to Cn�1
−1 . This means that ICs constituting the backbone are expected to perform at least more than

one (preferably many) revolution about the target planet. The advantage of the backbone is that it is
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computed on the capture set C1
−1. This avoid propagating ICs for large final forward times typical

of orbits belonging to capture sets featuring large revolution numbers n. Essentially, interesting

capture solutions are inferred from the dynamical information obtained on a short finite horizon, so

making the technique suitable for implementation on board spacecraft with limited resources akin

to autonomous interplanetary CubeSats. The problem faced in this work can be stated as:

Problem. Find the locus of points in a capture set C1
−1 also belonging to capture sets Cn�1

−1 . In

particular, such locus of points is named backbone of the capture set and it is of interest because

made of initial conditions performing many revolutions about the central body. A backbone is

required to contain solutions belonging at least to capture sets Cn≥5
−1 .

Firstly, a methodology to derive a backbone must be developed. Secondly, according to the goal

set in the problem statement, a backbone is required to contain solutions belonging to capture sets

completing more than 5 revolutions.

METHODOLOGY

The approach to tackle the problem follows: 1) definition of LDs integrands suitable for astrody-

namics purposes and computed over different forward and backward horizons; 2) computation of

stationary points on several 1-dimensional sections of the forward LD scalar field propagated over

a finite horizon comparable with weakly-stable set W1 and with constant initial pericenter radii rp0;

3) construction of the backbone as the parametric curve of stationary points computed at step 2;

4) inference of capture set Cn�1
−1 from the backbone computed at step 3. In step 1, techniques ca-

pable of extracting dynamical insight about the system under study are exploited. This because the

backbone must embed the qualitative long-term behavior of the sought Cn�1
−1 capture orbits.

Step 2 is heuristically justified in what follows. From the literature, abrupt changes in LD scalar

fields are known to be separatrices for the dynamics.58, 60 Conversely, smooth islands in the scalar

field appear to feature solutions with similar qualitative behavior. Our claim is that stationary points

in 1-dimensional sections of a LD field correspond to solutions where the qualitative behavior is

preserved if longer finite horizons are considered. Therefore, stationary points are thought to be-

have in the opposite way of abrupt changes. Consequently, they identify phase space locations

where trajectories are more prone to retain their dynamical nature over time. To some extent, such

trajectories are expected to be more robust as well.

Speaking of the problem at hand, not all stationary points of a 1-dimensional LD section are of in-

terest. Indeed, only those confined within capture sets by the WSB are useful for the backbone com-

putation. By assumption, the backbone is constructed interpolating a sequence of stationary points

computed in the appropriate place of the phase space. Consequently, the backbone results being a

curve expected to preserve its qualitative behavior on the long-term, so even over extended horizons.

An educated initial guess granting the backbone confinement within a capture set is required for the

success of the procedure. Once a sequence of stationary points computed on 1-dimensional LD

sections is obtained, the backbone is derived in step 3 as a parametric curve interpolating the same

stationary points. In step 4, ICs belonging to capture sets Cn�1
−1 are inferred sampling the backbone.

Eventually, the performance of the method is assessed. LDs suitable for astrodynamics purposes

and the backbone construction are explored in what follows.
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Table 5. Finite horizons.

Subset Finite horizon

Time [days]

∼W1 τ1 304.11

∼W2 τ2 447.76

∼W3 τ3 597.21

∼W4 τ4 729.39

∼W5 τ5 893.21

∼W6 τ6 1023.82

∼X−1 τ−1 228.68

Lagrangian descriptors suitable for astrodynamics

Several LD integrands are proposed in References 58,60 and reported in Table 4. However, alter-

native integrand definitions could be specified to address the specific needs of the problem at hand.

Two integrands suitable for astrodynamics problems are introduced for this purpose. The first is a

LD based on the Keplerian energy of the spacecraft with respect to the target body (i. e., Mars). This

is named∗ M9. The second descriptor, called M10, considers a metric derived from the spacecraft

angular momentum even in this case referred to the target body. In mathematical means, they are

M9(x0, t0,τb,τ f ) =
∫ t0

t0−τb

∣∣∣v2

2
− μt

r

∣∣∣1/τb
dt +

∫ t0+τ f

t0

∣∣∣v2

2
− μt

r

∣∣∣1/τ f
dt (5)

M10(x0, t0,τb,τ f ) =
∫ t0+τ f

t0−τb

‖r×v‖1/2dt (6)

where x = [r
v
]
 is the state variable; r and v are the magnitudes of position vector r and veloc-

ity vector v, respectively; μt is the gravitational parameter of the central body; τb and τ f are the

backward and forward finite horizons, respectively.

The choice of backward and forward finite horizons is key. In fact, extremely short finite hori-

zons preclude revealing the underlying dynamical template of geometrical structures, so concealing

transport patterns in the phase space.60 Conversely, unreasonably lengthy horizons furnish exces-

sive information to process, thereby jeopardizing the method and leading to undesired outcomes.

The finite horizon choice being critical, a preliminary study is carried out to identify proper time

spans for the LD scalar fields propagation. As a result, backward and forward horizons are selected

as the escape time and aggregate revolution periods, respectively, of a reference capture orbit.

The reference orbit is that belonging to C6
−1 and exhibiting minimum regularity coefficient ΔS%

out of 1×103 trajectories computed: at capture epoch t0 set to December 9, 2023 at 12:00:00.00

(UTC), so maximizing Rc;16 with orbital plane defined by inclination and right ascension of the

ascending node (RAAN) imposed to i0 = Ω0 = 0.2π rad, so maximizing Mars’ capture ratio (see

Figure 10 in Reference 16); setting osculating eccentricity e0 = 0.99;14 imposing true anomaly

θ0 = 0deg (i. e., assumed at pericenter); assuming constant initial pericenter radius rp0 = 2.1LU;

sampling 1×103 arguments of pericenter in the range [230, 260]deg.

∗Subscripts are assigned in continuity with those used in Table 4.
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Figure 1. Energy based LD field M9(τ−1,τ6). Finite horizon comparable to capture
set C6

−1. Initial time epoch t0 set to December 9, 2023 at 12:00:00.00 (UTC). Nondimen-
sional coordinates on the orbital plane i0 =Ω0 = 0.2π rad defined in the Mars-centered
RTN@t0 frame. Mars represented in black. Features of LD field resemble the typical
shape of capture sets. Separatrices of the phase space recognized as abrupt changes.

The resulting reference capture orbit is not representative of the whole capture sets Cn
−1 with

n = 1, . . . , 6. In fact, BC orbits generally manifest different times of flight both for pre- and post-

capture legs as detailed in Reference 57 and addressed in References 56, 65. Nevertheless, the

reference capture orbit is representative at least of those trajectories exhibiting high post-capture

regularity and performing a close approach to Mars at an approximate distance of 2.1 LU. These

are the most interesting solutions from operational perspectives.

Forward and backward finite horizons associated to the reference capture orbit are collected in

Table 5. Each finite horizon is representative of a subset whose propagation time span is comparable

to that of the chosen finite horizon itself. An example LD scalar field is propagated over a finite

horizon comparable to capture set C6
−1, so using τb = τ−1 and τ f = τ6. For notation purposes, a LD

scalar field is defined as Mi(τb,τ f ) := {Mi(x0, t0,τb,τ f )|(x0, t0)∈Π}, where Π is the set of ICs. LD

field M9(τ−1,τ6) is shown in Figure 1 in Cartesian coordinates, while it is represented in Figure 2

using Keplerian elements. Patterns in Figure 1 resemble the usual shape of capture sets. Differently,

dynamical features highlighted in Figure 2 mirror capture sets as plotted in Reference 57.
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Figure 2. Energy based LD field M9(τ−1,τ6). Finite horizon comparable to capture
set C6

−1. Initial time epoch t0 set to December 9, 2023 at 12:00:00.00 (UTC). Radius of
pericenter rp0 and argument of pericenter ω0 at capture epoch t0. Mars represented
in black. Features of LD field resemble the shape of capture sets when represented as
in Reference 57. Separatrices of the phase space recognized as abrupt changes.

Backbone construction

The selected LD is propagated over the finite horizon (τb,τ f ) = (0,τ1), so for a time span com-

parable to revolution periods for weakly-stable set W1. Stationary points ω∗
0 are searched between

separatrices isolating weakly-stable orbits and on 1-dimensional sections along the initial argument

of pericenter ω0 at fixed initial pericenter radius rp0. They are computed with the MATLAB R©’s

fminunc routine implementing a quasi-Newton optimization algorithm∗. The optimization is per-

formed with central finite differences, optimality tolerance set to 10−6, and step tolerance equal to

10−10. An initial guess ωG
0 is used to initialize the procedure. After getting the first stationary point

ω∗
0 , next points are computed solving optimization problems for increasing values of rp0 by steps of

Δrp0. New initial guesses are set equal to the last stationary point ω∗
0 computed, so numerically con-

tinuing the sequence. Once the desired range of Mars distances is covered (i. e., enough stationary

points are computed), the backbone is built as a parametric variational cubic spline curve†.66

∗Visit https://www.mathworks.com/help/optim/ug/fminunc.html and https://www.
mathworks.com/help/optim/ug/choosing-the-algorithm.html for additional details [last accessed

Jan 5, 2023].
†For this purpose, MATLAB R©’s cscvn routine is used, https://www.mathworks.com/help/curvefit/

cscvn.html [last accessed Jan 5, 2023].
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RESULTS

The backbone of the capture set C1
−1 is herewith constructed. Specifically, the backbone lying in

the capture set portion developing into the interior subcorridor.11 The backbone is computed after

selecting what appears to be the most suited LD.

Lagrangian descriptor selection

The selection is carried out studying the trends of several 1-dimensional LD sections propagated

over different finite horizons. The investigation is performed fixing the initial pericenter radius

rp0 = 2.1LU and letting the initial argument of pericenter ω0 vary in [230, 260]deg. The selected fi-

nite horizons are (τb,τ f )= (0,τ1) and (τb,τ f )= (0,τ6), therefore those comparable to weakly-stable

sets W1 and W6, respectively. Gradients along ω0 computed with central finite differences are an-

alyzed as well.67 In Figure 3, trends for LDs specified in References 58, 60 are shown. Those for

astrodynamics LDs are plotted in Figure 4. Both trends (i. e., blue curves on left y-axes) and gradi-

ents (i. e., red curves on right y-axes) are normalized to their maximum values for a fair comparison.

As expected, dynamical features (e. g., abrupt changes, edges) are not completely developed yet in

Figures 3(a) and 4(a). This because of the integration interval being insufficiently long.60 LD trends

are smooth and no remarkable discontinuities are detected in the gradients. Contrarily, many abrupt

changes in the field and related discontinuities in the gradients are detected in Figures 3(b) and 4(b).

Among the investigated descriptors, the Keplerian energy based LD M9 is preferred over other

options for the following reasons. Firstly, M9 seems extremely smooth when propagated on short

horizons. This is a desirable property when solving optimization problems searching for station-

ary points. Unfortunately, some dynamical insight is lost due to the excessively short propagation

interval, which is translated to accuracy loss in determining the exact backbone location. Hope-

fully, capture sets Cn�1
−1 can be still inferred from an approximation of the real backbone. Secondly,

M9 stationary points are expected to detect the phase space region featuring BC orbits with similar

energetic behavior. Thirdly, a unique stationary point (i. e., a maximum) is visually detected∗ at

ω0 ≈ 250deg, hence close to where the capture set branch developing the interior subcorridor is lo-

cated.11 Previous claims are confirmed by plots in Figure 5 where M9 sections are inspected against

subsets W , X , K, D, and C. In fact, variations in the selected LD field does not match exactly the

WSB (i. e., separatrices between sets). Nevertheless, the stationary point is correctly found within

capture sets C1
−1 and C6

−1 (i. e., light green background). The stationary point (i. e., dashed vertical

line) shifts to the left from Figure 5(a) to Figure 5(b), thereby proving the loss of dynamical in-

sight for excessively short finite horizons. Nevertheless, the backbone can still be constructed even

though some dynamical insight is lost.

Backbone

The backbone is built as a curve of stationary points computed on 1-dimensional sections of the

Lagrangian descriptor M9. They are computed on a finite horizon comparable to the revolution

period of C1
−1 orbits. Before actually derive the backbone, some preliminary tests are performed to

assure the effectiveness of the methodology. Specifically, 9 stationary points at various distances

from Mars are computed with MATLAB R©’s fminunc routine. In the peculiar problem under

analysis, stationary points are maxima of 1-dimensional LD sections (see Figure 5). Consequently,

∗Over finite horizon (τb,τ f ) = (0,τ1), so ∼W1, this is true also for LDs M3.2, M7, and M8.
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Figure 3. Study of 1-dimensional LD sections at constant initial pericenter radius
rp0 = 2.1LU. LDs defined by authors in Reference 58. LDs Mi (in blue, left y-axis) and
gradients ∂Mi/∂ω0 (in red, right y-axis) as a function of initial argument of pericenter
ω0, with i = {1,2,3.1,3.2,5,6,7,8}. LDs Mi and gradients ∂Mi/∂ω0 both normalized
to their maximum values. Dynamical features are more developed for longer finite
horizons.
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Figure 4. Study of 1-dimensional LD sections at constant initial pericenter radius
rp0 = 2.1LU. Astrodynamics based LDs. LDs Mi (in blue, left y-axis) and gradients
∂Mi/∂ω0 (in red, right y-axis) as a function of initial argument of pericenter ω0, with
i = {9,10}. LDs Mi and gradients ∂Mi/∂ω0 both normalized to their maximum val-
ues. Dynamical features are more developed for longer finite horizons.
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the cost function is defined as f (ω0) = −Mi(rp0,ω0,τb,τ f ) with rp0 fixed, tb = 0 and τ f = τ1, so

transforming stationary points into minima.

Results are shown in Figure 6, where the performance of LD M9 is compared to that of M8. LD M8

is examined in contrast because of its proved capability of highlighting dynamical features thanks to

the clever choice of setting the integrand exponent p = 1/τ (see Table 4).60 In Figure 6, stationary

points are marked as colored vertical dashed lines. Sections cover distances from 2 LU up to 6 LU.

Both descriptors M8 and M9 decrease for larger distances from the target. At all distances, edges are

not completely developed because of the short finite horizon chosen. However, limiting the finite

horizon speeds up propagations of LDs and consequently the solution of the optimization problem.

Descriptor M9 behaves consistently across the various sections, remaining smooth and preserving

its trend, see Figure 6(b). On the contrary, descriptor M8 changes trend at large distances, so making

difficult the computation of the stationary point. Remarkably, stationary points exceed the WSB for

sections at rp0 = 5.5LU and 6.0LU.

Eventually, starting from the 1-dimensional section at rp0 = 2.1LU, a sequence of Nopt = 25 op-

timization problems is solved for increasing rp0 values by steps of Δrp0 = 1×103 km. Distances up

to ≈ 9.2LU are covered. The resulting backbone is presented in Figure 7. Scalar fields M9(τ−1,τ1)
and M9(τ−1,τ6) are plotted in the background of Figures 7(a), 7(c) and Figures 7(b), 7(d), respec-

tively. Results in Figures 7(a), 7(b) and Figures 7(c), 7(d) are represented on the ω0rp0-plane and

ξ0η0-plane, respectively. The former are the initial Keplerian elements in the RTN@t0 frame, while

the latter are the Cartesian coordinates on the orbital plane defined by inclination and RAAN set to

i0 = Ω0 = 0.2π rad.

In all four plots, the backbone remains confined by separatrices visible in the fields. This confirms

how the dynamical information revealed by stationary points obtained over short finite horizons

(i. e., ∼W1) embeds insight on the long-term qualitative behavior of capture orbits. ICs belonging

to the backbone preserve their dynamical peculiarities even after more than 3 times the time span

considered to construct the backbone (i. e., τ6 ≈ 3.4τ1, see Table 5). Despite the additional effort in

solving the sequence of optimization problems to get the stationary points, supplementary dynam-

ical knowledge about the future evolution of the system is extracted from LD fields propagated on

relatively short finite horizons. Therefore, clues on capture sets Cn�1
−1 are supposedly inferable from

the backbone.

Performance analysis

A performance analysis is carried out to asses whether useful dynamical knowledge about Cn�1
−1

could be inferred or not from a backbone. Specifically, 103 ICs are uniformly sampled along the

backbone constructed. Then, ICs are classified with GRATIS24 into capture sets from C1
−1 up to

C10
−1. The results in terms of absolute and relative number of BC orbits out of the whole sample are

shown in Table 6. The totality of ICs belong to C2
−1, more than the 30% is classified into C6

−1, and

almost the 20% is part of capture set C10
−1.

Capture set C5
−1 is studied in detail because of the goal set in the problem statement about inferring

orbits classified into Cn≥5
−1 . Post-capture legs, and subcorridor Š5

−1 up to t0−600 days are propagated

from the set of ICs sampled on the backbone and belonging to C5
−1. They are plotted in their entirety

in Figure 8, while a magnification close to Mars’ SOI is proposed in Figure 9. From the three views

in Figure 8, the subcorridor Š5
−1 (in light blue) appears much larger than that in Reference 11.

Remarkably, the sample of ICs loses its capture properties starting from large distances with respect
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Figure 6. Stationary points ω∗
0 of 1-dimensional LD sections evaluated at various

initial pericenter radii rp0. Stationary points marked as colored dashed vertical lines.
Color code shown in the legend. Envelope of stationary points drawn as dashed black
line. Finite horizon (τb,τ f ) = (0,τ1), so comparable to weakly-stable set W1.
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Figure 7. Backbone (black solid line) inspected against energy based LD scalar fields
M9(τ−1,τ f ) for two values of τ f and two coordinate sets. Mars represented as black
rectangle (on top) and black circle (on bottom). Stationary points marked as empty
black circles. Backbone lies within regions confined by dynamic separatrices (abrupt
changes) featured by LD fields propagated over both short (∼ C1

−1) and long (∼ C6
−1)

finite horizons. Backbone starting from rp0 = 2.1LU, with Npnt = 25 points by steps of
Δrp0 = 103km.
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Table 6. Backbone performance. Analysis carried out sampling 103 backbone ICs.

Capture set Cn
−1 Capture orbits

Revolutions n Number Percentage

1 1000 100.0%

2 1000 100.0%

3 678 67.8%

4 446 44.6%

5 433 43.3%

6 337 33.7%

7 313 31.3%

8 304 30.4%

9 253 25.3%

10 199 19.9%

to the target. The most useful orbits from operational perspectives (i. e., those closely approaching

Mars) retain the required dynamical behavior even on the long-term, thereby granting capture and

successfully completing several revolutions about Mars.

CONCLUSION

The method presented in this paper is an alternative approach to present-day practices for de-

signing BC orbits. The devised procedure leverages on the novel concept of capture set backbone

from which ICs belonging to Cn�1
−1 are inferred. Construction of the backbone is made possible by

exploiting the dynamical information embedded within LDs propagated on a short finite horizon.

The knowledge extracted from metrics propagated over time intervals comparable to the revolution

period typical of weakly-stable orbits in W1 is proved sufficient to deduce the location in the phase

space of ICs performing several revolutions about Mars. The computationally demanding problem

of designing orbits granting long-term temporary capture is unburden by maximizing the descriptor

M9 on selected 1-dimensional sections at constant initial pericenter radius, provided that the opti-

mization is carried out within phase space regions bounded by the WSB. This novel design method

being computationally light, it could potentially see implementation on board of autonomous, inter-

planetary CubeSats.
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