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Abstract
In this work, a Multi-Objective Evolutionary Algorithm (MOEA) is developed to identify Functional Dependencies (FDEPs) 
in Complex Technical Infrastructures (CTIs) from alarm data. The objectives of the search are the maximization of a measure 
of novelty, which drives the exploration of the solution space avoiding to get trapped in local optima, and of a measure of 
dependency among alarms, which drives the uncovering of functional dependencies. The main contribution of the work is 
the direct identification of patterns of dependent alarms; this avoids going through the preliminary step of mining associa-
tion rules, as typically done by state-of-the-art methods which, however, fail to identify rare functional dependencies due to 
the need of setting a balanced minimum occurrence threshold. The proposed framework for FDEPs identification is applied 
to a synthetic alarm database generated by a simulated CTI model and to a real large-scale database of alarms collected at 
the CTI of CERN (European Organization for Nuclear Research). The obtained results show that the framework enables the 
thorough exploration of the solution space and captures also rare functional dependencies.

Keywords  Complex technical infrastructures · Functional dependencies · Alarm data · Abnormal behaviours · Multi-
objective evolutionary algorithm · Genetic algorithm · Novelty search · Particle accelerator

Abbreviations
CERN	� European Organization for Nuclear Research
LHC	� Large Hadron Collider
ARM	� Association Rule Mining
EA	� Evolutionary Algorithm
GA	� Genetic Algorithm
MOEA	� Multi-Objective Evolutionary Algorithm
CTI	� Complex Technical Infrastructure
FDEPs	� Functional Dependencies

List of symbols
Nc	� Number of CTI components
cj	� Generic j-th component

a
kj

i
	� Alarm associated to the k-th malfunction of 

the j-th component
Mal

i
	� Number of types of alarm messages triggered 

by the j-th component
Mal	� Total number of types of alarm messages
A = {a

kj

i
}	� Set of all possible alarm types

Nal	� Total number of alarm messages collected in 
the database

[t0,tf]	� Time domain during which the Nal alarm mes-
sages of the database have been collected

Z	� Number of time intervals in which the time 
domain [t0,tf] is subdivided

Δt	� Time interval length
ak
j
(z)	� Boolean variable associated to the occurrence 

of the alarm
a
kj

j
	� In the z-th time interval

c⃗j(z)	� Vector of size Mal
j

 indicating the state of the 
j-th component in the z-th time interval

T⃗(z)	� Vector of size Mal indicating the state of the 
CTI in the z-th time interval

T	� Matrix of size [Z × Mal] representing the evolu-
tion of the CTI state in the time domain [t0,tf]

X	� Pattern of alarms
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n(X)	� Number of time intervals in which at least all 
the alarms of X occur

S(X)	� Support of X
P(X)	� Probability of occurrence of X
Xfp	� Frequent pattern of alarms
s%	� Minimum support
�k
j
	� Transition rate of component j out of state k

XFDEP	� Pattern of dependent alarms
IFDEP	� Metric of dependency

1  Introduction

The identification of Functional Dependencies (FDEPs) in 
Complex Technical Infrastructures (CTIs) has gained inter-
est in the last years (Billinton and Allan 1992; Zio 2016; 
Serio et al. 2018; Rebello et al. 2018; Hickford et al. 2018; 
Antonello et al. 2019; Cantelmi et al. 2021). Given the CTIs 
complexity and evolutionary behaviour, the identification 
of FDEPs by classical methods of system decomposition 
and logic analysis is quite unattainable (Zio 2016; Rebello 
et al. 2018).

In small- and medium-scale systems, functionally 
dependent components or dependent abnormal behaviours 
are typically identified by analysing the system structure and 
the functional logic, considering design information and 
theoretical operation scenarios (Zio 2007).

For CTIs, some works have recently emphasized the 
importance of the identification of functionally dependent 
components or abnormal behaviours, which are typically 
unknown. General guidelines and conceptual definitions 
have been provided in Zio (2016). In this context, data-
driven methods for the identification of FEDPs in CTIs 
using alarm data have been developed (Serio et al. 2018; 
Antonello et al. 2019; Antonello et al. 2021a). They are 
based on the application of the Association Rule Mining 
(ARM) (Agrawal  and Imieliński 1993; Srikant and Agrawal 
1996; Witten and Frank 2016) algorithm for scanning the 
alarm databases and identifying associations among patterns 
of alarms in the form of “if (antecedent) then (consequent)” 
rules; from these, the FDEPs are derived. Specifically, Apri-
ori-based algorithms employ a level-wise iterative search 
mechanism, which scans the database to identify “frequent” 
patterns, and drives the search for other “frequent” patterns 
which contain the alarms of those patterns previously iden-
tified (Srikant and Agrawal 1996). A pattern is considered 
only if its frequency of occurrence is larger than a prede-
fined threshold, called minimum support. Once a group of 
functionally dependent components has been identified, 
the causal chains of malfunctions can be obtained resort-
ing to the knowledge of operators and experts of the CTI or 
by applying algorithms ad hoc developed to this aim. For 

example, a modified version of the quicksort algorithm has 
been developed in Antonello et al. (2020a) for the identifica-
tion of the causal sequence of malfunctions from the proba-
bilistic analysis of the temporal sequences of the alarms.

A main challenge in the application of the Apriori-based 
algorithms to alarm databases is the difficulty of identify-
ing rare FDEPs, which are typically unknown and can be 
actually the most relevant for CTI vulnerability (Wang et al. 
2000; Kim and Yun 2016; Zio 2016; Antonello et al. 2021a). 
Their identification typically requires the use of a small 
value for the minimum support threshold, which renders the 
search computationally unaffordable (Lin and Tseng 2006; 
Wulandari et al. 2019) and leads to the generation of a very 
large set of rules, which are not strongly supported and hard 
to analyse for discovering vulnerabilities in the CTI (Marin 
et al. 2008; Zhang et al. 2013). As a consequence, a rela-
tively large value of minimum support threshold is employed 
at the risk of (i) not identifying rare patterns of alarms and 
(ii) extracting somewhat trivial association rules, which are 
already known to the CTI operators (Antonello et al. 2021a).

Multi-Objective Evolutionary Algorithms (MOEAs) have 
been recently proposed to directly identify association rules, 
also rare ones, eliminating the intermediate step of frequent-
pattern mining and the related setting a minimum support 
threshold (Yan et al. 2009; Mukhopadhyay et al. 2014; Bad-
hon et al. 2019). MOEAs are meta-heuristic approaches 
inspired by the laws of biological evolution, based on opera-
tions such as selection, recombination and mutation. The 
application of MOEAs for rule mining requires to evolve 
a population of candidate association rules according to 
properly defined rule metrics (Mukhopadhyay et al. 2014; 
Badhon et al. 2019). A limitation of the use of MOEAs for 
rule mining is the tendency of converging toward one or a 
limited set of optimal solutions, even though ARM appli-
cations usually require the identification of all the relevant 
rules (Martín et al. 2016).

Specific to the context of FDEPs identification in CTIs, 
an analyst is interested in identifying all the FDEPs influ-
encing the CTI vulnerability (Antonello et al. 2021a). Thus, 
multiple solutions should be identified during the search 
and maintained in the population for effectively exploring 
the solution space and preventing premature convergence to 
local optima. In Antonello et al. (2020c), a MOEA has been 
developed for the identification of FDEPs in CTIs, employ-
ing the novelty search proposed in Lehman and Stanley 
(2011) to drive the exploration of the solutions space with-
out being trapped in local optima. The novelty search drives 
the selective pressure to favour diversification in the popula-
tion by dynamically rewarding the chromosomes based on 
their novelty with respect to other chromosomes, instead of 
rewarding them considering static fitness functions (Gomes 
et al 2017). While the approach allows the identification of 
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rare FDEPs in CTIs Antonello et al. (2021d), the following 
issues still need to be resolved:

(a)	 The MOEA tends to identify several rules including 
“spurious” alarms that have occurred by chance with 
other alarms, even if they do not belong to real FDEPs. 
Notice that the identification of patterns with spuri-
ous alarms can lead to possible errors when modelling 
FDEPs and cascading failures (Antonello et al. 2021c).

(b)	 The MOEA identifies several association rules derived 
by the same FDEP but differing for the combination of 
alarms in the antecedent and consequent parts. Consid-
ering a FDEP involving R alarms, the number of asso-
ciation rules which can be generated is  3R − 2R+1 + 1 
(Del Jesus et al. 2011). Thus, when large alarm data-
bases are considered, thousands (or tens of thousand) 
of associations rules are typically generated and, then, 
have to be post-processed to identify the relevant 
FDEPs, leading to a very large computational burden.

The present work extends the MOEA proposed in 
Antonello et al. (2020b) to address the above-mentioned 
issues. To this aim, the recently proposed metric of depend-
ency (Antonello et al. 2021c), which has been shown to dis-
criminate rules with spurious alarms from rules describing 
actual FDEPs (Antonello et al. 2021c), is used as fitness 
function within the MOEA search.

The main contributions of the proposed method are

•	 It allows discovering patterns of dependent alarms, with-
out the preliminary step of identifying association rules;

•	 It allows discovering rare FDEPs and is robust with 
respect to spurious alarms occurring by chance at the 
same time of other real alarms;

•	 It incorporates for the first time in the MOEA the metric 
of dependency proposed in Antonello et al. (2020c); and

•	 It significantly reduces the computational burden required 
for the identification of rare FDEPs with respect to the 
Apriori-based algorithms.

The effectiveness of the proposed method is shown by 
means of its application to (i) an artificial case study, which 
mimics the complexity of a real CTI, and (ii) a real large-
scale database of alarms generated by different supervision 
systems of the CTI of CERN, where a 27-km-perimeter ring 
particle accelerator composed by thousands of components 
is located.

The remainder of the paper is organized as follows: 
Sect. 2 describes the problem setting and the considered 
alarm database representation. In Sect. 3, the proposed 
MOEA is described. Section 4 introduces the case studies 
and discusses the obtained results. Finally, Sect. 5 draws 
some conclusions.

2 � Problem setting

2.1 � Alarm data representation

We consider a CTI formed by a large number of compo-
nents, Nc ≫ 1 , and a database containing a large number 
of alarm messages,Nal >> 1 , generated by the CTI during 
a long period of time [ t0, tf  ]. The types of alarms associ-
ated to the generic j-th component, cj , are Mal

j
, and the total 

number of types of alarm messages is Mal =
∑Nc

j=1
Mal

j
 . The 

label akj
j
 refers to the kj-th type of alarm message associ-

a t e d  t o  t h e  j - t h  c o m p o n e n t  a n d 

A =

{
a1
1
,… , a

Mal
1

1
,… , a1

j
,… , a

Mal
j

j
,… , a1

Nc
,… a

Mal
Nc

Nc

}
 is the 

set of all the types of alarm messages.
Alarm messages are generated when the monitored sig-

nals exceed pre-set thresholds and are stored in the alarm 
message database (Fig. 1 a). The overall time interval 
[ t0, tf  ] is subdivided into Z consecutive small time inter-
vals of the same length Δt = tf−t0

Z
 (Fig. 1 (b)). A Boolean 

variable, skj
j
(z) , is associated to the occurrence of an alarm 

of type akj
j
 generated by component cj  in the z-th time 

interval:

and the state of the CTI during the generic z-th time interval 
is represented by the Boolean vector:

Finally, the database of alarms (ti,mi), i = 1,… ,Nal , is 
transformed into the Boolean matrix (Fig. 1 (b)):

whose generic z-th row represents the state of the CTI dur-
ing the z-th time interval. Therefore, T provides a dynamic 
representation of the CTI state evolution in the time interval 
[ t0, tf ].

2.2 � Functional dependency (FDEP)

Two components are considered functionally dependent if 
the operation of one is influenced by the operation of the 

(1)s
kj

j
(z) =

⎧⎪⎨⎪⎩

1 if alarma
kj

j
occurs at least once in

[t0 + (z − 1) ⋅ Δt, t0 + zΔt]

0 otherwise

,

(2)�⃗T(z) =

⎡⎢⎢⎣
s1
1
(z),… , s

Mal
1

1
(z),… , s1

j
(z),…

… , s1
Nc
(z),… s

Mal
Nc

Nc
(z)

⎤⎥⎥⎦
∈ [0, 1]M

al

.

(3)T =

⎡⎢⎢⎣

�⃗T(1)

…

�⃗T(Z)

⎤⎥⎥⎦
∈ [0, 1]Z×M

al

,
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other (Etesami and Kiyavash  2017). In particular, consid-
ering alarm messages, which are typically triggered when 
components have abnormal behaviours or malfunctions, 
we assume that there is a FDEP among two components 
of a CTI, c1 and c2 , if a malfunction of component c1 , 
revealed by an alarm,ak1

1
 , causes a malfunction of com-

ponents c2 , revealed by another alarm,ak2
2

 , or vice versa. 
This definition of FDEP assumes that the CTI monitoring 
system can detect all possible component malfunctions by 
measuring the proper physical quantities. In practice, some 
physical quantities related to rare or unknown component 
malfunctions are not monitored. As a consequence, FDEPs 
containing malfunctions not properly monitored cannot be 
identified by the analysis of the alarm messages.

2.3 � A metric for the identification of FDEPs 
from alarm databases

Considering a generic pattern of R ≤ Mal alarms, 
X =

{
x1,… , xj,… , xMal

}
⊆ A , the degree of dependency 

among the alarms xj ∈ X , where xj = a
kj

j
 , for the sake of 

notation simplicity, can be assessed using the metric 
(Antonello et al. 2021c):

where � is a parameter defined in the interval [0, 1] . The 
metric is based on the definition of functional dependency 
according to which the probability of occurrence of a pattern 
of R functionally dependent alarms, XFDEP =

{
ak

1

j1
,… , ak

R

jR

}
, 

is

and, therefore, the ratio

(4)IFDEP(X) =

⎧⎪⎨⎪⎩

P(X)∏
xj∈X

P(xj)
if P(X)� ⋅maxxj∈X

�
P
�
xj
��

0 otherwise

,

(5)P
(
XFDEP

)
> P(ak

1

j1
) ∙⋯ ∙ P(ak

R

jR
),

Fig. 1   a alarm messages generation and collection, b subdivision of the overall time interval [ t0, tf  ] into consecutive small time intervals, c rep-
resentation of the alarm database using a Boolean matrix
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is larger than 1. The condition P(X) > 𝛼 ∙ maxakr
jr
∈X

(
P
(
ak

r

jr

))
 , 

where max
a
kj

j
∈X

(
P
(
a
kj

j

))
 is the largest probability of occur-

rence among the probabilities of occurrence of the alarms 
of X , is motivated by the need of eliminating spurious 
alarms from the patterns. It derives from the following 
considerations:

(a)	 given a pattern of functionally dependent alarms, 
XFDEP =

{
ak

1

j1
,… , ak

R

jR

}
⊆ A , the probability of occur-

rence of any alarm P(akr
jr
) , r = 1,… , R, can be decom-

posed into the sum of two contributions:

where PXFDEP
(ak

r

jr
) and PInd(a

kr

jr
) are the probabilities that 

ak
r

jr
 occurs due to the FDEP and due to an event inde-

pendent of the FDEP, respectively (Mosleh 1991; Zio 
2009; O'Connor and Mosleh 2016);

(b)	 the probability of occurrence of a generic alarm akr
jr

 due 
to a rare FDEP, PXFDEP

(ak
r

jr
), is expected to be close to 

the probability of occurrence of the whole pattern 
involved in the FDEP,P(XFDEP) ∶PXFDEP

(ak
r

jr
) ≅ P(XFDEP);

(c)	 the probability of occurrence of the pattern, P(XFDEP), 
is expected to be larger than the probability of co-
occurrence (by chance) of any alarm akr

jr
 of the pattern, 

r = 1,… , R, and a spurious (independent) alarm aks
js
, 

P
(
XFDEP

)
> P(ak

r

jr
) ∙ P(ak

s

js
).

Therefore, the necessary condition for a generic pattern 
of alarms,X =

{
ak

1

j1
,… , ak

R

jR

}
⊆ A , to be functionally 

dependent is that the probability of occurrence of the pat-
tern,P(X) , is greater than a fraction � ∈ [0, 1] of the probabil-
ity of occurrence,P(akr

jr
) , of each alarm,akr

jr
 , of the pattern 

(Antonello et al. 2021c):

The setting of parameter � should consider the trade-off 
between the desiderata of identifying rare FDEPs, which are 
among the most interesting for CTI vulnerability analysis 
(Wang et al. 2000; Lee et al. 2005; Antonello et al. 2021c) 
and excluding spurious alarms. Considering Eq. 10, the use 
of a large � value would drive the search to discover fre-
quent FDEPs, with the associated risk of not identifying 
rare FDEPs. On the opposite, some spurious patterns can be 
identified as actual FDEPs using small values of � . In this 
work, the parameter � is set equal to the value of 0.03, which 

(6)IXFDEP
=

P
�
XFDEP

�
∏R

r=1
P(ak

r

jr
)
,

(7)P(ak
r

jr
) = PXFDEP

(ak
r

jr
) + PInd(a

kr

jr
),

(8)P(X) > 𝛼 ∙ P(ak
r

jr
),∀ak

r

jr
∈ X.

has allowed the identification of rare FDEPs in two different 
CTIs (Antonello et al. 2020c). Also, the analysis reported in 
the same work shows that no spurious alarms are identified 
using values of � in the range [0.01; 0.08].

Notice that the probability of occurrence of a generic pat-
tern X =

{
ak

1

j1
,… , ak

R

jR

}
 can be estimated from the alarm 

database using its support:

where n(X) is the counter of the number of vectors �⃗T(z) of 

the database T =

⎡
⎢⎢⎣

�⃗T(1)

…

�⃗T(Z)

⎤
⎥⎥⎦
 characterized by the occurrences 

of at least all the alarms of the pattern X (i.e. 
∀xj ⊂ X, sj(z) = 1 ). Therefore, Eq. 4 becomes

2.4 � Work objective

The objective of this work is the development of a method 
for the identification of FDEPs which satisfy the defini-
tion given in Sect. 2.3 using the alarm data introduced in 
Sect. 2.1.

3 � Method

The problem described in Sect. 2 is addressed by develop-
ing a MOEA. Section 3.1 describes the encoding–decod-
ing procedure adopted for representing FDEPs by means of 
chromosomes, Sect. 3.2 introduces the novelty search-based 
MOEA and Sect. 3.3 illustrates the search objectives, initial 
population and genetic operators (Sect. 3.3).

3.1 � Chromosomes

A pattern of alarms is represented by a Boolean chromosome 
encoded in a vector of Mal bits, where each bit is associated 
to a specific alarm and is equal to 1 (0) when the correspond-
ing alarm is present (is not present) in the pattern Del Jesus 
et al. (2011), Mukhopadhyay et al. (2014), Badhon et al. 
(2019). Figure 2 gives an example of chromosome decoding.

3.2 � Novelty Search

The key idea of novelty search is to reward the divergence of 
a chromosome from those already in the population, instead 
of only considering the performance as evaluated by the 
chromosomes fitness functions (Lehman and Stanley 2011). 

(9)S(X) = n(X),

(10)IFDEP(X)

�
S(X)∏

xj∈X
P(xj)

if S(X)� ⋅maxxj∈X

�
S
�
xj
��

0 otherwise
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In practice, the uniqueness of a chromosome with respect to 
the rest of the population is evaluated introducing a metric of 
novelty, which measures the sparseness of the search space 
in correspondence of the chromosome as its average distance 
to the other chromosomes of the population. For a generic 
chromosome, indi , the metric of novelty is

where dist is a domain-dependent measure of the distance 
among chromosomes. The Jaccard distance distJ , which 
has been shown to be effective in evaluating sparseness in 
pattern mining and Association Rule Mining applications 
(Tummala et al. 2018), is used here to evaluate the distance 
between a pair of chromosomes indi and indj

where | | refers to the cardinality of the pattern of alarms, i.e. 
the number of alarms contained in the pattern. Notice that, 
if the patterns Xi and Xj are identical, i.e. involve the same 
pattern of alarms, distJ

(
indi, indj

)
 is equal to zero, other-

wise, if the two patterns do not share any common alarm, 
distJ

(
indi, indj

)
 is equal to 1. This metric favours the iden-

tification of novel patterns and allows comprehensively 
exploring the solution space by putting a constant evolution-
ary pressure on the search, but, at the same time, preserves 
unique and novel chromosomes (Lehman and Stanley 2011; 
Gomes et al. 2017).

3.3 � MOEA algorithm

We use a Genetic Algorithm (GA) due to its straightfor-
ward principles, its simplicity of implementation and 
the fact that it has been already successfully applied to 
ARM and to other pattern mining problems (Anand et al. 

(11)Novelty
(
indi

)
=

1

Npop

∑
j≠i

dist(indi, indj),

(12)distJ
(
indi, indj

)
= distJ(Xi,Xj) =

|||Xi∪Xj
||| −

|||Xi∩Xj
|||

|||Xi∪Xj
|||

,

2009; Badhon et al. 2019). As in Gomes et al. (2017), 
Antonello et al. (2020c), we combine novelty search and 
traditional fitness functions in the NSGA-II MOEA (Deb 
2000), which is considered the most effective optimization 
algorithm for multi-objective rule mining. In this work, 
the objectives of the MOEA search are the maximization 
of (1) the novelty measure defined by Eq. (11), (2) the 
measure of dependency IFDEP and (3) the support metric. 
Given the inclination of IFDEP to favour rare patterns of 
alarms, as shown in Antonello et al. (2021c), the use of the 
support as third fitness function is needed for identifying 
frequent FDEPs as well. The combined use of these three 
objectives allows identifying patterns of dependent alarms 
while deeply exploring the solution space and avoiding 
premature convergence in local optima.

When one-bit genes are employed, the initialization of the 
population using sub-optimal chromosomes characterized by 
a limited number of one-bit genes equal to 1 can facilitate 
the GA convergence, as shown in the context of features 
selection problems (Baraldi et al. 2016) and association 
rules identification (Del Jesus et al. 2011; Antonello et al. 
2020b). In this work, the initial population of chromosomes 
is created considering all the possible patterns, X′

, made 
of 2 alarms ( |X�| = 2 ) which verify Eq. (8), and therefore, 
whose metric of dependency,IFDEP

(
X�
)
 , is larger than 0. 

Then, according to Antonello et al. (2020), we select the best 
Npop chromosomes following the NSGA-II algorithm to set 
the initial population. This is consistent with the objective 
of the search, which is the identification of FDEPs, given 
that by selecting only the patterns which satisfy Eq. (8), we 
a priori discard the patterns made of 2 alarms which do not 
belong to FDEPs.

As suggested by Del Jesus et al. (2011), Mukhopadhyay 
et al. (2014) in case of standard binary chromosomes, stand-
ard genetic operators and an evolution algorithm based on 
a traditional GA with two-point crossover and flip mutation 
are used. Furthermore, we avoid the presence of identical 
chromosomes in the population to favour population diver-
sity (Antonello et al. 2020b).

Fig. 2   Example of chromosome 
encoding/decoding
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4 � Case studies

The proposed method is applied to a synthetic database of 
alarms generated by simulating the behaviour of a CTI and 
to a database of real alarms generated by the technical infra-
structure of CERN during one year of operation.

4.1 � Synthetic alarm database

We consider the alarm database of (Antonello et al. 2021b). 
It contains the alarm messages generated by the simulation 
of a CTI formed by Nc=300 components, each of which can 
be in five mutually exclusive and exhaustive states 
D ∈ {1, 2, 3, 4, 5} corresponding to healthy ( D = 1), partially 
degraded ( D = 2) , degraded ( D = 4) , very degraded ( D = 4) 
and failed ( D = 5) conditions. A generic component 
cj, j = 1,… ,Nc , performs transitions among the states at 
exponentially distributed random times. Table 1 reports the 
constant transition rates among the different states. The 

alarm a1
j
, j = 1,… ,Nc, is triggered when component cj per-

forms the transition from D =2 to D =3 and the alarm a2
j
 

when it performs the transition from D =3 to D=4, whereas 
all the other transitions do not generate alarms.

We further assume the existence of seven different FDEPs 
(Table 2) among CTI components. They are originated by 
the transition from state 2 (‘partially degraded’) to state 3 
(‘degraded’) of a component, which can cause the transition 
of an ordered sequence of components from state 4 to state 
5. The probability of propagation of the functional depend-
encies from a component to the successive one of the chain 

is reported in Table 2. Notice that functional dependencies 
No 6 and No 7 are the rarest, since their initiation depends 
on the failure of components characterized by low prob-
abilities of failure.

The CTI behaviour has been simulated for a period of 
time [ t0, tf ] = [0, 365 days] during which 172,225 alarm 
messages reporting Mal = 600 different types of malfunc-
tions have been generated by the 300 CTI components. 
The fifth column of Table 2 reports the number of occur-
rences of the overall sequences of dependent alarms, 
which range from 8 to 119. The entire time domain of 
the analysis is discretized into Z = 8760 time intervals of 
length Δt = 60 min. As reported in the last column, this 
setting of Δt guarantees that the whole sequence of alarms 
occurs into a single time step in a significant fraction of 
times (Antonello et al. 2021a). The last column of Table 2 
reports the number of occurrences in the database of the 
chain of alarms in a single time interval of 60 min. As 
expected, the whole chain of alarms occurs in a single 

Table 1   Transition rates (hours−1)

Component 
cj

Transition rates

j = 1,… , 100 �1→2

j
 = 0.5 �2→3

j
 = 0.05 �3→4

j
 = 0.07 �4→5

j
 = 0.03

�2→1

j
 = 0.5 �3→2

j
 = 0.01 �4→3

j
 = 0.03 �5→1

j
 = 0.2

j = 101,… , 200 �1→2

j
 = 0.2 �2→3

j
 = 0.007 �3→4

j
 = 0.01 �4→5

j
 = 0.05

�2→1

j
 = 0.2 �3→2

j
 = 0.01 �4→3

j
 = 0.04 �5→1

j
 = 0.2

j = 201,… , 300 �1→2

j
 = 0.1 �2→3

j
 = 0.004 �3→4

j
 = 0.04 �4→5

j
 = 0.001

�2→1

j
 = 0.1 �3→2

j
 = 0.01 �4→3

j
 = 0.04 �5→1

j
 = 0.2

Table 2   Simulated FDEPs

No Involved components Trigged alarms Probability 
of Propaga-
tion

Number of occurrences of 
the overall sequence in the 
simulated database

Number of occurrences of 
the overall sequence in the 
simulated database in a single 
time interval

1 c
1,1, c2,1 , c3,1 c4,1 , c5,1 , c6,1 , c7,1 
c
8,1 , c9,1 , c10,1

a1
1,1

→ a2
2,1

→ a2
3,1

→a2
4,1

→

a2
5,1

→ a2
6,1

→a2
7,1

→

a2
8,1

→ a2
9,1

→ a2
10,1

0.9 119 113

2 c
1,2, c2,2 , c3,2 c4,2 , c5,2 , c6,2 , c7,2 
c
8,2 , c9,2 , c10,2

a1
1,2

→ a2
2,2

→ a2
3,2

→a2
4,2

→

a2
5,2

→ a2
6,2

→a2
7,2

→

a2
8,2

→ a2
9,2

→ a2
10,2

0.9 41 37

3 c
1,3, c2,3 , c3,3 c4,3 , c5,3 , c6,3 , c7,3 
c
8,3 , c9,3 , c10,3

a1
1,3

→ a2
2,3

→ a2
3,3

→a2
4,3

→

a2
5,3

→ a2
6,3

→a2
7,3

→

a2
8,3

→ a2
9,3

→ a2
10,3

0.9 15 13

4 c
11,1, c12,1 , c13,1 , c11,2 , c12,2
,c
13,2 , c11,3,  c12,3,  c13,3

a1
11,1

→ a2
12,1

→ a2
13,1

→

a2
11,2

→a2
12,2

→ a2
13,2

→

a2
11,3

→a2
12,3

→ a2
13,3

0.95 34 34

5 c
21,1, c22,1 , c21,3,  c22,3 a1

21,1
→ a2

22,1
→a2

21,3
→ a2

22,3
0.85 34 33

6 c
21,2, c22,2 , c31,3, c33,3 a2

21,2
→ a2

22,2
→a2

31,3
→ a2

33,3
0.95 13 10

7 c
31,2, c32,2 , c41,3, c42,3 a2

31,2
→ a2

32,2
→a2

41,3
→ a2

42,3
0.95 10 8



184	 Environment Systems and Decisions (2022) 42:177–188

1 3

time interval in most of the cases. For example, functional 
dependency no 7, whose expected propagation time is 
10 min, occurs 10 times and all alarms of the FDEP occur 
in the same time interval in 8 cases.

The proposed MOEA algorithm is applied using an initial 
population of Npop = 500 binary chromosomes of Mal bits. 
The mutation probability is set to 1∕Mal and the crossover 
probability to 0.8 according to (Anand et al. 2009). The 
algorithm has been run for 2000 generations, obtaining a 
final set of 500 patterns in a computational time of 657 s on 
an Intel core (TM) i7-4790 CPU@ 3.6 GHz, 16 GB RAM. 
The final population includes several patterns involving the 
alarms of each of the FDEPs of Table 2. Table 3 gives, for 

each of the FDEPs of Table 2, the pattern in the final popula-
tion with the largest IFDEP value.

Table 3 reports some examples of patterns of the final 
population containing groups of alarms which belong to the 
FDEPs of Table 2. Notice that many patterns only partially 
describe the FDEPs, i.e. they do not contain all the involved 
alarms. For example, pattern nos. 2, 3, 4 and 5 contain only 8 
of the 10 alarms of FDEP 1. On the other side, it is interest-
ing to observe that the pattern with the largest IFDEP value 
always contains all the alarms of the corresponding FDEP. 
This highlights the capability of the metric of dependency 
to identify the pattern formed by all the alarms of the FDEP, 
which simplifies the post-processing of the results. Also, 
the analysis of all the patterns of the final population has 

Table 3   Functional dependencies and corresponding identified patterns of alarms

Simulated functional dependence Extracted patterns

Involved alarms No. Pattern log(IFDEP) Support

FEDP 1 a1
1
→ a2

2
→ a2

3
→a2

4
→a2

5,1
→ a2

6
→a2

7
→a2

8
→ a2

9
→ a2

10
1

{
a1
1
, a2

2
, a2

3
, a2

4
, a2

5
, a2

6
, a2

7
, a2

8
,

a2
9
, a2

10

}
33.15 113

2
{
a1
1
, a2

2
, a2

3
, a2

4
, a2

5
, a2

6
, a2

7
, a2

9
,
}

26.37 140
3

{
a1
1
, a2

2
, a2

6
, a2

7
, a2

8
,

a2
9
, a2

10

}
25.83 145

4
{

, a2
4
, a2

5
, a2

6
, a2

7
, a2

8
,

a2
9
, a2

10

}
23.55 147

5
{

a1
1
, a2

2
, a2

3
, a2

4
, , a2

7
, a2

8
,

a2
10

}
21.15 155

…
FEDP 2 a1

120
→ a2

121
→ a2

122
→a2

123
→a2

124
→ a2

125
→a2

126
→

a2
127

→ a2
128

→ a2
129

130
{
a1
120

, a2
121

, a2
122

, a2
123

, a2
124

, a2
125

, a2
128

, a2
129

, a2
126

, a2
127

}
44.61 37

131
{
a2
126

, a2
127

, a2
128

, a2
129

}
18.65 55

…
FEDP 3 a1

230
→ a2

231
→ a2

232
→a2

233
→a2

234
→ a2

235
→a2

236
→

a2
237

→ a2
238

→ a2
239

210
{

a2
239

, a1
230

, a2
231

, a2
232

, a2
234

,

a2
235

, a2
236

, a2
237

, a2
238

, a2
233

}
53.13 13

211
{

a1
230

, a2
231

, a2
232

, a2
234

,

a2
235

}
37.02 20

…
FEDP 4 a1

11
→ a2

12
→ a2

13
→a2

111
→a2

112
→ a2

113
→a2

211
→

a2
212

→ a2
213

306
{
a2
113

, a2
112

, a2
12
, a2

212
, a2

11
, a2

213
, a1

111
, a2

211
, a2

13

}
38.88 34

307
{
a2
131

, a2
112

, a2
122

}
12.61 50

…
FEDP 5 a1

201
→ a2

202
→a2

203
→ a2

204
401

{
a1
201

, a2
202

, a2
204

, a
2

203

}
14.14 33

{
a1
201

, a2
202

}
6.74 35

…
FEDP6 a2

21
→ a2

22
→a2

31
→ a2

33
520

{
a2
21
, a2

22
, a2

33
, a2

32

}
18.43 11

421
{
a2
33
, a2

21

}
7.18 15

…
FEDP 7 a2

131
→ a2

132
→a2

241
→ a2

242
450

{
a2
132

, a2
241

, a2
242

, a2
131

}
17.72 8

551
{
a2
131

, a2
241

}
7.97 12

…
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shown that none of them contains spurious alarms. The post-
processing procedure for the identification of the FDEPs 
from the patterns of the final population requires to (1) sort 
them with respect to IFDEP and (2) eliminate the patterns 
containing subsets of alarms already contained in patterns 
with larger IFDEP.

Table 4 reports the results of the proposed MOEA on the 
same database considering different combinations of fitness 
functions. As expected, when novelty search is not used, 
the final population converges to a population of patterns 
describing only few functional dependencies. Also, the use 
of the metric of dependency IFDEP guarantees that the identi-
fied patterns do not contain spurious alarms.

The results obtained by the proposed novelty-based 
MOEA have been compared with the results of the Apri-
ori-based ARM algorithm proposed in Antonello et  al. 
(2021) and of the MOEA for ARM identification proposed 
in Antonello et al. (2020). The Apriori-based ARM algo-
rithm performs an exhaustive search among all the possible 
combinations of alarms but requires to set small values of 
the minimum support and minimum confidence thresholds 
(here chosen equal to 5 and 0.6, respectively) to identify 
all the rare FDEPs; otherwise, with larger values of these 
thresholds, it would not find them (Antonello et al. 2021b). 
The MOEA for ARM identification evolves a population of 
500 association rules encoded in binary chromosomes of 
2 × Mal bits and employs the novelty measure (Eq. 9) and 
the metrics of Interestingness and Length  (Pachón Álvarez 
and Mata Vázquez 2012; Dhaenens and Jourdan 2016) as 
search objectives.

Table 5 reports the obtained results. The Apriori-based 
ARM algorithm requires a computational effort more than 
500 times larger than the approach proposed in this work 
and produces 2000 different association rules, which must 
be post-processed to discriminate the rules containing spu-
rious alarms and to identify the rare FDEPs of particular 
interest for vulnerability analysis. The MOEA for ARM 
identification finds 500 association rules, which contain all 
the 7 FDEPs in a computational time slightly larger than the 
proposed approach. A limitation of this approach is that 15% 
of the generated association rules contain spurious alarms, 
which requires the identified rules to be analysed one by one 
by plant experts in order to distinguish the actual FDEPs.

To conclude, the comparison has shown that the pro-
posed MOEA is able to i) correctly identify the functional 
dependencies with a reduction of the computational effort 
with respect to the other two approaches considered; ii) dis-
cover rare FDEPs without requiring the setting of a very 
low value for minimum support; and iii) be robust against 
spurious alarms.

4.2 � CERN complex technical infrastructure

The CTI of CERN is composed by several systems working 
together to support the operation of the LHC, which is the 
largest existing particle accelerator in the World (Nielsen 
and Serio 2016). It consists of a 27-km ring of superconduct-
ing magnets and infrastructures, extending over the Swiss 
and French borders and located about 100 m underground.

A database of alarms generated during the period 
[ t0, tf ] = [01 January 2016; 31 December 2016] by three 

Table 4   Results of the proposed MOEA considering different combinations of the fitness functions

Search objectives Computational time (on Intel core (TM) i7-4790 
CPU@ 3.6 GHz, 16 GB RAM)

Number of identified 
FDEPs

Identifications of 
patterns with spurious 
alarms

I
FDEP

, support and novelty 657 s 7 No
I
FDEP

 and novelty 623 s 5 No
Support and novelty 619 s 1 Yes
I
FDEP

 and support 612 s 4 No
I
FDEP

607 s 1 No

Table 5   Results comparison among the proposed MOEA, the MOEA for association rules identification proposed in Antonello et al. (2020) and 
the Apriori-based ARM algorithm presented in Antonello et al. (2021)

Approach Computational time (on an Intel core (TM) 
i7-4790 CPU@ 3.6 GHz, 16 GB RAM)

Patterns 
identified

Functional depend-
encies identified

Presence 
of spurious 
rules

Proposed novelty-based MOEA 11 min 500 7 No
Apriori-based ARM algorithm 6271 min 2000 7 Yes
MOEA for association rules identification 14 min 500 7 Yes
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supervision systems of a representative part of the LHC 
infrastructure, the LHC point 8, is considered. During this 
period, Nal = 18,711,737 alarms reporting Mal=13,451 
different types of malfunctions have occurred. The alarm 
database has been pre-processed by pruning those alarms 
involved in already-known FDEPs among components 
belonging to a same system and which are, therefore, less 
interesting from the point of view of the system vulnerability 
(Antonello et al. 2020b). The pruned database consists in 
Nal = 112,591 alarm messages reporting Mal=1024 different 
types of malfunctions.

Considering the expected time of propagation of a 
FDEP, which is influenced by the physical characteristics 
of the systems and processes involved, the time interval 
for the analysis is set equal to Δt = 30 min to ensure the 
identification of all FDEPs while minimizing computa-
tional resources and spurious alarms (Antonello et  al. 
2021). Therefore, the one-year period [01 January 2016; 
31 December 2016] is divided into Z = 17,500 time inter-
vals. Setting the mutation probability equal to 1∕Mal and 
the crossover probability equal to 0.8 (Anand et al. 2009), 
an initial population of Npop = 500 individuals, encoded 
into chromosomes of Mal bits, is evolved for 2000 gen-
erations obtaining a final set of 500 patterns of alarms 
in 641 s on an Intel core (TM) i7-4790 CPU@ 3.6 GHz, 
16 GB RAM. The patterns describe FDEPs involving com-
ponents of different systems, whose failures can cause a 
local malfunction to propagate across the CTI systems 
and sub-systems, and originate unexpected cascades of 
failures over vast geographic areas (Thacker et al. 2017; 
Antonello et al. 2021b). Table 6 reports a selection of five 
discovered patterns which have been considered as most 
representative example of novel and unknown chains of 
events by CERN experts. The first pattern describes the 
correlation among malfunctions involving a breaker of the 
electric system, powering the cryogenic system (EKD202_
SLASH_8U) and malfunctions of two pumps of the 
cooling and ventilation system (SU_8_UPKA802_AL6, 
SU_8_UPEA802_AL6). The second pattern describes the 
associated occurrence of a malfunction in a breaker of 
the electrical system (EKD204_SLASH_8U) and three 

different malfunctions in the helium compressors of the 
cryogenic system (QSCB_8_CSY_C2). Pattern 3 and Pat-
tern 4 describe the propagation of a malfunction triggered 
by problems in the cryogenic electric system distribution 
switchboard ('EKD104_SLASH_8HM_I1314', 'EKD107_
SLASH_8HM_I1314'), which propagate and lead to 
malfunctions of the Cryogenic system helium refrigera-
tor, dryer and compressors ('QSAB_8_QSA_TS3.IST', 
'QSCB_8_CSY_C1_SI3.IST', 'QSRB_8_CV003_FS1.
IST'). Pattern 5 describes the propagation of a malfunction 
of the electric system 'EKD210_SLASH_8U_S3S16' to the 
Cryogenic system helium compressors ('QSCA_8_CSC1_
SI3.IST', 'QSCA_8_CSC1_SI6.IST'). Patterns 2, 3 and 4 
can be considered as rare since the corresponding alarms 
occur in the same time interval only three times in a period 
of one year, during which a whole of 112591alarms has 
been generated. Notice that patterns with support smaller 
than 3 are not identified by the algorithm due to the need 
of avoiding spurious FDEPs, which satisfy Eq.  10 by 
chance Antonello et al. (2021c).

An independent expert analysis has confirmed that the 
involved components are, indeed, part of chains of malfunc-
tions that occurred in 2016. According to the CTI experts, 
the identification of rare functional dependencies is useful 
for (i) updating the maintenance plan of the components 
involved in the functional dependencies, for example, by 
increasing the frequency of inspection for those components 
that cause the chains of events with the objective of reducing 
the probability of their initiation; (ii) upgrading the most 
critical components; (iii) introducing barriers to contrast the 
propagation of the chain of events; and (iv) facilitating root 
cause analysis.

To further analyse the advantages of the proposed evo-
lutionary approach, a traditional Apriori-based algorithm 
(Antonello et al. 2019) is applied to the same database. In 
order to be able to identify rare rules, the value of minimum 
support threshold is now set equal to 3 and the minimum 
confidence is set equal to 0.6%. The search has produced 
1049 association rules in a computational time of 43,959 s 
on an Intel core (TM) i7-4790 CPU@ 3.6 GHz, 16 GB 
RAM. Notice that the proposed MOEA allows reducing the 

Table 6   Example of patterns of alarms generated by components of different systems

Pattern IFDEP Support

1 ['SU_8_UPEA802_AL6.IST', 'SU_8_UPKA802_AL6.IST', 'EKD202_SLASH_8U_I1314'] 9.56 53
2 ['QSRB_8_PV100_SI1.IST', 'QSRB_8_PV200_SI1.IST', 'QSRB_8_PV279_SI1.IST', 'QSRB_8_PV249_SI1.IST', 

'QSRB_8_CV003_FS1.IST', 'QSV_8_BEEPFS81.IST', 'EKD104_SLASH_8HM_I1314']
38.75 3

3 ['QSRB_8_PV100_SI1.IST', 'QSRB_8_PV279_SI1.IST', 'QSRB_8_PV249_SI1.IST', 'QSRB_8_CV003_FS1.IST', 
'EKD104_SLASH_8HM_I1314']

27.02 3

4 ['QSRB_8_PV200_SI1.IST', 'QSRB_8_PV279_SI1.IST', 'QSRB_8_PV249_SI1.IST', 'QSRB_8_CV003_FS1.IST', 
'EKD104_SLASH_8HM_I1314']

26.13 3

5 ['QSCA_8_CSC1_SI3.IST', 'QSCA_8_CSC1_SI6.IST', 'EKD210_SLASH_8U_S3S16'] 12.16 11
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computational effort (641 s) with respect to traditional ARM 
(43,959 s) and does not require the setting of a minimum 
support.

5 � Conclusions

Functional Dependencies (FDEP) in Complex Technical 
Infrastructures (CTIs) need to be identified to analyse poten-
tial vulnerabilities. This work proposes a MOEA based on 
novelty search and on a recently proposed metric of depend-
ency for the identification of FDEPs from alarm data.

A main novelty with respect to the other state-of-the-art 
approaches is the direct identification of patterns of depend-
ent alarms, without the preliminary step of identifying 
association rules. This avoids setting minimum support and 
minimum confidence thresholds and allows swiftly disclos-
ing also rare FDEPs. The novelty metric drives the search 
to favour diversification in the results, allows to explore the 
solution space and avoids to be trapped in local optima. 
Moreover, the use of the metric of dependency allows to 
discriminate spurious alarms and, therefore, eliminates the 
results post-processing step and reduces the computational 
burden.

An application to a synthetic database of alarms has 
shown the ability of the proposed MOEA to effectively 
explore the solution space for identifying all actual (i.e. not 
spurious) simulated functional dependencies. Comparison 
with an Apriori-based ARM algorithm and a MOEA for 
association rules identification shows (i) the ability of the 
proposed approach to be robust to spurious alarms in the 
FDEPs, (ii) the low computational effort required by the 
proposed approach and (iii) the reduction in the number of 
redundant or not completely identified patterns of FDEPs 
found by the proposed approach, which would complicate 
the post-processing of the results.

The application of the proposed algorithm to a large-scale 
database collected at CERN CTI has allowed identifying 
patterns of alarms which describe unknown and rare FDEPs 
in the CTI, which have then been confirmed by CERN 
experts as indeed responsible of sequences of malfunctions 
occurred in the past.
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