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Abstract—The uncertainties in the degradation process have
always been regarded as a major challenge in the practical
applications of Prognostics and Health Management. This ar-
ticle discusses the uncertainties in the degradation process of
Lithium-ion batteries, points out their potential consequences in
practical applications, and then we summarizes some commonly
adopted aftertreatment solutions for them. To proceed realistic
analysis, we present a non-accelerated degradation experiment
with several Lithium-ion batteries. The experiment lasted for
more than ten months and the data highlighted the uncertain
fluctuations and periodic waves in SOH degradation process.
Furthermore, this article reveals the delayed correlation between
SOH degradation and changing environmental temperature.
Finally, we provide some possible solutions for guiding practical
applications of our finding.

Index Terms—Prognostics and Health Management, explain-
able mechanism, non-accelerated degradation, delayed correla-
tion

I. INTRODUCTION

Lithium-ion batteries have features of low self-discharge
rate (maintain charged power at suspension), low weight
(lightweight lithium and carbon-made electrodes), high energy
efficiency (high chemical reactivity of lithium), no memory
effect, stable electro-chemistry characteristics, and long life-
time [1], [2]. These advantages have played a major role in
their widely used in many important applications, including
consumer electronics, electric vehicles, aerospace equipment,
and large-scale energy storage. However, its performance
will experience inevitable degradation after a long time of
operation [3]. This phenomenon seriously affects the reliability
of Li-ion batteries and can result in many challenges for its
practical applications [4].

For Lithium-ion batteries, the accurate acquisition of its
degradation information is necessary to ensure the safety

of electronic equipment, and then meaningful to minimise
maintenance costs [5]. The prognostics and health manage-
ment (PHM) is an engineering discipline concerned with the
reliability and safety assessment of the degradation process.
At present, lots of techniques have been developed to devise
proper methods for the prediction of future capacity dynamics
and remaining useful life [1].

Specifically, according to the type of adopted prognostic
model, such as originated from empirical expert knowledge
or historical operation data [6], existing approaches can be
generally divided into model (or physics)-based method, data-
driven method, and hybrid method, the detailed discussion and
classification can be found in [2], [6], [7]. In conclusion, the
directly or indirectly degradation dynamics modelling plays an
extremely important role in the engineering PHM applications
of Lithium-ion batteries. However, uncertainty is a major
consideration for practical applications in the real world, and
due to the inherently stochastic nature of battery degradation
and changing operation environment, the degradation process
of Lithium-ion batteries contains a lot of uncertainties [8].

Generally, these uncertainties can be categorized into two
categories of epistemic uncertainty and aleatory uncertainty
[6]. The aleatory uncertainty describes the natural variation
and intrinsic randomness of degradation process, it is typically
unpredictable and irreducible [5]. The epistemic uncertainty
mainly refers to the incomplete information about the prac-
tical degradation process, such as insufficient or incomplete
modelling. These uncertainties bring many challenges and
difficulties to the practical modelling process, and the proper
management of uncertainty is very critical to achieving reliable
prognostic [6].

The remaining paper is organized as follows. Section II
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summarizes some commonly adopted datasets and provides a
thorough discussion about uncertainty management. Section
III introduces the technical details of our non-accelerated
degradation experiment and then points out its potential mean-
ing in theoretical analysis and practical application. Section
IV provides a comprehensive discussion about the delayed
correlation between SOH degradation and changing environ-
mental temperature, and then outlines its possible application
scenarios and future development route.

II. THEORETICAL AND PRACTICAL BACKGROUND

PHM is an experimental oriented research, and the acquisi-
tion of practical degradation data is the common foundation of
all the related research. However, there face many difficulties
in obtaining reliable degradation data. First, the degradation
experiments need to be implemented on the professional
equipment, that able to provide stable output current and
voltage, and monitor the electrical signals from batteries.
Besides, due to the long lifetime of Lithium-ion batteries,
the degradation process is time-consuming and can typically
take several months. Further, the stability of the battery will
gradually decrease during the degradation experiments and
might introduce extra fire hidden trouble, thus the experiments
needs to be monitored for 7 × 24 hours.
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Fig. 1. Nasa batteries degradation data published in 2007

In view of above mentioned common difficulties, many
researchers have adopted public datasets for the development
and verification of their investigations. The Prognostics Center
of Excellence (PCoE) at NASA provides a series of degrada-
tion data in 2007 [9], [10]. Fig. 1 shows degradation trajec-
tory of some batteries (with over 100 cycles). This dataset
spurred many more related investigations for the degradation
of Lithium-ion batteries. However, the experiment procedure
lasts a short period and the degradation depth is not obvious.

Then the Center for Advanced Life Cycle Engineering
(CALCE) at the University of Maryland provided another
dataset since 2011 [2], [11], [12]. Fig. 2 and Fig. 3 show
the degradation trajectory of CS2 and CX2 dataset. The main
characteristic of this dataset is the existence of massive upward
and downward fluctuations.

Recently, Toyota Research Institute provides a large dataset
[13] as shown in Fig. 4. This dataset recorded the degradation
process for hundreds of batteries and adopted the fast charge
technique to speed up the degradation progress. The degrada-
tion process in this dataset varies from 20 days to 50 days, and

their SOH degradation trajectories have significant difference
with each other.

Fig. 2. CS2 Batteries degradation data published in 2011

Fig. 3. CX2 Batteries degradation trajectory published in 2011
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Fig. 4. Toyato batteries degradation data published in 2019

There show significant difference between different datasets,
and the difference within the same dataset is also obvious.
We have provided a thorough discussion of the uncertainties
in the degradation process of Lithium-ion batteries in one
of our previous works [8], but a reasonable and convincing
mechanism of uncertainty has remained a deep mystery in
the PHM applications of Lithium-ion batteries. Specifically,
there could exist intricate momentary performance fluctuations
during the operation process of Lithium-ion batteries. A typical
(not exclusive) example of this phenomenon is the regeneration
of Lithium-ion batteries, which refers specifically to these
upward SOH fluctuations after a longtime rest [7], [14].
As concluded in literature [15]–[18], there exist extensive
successful PHM applications for Lithium-ion battery, while
most of them omitted their practical influence.

So far, some researchers have focused on these issues,
but the related improvements are still very limited due to
limited volume of experiment data. First, this phenomenon
is inevitable and hard to explain, and it is a natural thought
to treat it as uncertainty, thus many approaches tended to
directly remove or eliminate related data [19]. Second, this
phenomenon is commonly no-predictable, thus the possible

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 09,2023 at 13:10:45 UTC from IEEE Xplore.  Restrictions apply. 



treatment would be to make “timely detection” or “timely
management”. Those solutions all can be classified as af-
tertreatment, which can only be implemented after the actual
happens of regeneration phenomenon. Besides, it has been
widely accepted that the regeneration phenomenon is related to
rest time, and some approaches tired to predict the occurrence
of regeneration based on rest time. However, a reliable mech-
anism between rest time and regeneration is still controversial
in academia [20]. Besides, the rest time itself, may depends on
the preferences of the user, thus its occurrence and duration
are usually random and unpredictable. These paradoxes limit
the further development of related investigations.

The following summarizes some efforts and attempts to deal
with these regeneration phenomenon in the SOH degradation
process. Reference [17] treated regeneration as randomness
and eliminated it from data. Reference [21] selected to remove
regeneration related data in their approach. Reference [19]
attempted to make automatic detection of the occurrence of
regeneration. Reference [22] regarded regeneration as anomaly
point and pursued its timely detection. Reference [23] ad-
dressed the detection of regeneration phenomena in their
approach. Reference [24] detected the occurrence of regenera-
tion in their approach. Reference [25] monitored and made
automatically detection of regeneration in their approach.
Reference [26] improved the reliability and robustness of their
model to deal with the occurrence of regeneration. Reference
[15] tried to timely capture the regeneration and then made
model adaptation accordingly. Reference [27] captured the
fluctuations of the degradation process and reduced its affec-
tions in their proposed approach. Reference [14], [28]–[31] all
attempted to predict regeneration based on rest time.

However, even though the regeneration (upward SOH fluc-
tuation) can be partially and roughly explained by the rest
time [8], there still exist many downward fluctuations in the
SOH degradation process of Lithium-ion batteries. Further,
different from the upward SOH fluctuations that bring out no
negative effects, the instantaneous downward SOH fluctuations
can cause inconvenience to users and directly affect their
experience.

For example, if Lithium-ion batteries are adopted as the
main power for electric vehicles and smartphones, then when
the temperature drops sharply, the broke down of electric
vehicles occurs frequently, and the “sudden death” of the
smartphone also occurs frequently. Besides, if Lithium-ion
batteries are adopted to provide power to the controlling
system, some catastrophic consequences can also happen when
the power supply is unreliable.

Clearly, for those downward SOH fluctuations, existing
solutions about “timely detection”, “timely management” or
“make model adaptation to uncertainty” are far from reducing
or preventing their consequences.

III. UNCERTAINTIES IN NON-ACCELERATED
DEGRADATION EXPERIMENTS

As mentioned above, the degradation process of Lithium-ion
batteries is very time-consuming, thus almost all the existing

public datasets adopted accelerated working settings to speed
up the implementation of their degradation experiment. How-
ever, batteries under daily utilization are difficult to encounter
these accelerated working conditions, and there may exist
some differences between the accelerated degradation and non-
accelerated degradation.

We think that the degradation process under acceler-
ated working conditions is different from that under non-
accelerated working conditions, but we expect there exists
a transfer relationship, so that the data from accelerated
experiments can be used to guide the PHM applications in
the practical.

To the best of the authors’ knowledge, the current setting
in existing degradation experiments is no less than 1 C. We,
therefore, conduct some experiments and generate some bat-
tery degradation data with non-accelerated working conditions.
C is the current unit corresponding to the nominal capacity of
the battery, 1 C is able to discharge the battery with a nominal
capacity in 1 hour, and 1/3 C is in 3 hours.
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Fig. 5. Degradation trajectory from non-accelerated experiments

Specifically, the non-accelerated experiment is consisted
of continuous and alternating charge-discharge periods. The
charge period has a constant current constant voltage (CC-
CV) profile, and the discharge period has a constant current
profile. The current setting in the CC charge and discharge
period is 1/3 C, the voltage setting in the CV charge period
is 4.2 V, and the cut-off voltage setting in the CC discharge
period is 2.7 V.

The whole experiment was implemented from Apr. 2021
to Mar. 2022 for over 10 months (7200 hours), the overall
degradation trajectory is shown in Fig. 5. The experiment
equipment is installed in an in-house environment with no
specific insulation measures (the environment temperature
varies in season and day-night).

In industrial applications, it is 80% SOH that is selected as
the lifetime termination of Lithium-ion battery [32]. However,
Lithium-ion battery has the advantage of high energy density,
which is 4∼6 times that of a Lead-acid battery, thus the testing
is continuously implemented until it degrades to approximately
its 20% SOH (at this status, the lithium-ion battery still
has strong competitiveness compared with a new lead-acid
battery). These acquired degradation data have a wide SOH
range (from 100% to 20%), thus also have the potential value
for cascade utilization related research.
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During the implementation process of the long-lasting ex-
periment, we check the status of the batteries almost every
week, thus we found some interesting phenomena which tend
to be ignored in previous public datasets. As shown in Fig.
6, there exist periodic small waves in the degradation process
of each battery. Besides, the fluctuations in overall trend also
have some similarities between each other.
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Fig. 6. Periodic similarity between different batteries

Following the investigation in one of our previous works [8],
we initially would like to treat those waves and fluctuations
as uncertainties, and then introduce some “timely detection”
and “properly management” for those uncertainties, or de-
velop an adaptive approach to make adaption regarding those
uncertainties. After that, we also would like to make some
“transfer” discussions with those non-accelerated degradation
data. Above mentioned are widely used, well-developed, and
straightforward research routines.

However, we found those waves and fluctuations might be
related to the environment temperature, because we suddenly
realized that the small waves in the degradation trajectory
appear every day. To better illustrate this periodic degradation
characteristic, Fig. 7a shows the degradation trajectories of
different batteries regarding date-time, and the vertical line
represents the beginning of the new year.

Clearly, there show significant consistency between different
batteries. Fig. 7b represents the enlargement of the box part in
Fig. 7a, it shows that the fluctuations in different degradation
processes have similar occurrence times and amplitudes. Then,
Fig. 7c represents the enlargement of the box part in Fig. 7b.
These small waves appear periodically (once a day) in Fig.
7c, as these vertical line represent the beginning of the new
day.

This is very interesting, actually, those waves and fluctu-
ations in the public degradation dataset are hard to explain.
Thus, their solutions have always been limited to “detection”,
“management”, “adaption” or other aftertreatment solutions.
For example, [19] recently proposed a prognosis approach that

is able to detect those upward fluctuations in the degradation
process of Lithium-ion batteries.
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Generally, explainability has always been regarded as the
common difficulty for the further in-depth investigation of
uncertainty, thus we would like to initiate some theoretical
analysis for this. Then, above mentioned “transfer” motivations
and solutions will be left for our future research.

IV. EXPLAINABLE UNCERTAINTY BY DELAYED
CORRELATION

Due to some realistic reasons, we did not install specific
sensors to monitor the surface temperature of our batteries. We
think that the massive adoption of temperature sensors is not
economic and realistic for practical applications. Instead, we
acquired the meteorological data from the national ordinary
meteorological station. The station is 20 km (approximately
20 minutes for driving) away from the actual location of the
experiment.
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The acquired meteorological data is recorded at the syn-
optic hours, including the daily routine observations such as
temperature, pressure, humidity, wind speed and direction, and
precipitation amounts. The data is exchanged among different
countries via the Global Telecommunications System (GTS),
under the framework of World Meteorological Organization.
In United States, it is publicly available from NOAA National
Centers for Environmental Information [33]. The temperature
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date during the implementation of non-accelerated degradation
experiments is shown in Fig. 8.
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To highlight the similarity between SOH degradation pro-
cess and changing environmental temperature, Fig. 9 shows
their details information. Note different from that in Fig. 5, the
SOH data in fig. 9 adopt the date-time as its horizontal axis,
then the degradation trajectory from different batteries shows
strong consistency. There show small waves and significant
fluctuations in both dynamic processes, which also appear to
be very similar in detail.
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Fig. 10. Delayed correlation between SOH and temperature

For these small waves in temperature data, the lowest value
is located at around 8 o’clock (sunrise), and the highest value
is located at around 14 o’clock, and this is consistent with
real-life common sense. While for these small waves in SOH
data, the lowest value is located around 10 o’clock, the highest
value is located at around 22 o’clock, which lags behind the
variation of environmental temperature for several hours. For
the changing temperature data shown in Fig. 9d, the valley
is located in Dec. 26, due to a cold snap. Then for the SOH
degradation data shown in Fig. 9b, the valley is located in
Dec. 28, lags several days after the occurrence of temperature
valley.

In conclusion, there exists a delayed correlation between
SOH degradation and changing environmental temperature,
and Fig. 10 selected several typical fluctuations to show in
detail this relationship.

To proceed further investigation on this phenomenon, Dif-
ferential Model Decomposition [8] is adopted here for the
theoretical uncertainty analysis. Differential Model Decom-
position can decompose the uncertainty information step by

step from original data, its technical details can be found in
[8]. Following step (2) of its implementation procedure, Fig.
11a shows the extracted uncertainty from the SOH degradation
process, Fig. 11b shows the extracted uncertainty from the en-
vironmental temperature variation process, and the uncertainty
in SOH degradation process has a different standard deviation
from that in the environmental temperature variation process.
Then Fig. 11c shows their comparison after normalization, and
it shows strong correlation and lag effect.

 May, 21  Jul, 21  Sep, 21  Nov, 21  Jan, 22  Mar, 22 
-5

0

5

S
O

H
 (

%
)

 May, 21  Jul, 21  Sep, 21  Nov, 21  Jan, 22  Mar, 22 
-10

0

10

Te
m

p
e

ra
tu

re
 (

°C
)

 May, 21  Jul, 21  Sep, 21  Nov, 21  Jan, 22  Mar, 22 
-5

0

5

N
o

rm
a

liz
e

d
 v

a
lu

e

SOH Temperature

Standard deviation:0.91   Mean:0

Standard deviation:2.47   Mean:0

(a)

(b)

(c)

Fig. 11. Extracted uncertainties through Differential Model Decomposition

These uncertainties shown in Fig. 11 represent the waves
and fluctuations in the original data. Clearly, these significant
fluctuations in SOH degradation appear tens of hours later than
that in the changing environmental temperature. In conclusion,
these waves and fluctuations in the environmental temperature
variation process have a causal relationship with that in SOH
degradation process, and the former is the cause of the latter
one. Most importantly, there exists a finite delay in this causal
relationship. Thus it is possible to predict these fluctuations in
SOH degradation several hours ahead of their happen.

The possible mechanism of this lag effect might be origi-
nated from the heat transfer process between battery and the
environment. Actually, the battery itself need to transfer heat
with the environment, and the heat transfer speed depends
on several factors, thus the variations in environmental tem-
perature can not immediately change the self temperature of
battery. This is very realistic in practical application and has
not been given enough attention so far.

In our implementation, we adopt only the recorded mete-
orological temperature data for analysis, and this solution is
able to warn the risk of suddenly SOH dropping several hours
before it really happen. Note even the surface temperature
of battery can be recorded by temperature sensors, there still
exists a finite transfer delay between surface temperature and
body temperature of the battery.

Further, the meteorological forecast is also a publicly avail-
able service and is very reliable in modern life, then the alarm
can be issued much earlier with pre-forecasted temperature.

V. CONCLUSION

In this paper, we present a non-accelerated degradation
experiment with Lithium-ion batteries. With these practical
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SOH degradation data and collected meteorological tempera-
ture data from NOAA, we demonstrate that some uncertainties
in SOH degradation process can be explained by the variation
in environmental temperature. We then provide an in-depth
analysis about delayed correlation with Differential Model
Decomposition. The theoretical analysis shows that the early
warning of sudden SOH drop is possible and has significant
meaning in practical applications, such as being used to avoid
the “sudden death” of the smartphone or “sudden break down”
of the electric vehicle.
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