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It is common for animals to use self-generated movements to actively sense the

surrounding environment. For instance, rodents rhythmically move their whiskers to

explore the space close to their body. Themouse whisker system has become a standard

model for studying active sensing and sensorimotor integration through feedback

loops. In this work, we developed a bioinspired spiking neural network model of the

sensorimotor peripheral whisker system, modeling trigeminal ganglion, trigeminal nuclei,

facial nuclei, and central pattern generator neuronal populations. This network was

embedded in a virtual mouse robot, exploiting the Human Brain Project’s Neurorobotics

Platform, a simulation platform offering a virtual environment to develop and test robots

driven by brain-inspired controllers. Eventually, the peripheral whisker system was

adequately connected to an adaptive cerebellar network controller. The whole system

was able to drive active whisking with learning capability, matching neural correlates of

behavior experimentally recorded in mice.

Keywords: point neuron model, neurorobotic architecture, active whisking, trigeminal ganglion, trigeminal nuclei,

facial nuclei, central pattern generator (CPG), vibrissae

1. INTRODUCTION

A fundamental question in system neuroscience is to identify how peripheral sensory stimuli are
processed in multiple brain regions showing specific neuronal activity. Rodent whisker-mediated
touch system is a structurally well-known system that gives rise to complex adaptive behaviors
(Adibi, 2019). Specifically, the rodent whisker system represents an efficient combination of
active perception and sensorimotor integration, in which self-generated movements are used to
actively sense their environment, i.e., scanning the surroundings to collect behaviorally-relevant
information. Rodents have specialized muscles in their mystacial pad to control the hair position
(Moore et al., 2014). They rhythmically protract their whiskers, swiping the space surrounding the
head and gathering information about the shape and position of objects around them.

In the rodent whisker system, the primary afferences come from the trigeminal
ganglion (TG) and the efferences project to motoneurons in the facial nuclei (FN).
There are no direct connections between the two; indeed, the innermost feedback
loop is a di-synaptic reflex at the brainstem level, involving interneurons from the
trigeminal nuclear complex (TN) (Nguyen and Kleinfeld, 2005; Bellavance et al., 2017).
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Outer loops in the whisker system involve multiple brain regions:
the cerebellum, the midbrain (superior colliculus), and the
forebrain (Bosman et al., 2011). The whisker-barrel loop is
the most extensive and most studied cortical loop, involving
the vibrissa primary sensory and motor cortex (McElvain
et al., 2018). Therefore, this somatosensory system is ideal
for investigating the link between circuitry and function and
understanding the underlying neuronal mechanisms in sensory
readout and information processing.

Computational models of this system can play a fundamental
role in multi-scale investigations, from neuron to behavior,
thanks to the availability of multi-scale experimental data in
rodents for constraining and validating the models. In this work,
we have developed a Spiking Neural Network (SNN) model
able to process information encoded during whisking using a
time coding representation of neuronal activity (Ghosh-Dastidar
and Adeli, 2009; Ponulak and Kasiński, 2011; Brette, 2015;
Tavanaei et al., 2019). While other models and kinds of artificial
neural networks (e.g., rate-based or mean-field models) are
very powerful tools, based on brain dynamics, we choose SNNs
because they are closer to biological reality since they mimic the
way information is coded and transmitted inside a real brain.
Furthermore, spike timing is critical in brain dynamics and,
therefore, in function generation. Thus, spike-based modeling
strategies are needed to face this issue of whisking control and
brain-inspired adaptation systems. In this work, each neuron in
the network has been modeled with the most simplified spiking
model, which is the Integrate & Fire model (I&F). SNNs can learn
patterns of activity thanks to embedded plasticity models: here,
we included a Spike-Timing Dependent Plasticity (STDP) model
(Izhikevich and Desai, 2003; Izhikevich, 2007; Markram et al.,
2011, 2012; Delattre et al., 2015) in the cerebellar circuit, which
was inserted in the control system (outer loop) to test learning
capabilities.

1.1. Neurorobotic Models of Rodent
Whisking
Models of brain regions embedded in neurorobots allow us to
reproduce the functional mechanisms of living beings in closed
perception-action loops (Chen et al., 2017; Knoll, 2017). Various
examples of neurorobots using biologically inspired whiskers
have been implemented in the last years. Among them, it is worth
citing theWhiskerbot, the SCRATCHbot, and the Shrewbot (Pipe
and Pearson, 2015).

The Whiskerbot consists of a robotic platform constituted
by a head sensory unit of 150 × 170 mm and a two-wheeled
body. The head carries six whiskers per side arranged in rows
of three. Analogue information from whisker deflection is
converted in empirically-based spike trains. It can freely move in
an environment, actively whisking and orienting toward salient
stimuli using a neural network model of the superior colliculus
(Pearson et al., 2007; Pipe and Pearson, 2015). The SCRATCHbot
has a larger number of whiskers and degrees of freedom to
position them in the environment. It was developed to reproduce
different models of whisking pattern generation and actively
explore its environment using a simple model of tactile attention

(Pearson et al., 2010; Pipe and Pearson, 2015). Both these robots
were further enriched by integrating the Shrewbot platform,
which introduced algorithms able to detect texture and objects
from an active whisker array (Pearson et al., 2011; Sullivan et al.,
2012; Pipe and Pearson, 2015).

Real neurorobots are excellent test benches to challenge
a neuro-inspired controller to demonstrate its capabilities,
primarily because of the noise of the physical hardware and
equipment, both intrinsic (non-ideal electronics sensors, limited
spatio-temporal resolution, delays) and extrinsic (unexpected
changes in the environment, external perturbing forces/torques,
etc.). However, the implementation of physical neurorobots is
complex and expensive, therefore limiting their adoption by
neuroscientists to test computational models of brain circuitry.
Besides, it is also challenging to replicate the obtained results
without an exact replica of the equipment used. Finally, the
brain-inspired circuit controlling the robot can have a limited
complexity in terms of realism (neuronal models), the number
of elements (neurons and synapses), activity (spike events),
and functionality (e.g., short and long term plasticity rules) for
the sake of limited computational load required for real-time
computations.

In this paper, we have developed a biologically-inspired
neurorobotic whisker system on a virtual mouse inside the
Neurorobotics Platform (NRP) (Falotico and et al., 2017;
Vannucci et al., 2017; Bornet et al., 2019; Corchado et al., 2019).
This work focuses on reproducing the peripheral parts of the
whisker sensorimotor system and integrating the sensory inputs
with an adaptive cerebellar spiking controller to perform a spatial
learning task.

2. MATERIALS AND METHODS

In this section, the anatomy and physiology of the rodent whisker
system are described, and for each peripheral component (active
vibrissae, sensory pathway, motor pathway, and trigeminal loop)
the neurorobotic implementation is reported. When building
the whisking system, we tried to follow biological evidence,
when available, or bioinspired principles while also achieving a
compromise with computational constraints. For example, for
neural population sizes, we followed information from literature
about neuron type numbers and/or population size ratios while
also considering that a more extensive network size would
also increase the computational load of simulations. Then the
protocol to test the whisking controller, including an adaptive
cerebellar network, is described. It is tailored to the experimental
paradigms used on mice to understand neural mechanisms of
active whisking and reward-based learning. Finally, the software
libraries and computing resources are reported.

2.1. Rodent Whisker System and Its
Neurorobotic Implementation
Given the low number of degrees of freedom involved and
the ease of making tests in laboratory conditions, the rodents
whisker system has become a popular model for studying brain
development, experience-dependent plasticity, active sensation,
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FIGURE 1 | The rodent whisker system. (A) Virtual robotic mouse implemented in the NRP, with two whiskers per side. L0 and R0 are the lower left and right

whiskers, L1 and R1 are the upper whiskers. (B) Block diagram of the rodent whisker system, including sensory and motor pathways, and its integration with

higher-order areas (thalamus and cortex). (C) SNN implementation of the mouse peripheral whisker system; numbers in each block represent the size of the neural

populations included in that brain region. Arrows represent excitatory connections, circles inhibitory connections.

motor control, and sensorimotor integration (Bosman et al.,
2011; Moore et al., 2014).

We have implemented the physical and the neural elements
that constitute the whisker system of a rodent. The first step
was the implementation of active whiskers (or vibrissae) in
the mouse robot, making them controllable and allowing the
reading of dynamic and kinematic parameters and information
about the contact with external objects. Then, it was necessary
to read inputs from the simulated environment and encode
them realistically in the behavior of vibrissal afferents. Once
unprocessed data were gathered from afferents, further
elaboration steps were carried out. Finally, these processed
signals were used to directly control the motor actions, thus
closing the first sensorimotor feedback loop or extracting
higher-level information such as the phase of the whisking when
a contact happened.

Active Vibrissae
Vibrissae are long and sensitive hairs common tomost mammals,
including all primates except humans (Horn, 1970). Mystacial
vibrissae grow on the mystacial pad, located at the sides of the
animal snout, and have a significant role in tactile spatial sensing
and object discrimination (Brecht et al., 1997).

Neurorobotic Implementation
To implement sensible whiskers in the mouse robot model inside
the Neurorobotic Platform, we started from the HBP Mouse

Robot v2 (dimensions: 140 cm from the nose tip to the end
of the tail, 35 cm width, 35 cm height). The 3D models of the
whiskers were defined as rigid cylinders: two right and two left
whiskers, anchored to the mouse nose and with two different
lengths and roll angles (Figure 1A). The lower whiskers (L0 and
R0 for left and right whiskers, respectively) are longer (50 cm
each) and are rotated of 11◦, while the upper whiskers (L1 and
R1) are shorter (25 cm each) and are rotated of 22◦. All whiskers
have a diameter of 1 cm, and their position can be independently
controlled setting a torque at the revolving joints that link them
to the mouse nose.

Sensory Pathway
In the rodent whisker system (Figure 1B), the primary afferents
have their nucleus located in the trigeminal ganglion.

When an object enters the peri-personal space around a
rodent’s head, it will be sensed by the moving whiskers, and
neuronal signals encode its position and shape. This can be done
directly by the primary afferents or after some processing inside
inner brain structures. The two information flows run in parallel
and guarantees redundancy and a different level of elaboration.
The way the position of an external object is represented inside
the vibrissal system of rodents is called vibrissal location coding
(Ahissar and Knutsen, 2016).

The spatial organization of whiskers in the mystacial pad
varies between mammals but is quite similar between rats and
mice (Brecht et al., 1997). Rats’ and mice’s whiskers are aligned
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in five rows, the upper two have four whiskers each, while the
lower three counts seven whiskers each (Bosman et al., 2011). The
whisker length increases exponentially from rostral to caudal in
each vibrissal row (Brecht et al., 1997).

In the vibrissal follicle, three types of mechanoreceptors
are present: Merkel cells, lanceolate endings, and free nerve
endings (Bosman et al., 2011). Merkel cells are slowly adapting
mechanoreceptors, and they mostly signal ongoing movements,
while lanceolate endings are rapidly adapting and respond to fast
changes.

Mechanoreceptors surrounding each whisker transmit
sensory information through cells whose bodies are located in
the TG. Each neuron sends signals from a single vibrissa, while
100–200 TG neurons innervate each follicle (Leiser and Moxon,
2007).

Szwed et al. (2003) induced artificial whisking in rats and
measured the activity of TG cells. According to their results, TG
neurons can be classified into distinct categories based on their
responses to whisking in air and against an object:

• Touch cells responding only when the whisker touches
an object, they can be further divided into contact cells,
responding only at the beginning of the contact, detach cells,
only at the end of the contact, and pressure cells with a tonic
force-dependent response.

• Whisking cells responding only on whisker movement and not
on object contact (if the contact does not affect the movement
of the follicle).

• High threshold cells responding only to strong mechanical
stimulations.

Neurorobotic Implementation
The Neurorobotics Platform allows connecting the environment
to the robot sensors and actuators using so-called transfer
functions. These Python functions define to and fromwhich ROS
topics and neural populations read andwrite. They can be defined
as Robot2Neuron (sensory) or Neuron2Robot (motor) according
to the direction of the information flow.

The transfer function written to implement the follicle sensors
is of the Robot2Neuron kind since it reads the information on
whisker mechanical status and position and then processes the
data to obtain: possible contacts of a whisker against an object,
the contact distance from the snout, the whisker angular position.
The input transfer function is connected to the trigeminal
ganglion neurons (Figure 1C), divided into five populations (TG
pressure, TG high threshold, TG contact, TG detach, and TG
whisking cells). We know that each follicle (i.e., each whisker)
is innervated by 100–200 primary afferents (i.e., TG cells).
Therefore, we have used 100 TG nuclear cells for each whisker,
equally divided in contact, detach, high threshold, pressure, and
whisking, each one implemented with 20 neurons (Szwed et al.,
2003).

TG high threshold cells fire with a fixed rate when the contact
is very close to the snout (<2 cm), constituting de-facto a
labeled line encoding for proximity. TG whisking cells encode
the current whisker position: each neuron has a Gaussian-shaped

sensitivity and fires when the whisker position is within a narrow
range around its maximum sensitive angle.

Motor Pathway
The head of a rodent exploring its peri-personal space is
constantly moving, side-to-side and up-and-down, while its nose
moves side-to-side, and the whiskers scan back-and-forth. These
movements have a rhythmic component that is phase-locked to
sniffing. The whisking frequency varies within ranges, with a
mean value of 7 Hz (in rats) and 11 Hz (in mice) (McElvain et al.,
2018).

The vibrissae representation in the primary motor cortex
occupies around 20% of the motor cortical area. Although
there is no accepted topographic map, some studies obtained
single-whisker responses. In contrast, others observed how the
number of whiskers showing evoked movements changes with
the level of anaesthesia used. In-vivo single-cell microstimulation
consistently evoked multi-whisker movements. There is strong
evidence that the primary motor cortex indirectly controls the
muscle activity projecting to brainstem premotor networks,
acting as central pattern generators (CPG) (Schwarz and
Chakrabarti, 2015).

Motor neurons controlling muscles of the whisker pad are
located in the lateral FN and send motor commands via the
facial nerve. About 80% of the FN neurons evoking whisker
movements induce protractions of a single whisker and about
20% the retraction of multiple whiskers (Bosman et al., 2011).

Neurorobotic Implementation
The CPG has been implemented in the robot mouse as a single
neuron. Controlled by a Robot2Neuron transfer function, the
CPG neuron emits regular spikes at a constant frequency in the
lower-theta band (4 Hz). It is connected with excitatory synapses
to both protractors and retractors neurons, with delays of 1 and
50 ms respectively, in order to generate a rhythmic whisking
movement.

Facial nuclei (Figure 1C) are divided into protractors and
retractors. Protractors have been implemented with four
populations of 20 neurons, where each population controls one
whisker (L0, L1, R0, and R1). There are just two populations for
retractors, one for each side (one population for L0 and L1, and
one for R0 and R1). Sizes of populations are based on biological
evidence. About 25–50 motoneurons innervate each intrinsic
capsular muscle (Bosman et al., 2011). Given the ratios between
protractors and retractors described above, we choose to have 30
facial nuclei per whisker (20 protractors and 10 retractors).

The spiking activity of protractors and retractors is then
transformed into a torque signal, applied to each whisker,
using (1).

torque(t) = αpro · FRpro(t)− αret · FRret(t) (1)

Where FRpro(t) and FRret(t) are the instantaneous firing rates
of protractors and retractors, respectively (in Hz), while αpro

and αret are constant gains, set to 1.5 · 10−3 Nm/Hz and 1.0 ·

10−3 Nm/Hz, respectively. The instantaneous firing rates of a
population are computed as the number of spikes in time bins
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of 10 ms normalized by the number of cells. With 20 neurons, the
instantaneous firing rate can range from 0 to 100 Hz, in steps of
5 Hz.

Trigeminal Loop
The trigeminal loop in the brainstem is a second-order loop
and is the most peripheral of the various loops constituting
the vibrissal sensorimotor system. On the afferent side, neurons
in the TG gather information from the follicles and project
with excitatory synapses to the trigeminal nuclei complex. On
the efferent side, subcortical whisking centers and CPG send
motor commands to the motoneurons in the FN (Nguyen and
Kleinfeld, 2005). Facial motoneurons driving muscles to protract
the vibrissae receive a short latency input (7.5± 0.4 ms) followed
by synaptic excitation from neurons in TN. These connections
result in a pull-push mechanism allowing for rapid modulation
of vibrissa touch during exploration.

Neurorobotic Implementation
When a whisker touches an object, the physical simulator
makes it bounce according to the physical properties of the
simulated materials, producing a noisy contact signal. This offers
us the possibility to apply the trigeminal feedback mechanisms
previously described as a biologically inspired debouncing
mechanisms. First, a neural population (TN contact) has been
created in the trigeminal nuclei, four neurons (one per whisker)
and taking from it excitatory, all-to-one connections (Figure 1C).
Then, TN contact neurons were connected to the facial nuclei
protractors with excitatory synapses having a 7.5 ms delay
(Bellavance et al., 2017) and inhibitory synapses to the retractors.
This increases the joint torque sent to the colliding whiskers to
impede their rebound and keep them in contact with the touched
object. Unfortunately, there is no available information from
biology about TN counts; therefore, we followed the principle of
having fewer neurons than TG since TN is at a higher level in the
sensory stream.

In the TN, we have included an additional population made
of 20 neurons for each whisker that has to encode the phase
of the whisking period at which the contact occurs. TG has
been implemented as an array of coincidence detectors (phase
decoder), one for each TG whisking neuron, gating them in
a logical AND with TG pressure neurons. The result is a
labeled-line encoding of the contact phase. The phase decoder
is implemented by a transfer function that takes input from
afferents in TG (pressure and whisking cells) and projects to the
TN phase population in the trigeminal nuclei (Figure 1C). The
same spike rate is propagated downward for each TG whisking
cell only if pressure cells are firing. The phase information is
needed for the precise localization of the object touched by the
whiskers with respect to the mouse head.

Table 1 summarizes the connectivity between the different
populations of the whisker system.

2.2. Closed-Loop Learning Experiments
The peripheral components of the whisker system described
above have been tested inside the Neurorobotics Platform in
free whisking conditions. The mouse moved its whiskers in

TABLE 1 | Connectivity of the SNN whisker system model.

Synaptic connection Type Number Convergence Divergence

CPG-FN protractors Excitatory 80 1 80

CPG-FN retractors Excitatory 40 1 40

TG contact-TN contact Excitatory 80 20 1

TN contact-FN protractors Excitatory 80 1 20

TN contact-FN retractors Inhibitory 80 1 20

an empty environment or touching an object, and the spiking
activity of FN, TG, and TN has been recorded to verify the proper
functioning of the developed system.

Experimental Whisking-Based Object Localization

Task
To provide a meaningful example of how the developed mouse
whisker system can be used to build in-silico neurorobotic
experiments, we reproduced an experimental study investigating
the cerebellum’s involvement in a whisking-based object
localization task in head-fixed mice (Rahmati et al., 2014).
Rahmati and colleagues tested two populations of mice, one wild-
type (Control) and one knock-out (L7-PP2B), suffering from
genetically impaired cerebellar plasticity. Water-deprived mice
had to learn to locate a vertical bar in their whisker field and lick
a water droplet (GO trial) within a time response window or to
refrain from licking (NOGO trial) according to the bar position.

Both mouse populations started with high hit rates and
high false alarm rates during the first sessions. After the first
four training sessions, control mice showed faster learning
capabilities, reducing their licking response to NOGO trials.
Conversely, knock-out mice randomly reduced their licking,
staying close to the guess rate (Rahmati et al., 2014). Therefore,
they concluded that cerebellar plasticity has a crucial role in this
sophisticated cognitive task requiring strict temporal processing.

Neurorobotic Implementation of the Whisking-Based

Object Localization Task
In the NRP, a licking-like movement has been set for the virtual
mouse: it has to raise its head and touch a shelf positioned just
above. A vertical bar is placed in the left whisker field during GO
trials, and if the mouse raises its head, a reward signal is triggered.
During NOGO trials, the bar is on the right, and if the mouse
raises its head it does not receive any reward.

The experiment is composed of short trials of 2 s, divided into
GO and NOGO trials. The vertical bar is displayed in the mouse
whisker field for 1 s, while the response window continues till the
end of the trial.

Trials were grouped in sessions composed of 10 trials, 5
GO and 5 NOGO, performed in a randomized sequence. The
neurorobotic experiment included 27 sessions, following the
experimental protocol. In order to evaluate the learning of the
controller, for each session, we recorded the percentage of correct
responses in GO trials (“hit rate”) and the percentage of responses
in NOGO trials (“false alarms”).
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FIGURE 2 | SNN implementation of the cerebellum. Whisking sensory signals

are conveyed to the cerebellar MFs from TG pressure and TN phase neurons,

while the reward signal during correct GO trials reaches the IO neurons; the

cerebellum controls the output motor response (head movement) according to

DCN activity (i.e., generation of a response, head raise, when the firing rate

exceeds a set threshold). Arrows and circles represent excitatory and inhibitory

connections, respectively.

Cerebellar SNN Model
To investigate in-silico the role of cerebellar plasticity during
the task, we integrated a well-established cerebellar-inspired
SNN model into the whisker system described above. Recently,
a detailed spiking neural network model of the cerebellar
microcircuit proved able to reproduce multiple cerebellar-driven
tasks (Casellato et al., 2014; Antonietti et al., 2016, 2019;
Geminiani et al., 2017; Corchado et al., 2019). Here, we used
the model to drive learning in the in-silico whisking-based object
localization task.

The SNN cerebellar microcircuit (Figure 2) was populated
with leaky Integrate&Fire neurons, distinguishing between
different neural groups. Mossy Fibers (MFs), the input to the
cerebellar module, encode the state of the body-environment
system: the whisker current position and the localization of an
eventual object, e.g., the cue signaling a GO trial. Therefore,
MFs receive excitatory connections from TG pressure cells and
TN phase cells. Granular Cells (GrCs) represent in a sparse
way the input from the MFs. Inferior Olive neurons (IOs), the
other input to the cerebellar module, encode the reward provided
when a response is correctly generated (i.e., in a GO trial). In
fact, this neural population responds to attention or surprise
signals. Purkinje Cells (PCs) integrate the sparse information
coming from the GrCs through the Parallel Fibers (PFs) with
the one arriving from the climbing fibers, relaying IO spikes.
Deep Cerebellar Nuclei (DCN), the only output of the cerebellar
module, generate the response (i.e., the licking event). The firing
rate of DCN is monitored, and a response is detected when
the firing rate exceeds a pre-defined threshold (i.e., 80 Hz). The
network structure and connectivity are reported in Figure 2 and
Table 2.

The cerebellar SNN model included one plasticity site, at the
cortical level, between PFs and PCs, based on a well-known
kind of STDP (Luque et al., 2011, 2016; D’Angelo et al., 2016).
Synaptic weights between PF-PC plasticity are modulated by
IO activity (IOs-PCs connections in Table 2 are indicated as
“teaching”), depending on the difference between the pre- and
post-synaptic firing times (Tolu et al., 2013; Geminiani et al.,

TABLE 2 | Connectivity of the SNN cerebellar model.

Synaptic connection Type Number Convergence Divergence

TG pressure-MFs Excitatory 80 1 1

TN phase-MFs Excitatory 80 1 1

MFs-GrCs Excitatory 8,000 4 80

PFs-PCs Excitatory 115,200 1,600 58

IOs-PCs Teaching 72 1 1

MFs-DCN Excitatory 3,600 100 36

PCs-DCN Inhibitory 72 2 1

2017; Ojeda et al., 2017). Long-Term Potentiation (LTP) and
Long-Term Depression (LTD) are the two possible changes that
each synaptic connection can undergo. Synaptic weights increase
(LTP) whenever a PC only receives an input from a PF, while they
decrease (LTD) when associated with IO inputs (Hansel et al.,
2001; Jörntell and Hansel, 2006; Rasmussen et al., 2013; Ito et al.,
2014; Hoxha et al., 2016). The learning rule can be formalized as
in (2).

1WPFi→PCj (t)

=











LTD

tIOspikej
∫

−∞

K(t − x)δPFi (t − x)dx if PCj is active and t = tIOspikej

LTP if PCj is active and t 6= tIOspikej
(2)

where:

δPFi (s) =

{

1 if PFi is active at time s

0 otherwise
(3)

and the kernel function is:

K(z) = e−(z−t0)

(

sin
(

2π(z − t0)
)

)20

(4)

where tIOspikej is the time when IOj emits a spike; K(z) is the
kernel function, which has its peak at t0 (100 ms) before tIOspikej .
Its convolution with the PF spike train is integrated in the time
window up to the tIOspikej to account for the time correlation
between PF (state) and IO (error/reward) spikes in the LTD (2).
The plastic learning rule is characterized by two constants, LTP
and LTD, which regulate the amount of synaptic change. These
constants cannot be directly computed from physiological data,
but they have been set to values tuned in related modeling studies
(LTP = 0.01, LTD = -0.03) (Antonietti et al., 2019). A PC is active
at a certain instant when it produces a spike in that instant.
Similarly for a PF, i.e., it is active when the granule cell to which it
belongs fires at that instant. The learning rule is event-based and
therefore is evaluated every time there is a spike on PCj. In fact,
this is the mandatory condition of having LTD [upper branch of
(2)] or LTP [lower branch of (2)].
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FIGURE 3 | (A) The experimental protocol: during GO trials, a sensory cue (a small bar, depicted as a black dot) is placed in the left whisker field of the mouse.

Correct responses lead to a reward (water drop). During NOGO trials, the sensory cue is placed in the right whisker field, and a response does not result in any

reward. (B) Spiking activity of motor neurons for protraction and retraction during one trial. Twenty protractors neurons for each whisker and 20 retractor neurons for

each side (L and R) fire under the control of the CPG neuron at 4 Hz. The resulting displacement of each whisker is depicted in the upper part of the panel. (C) Angular

displacement of the four whiskers during one GO and one NOGO trial. During the GO trial, in the first second, left whiskers hit the sensory cue bar, placed in the left

whisker field. On the other hand, during the NOGO trial, the right whiskers hit the sensory cue bar placed in the right whisker field.

Experimental and In-silico Cerebellar Impairment
PC-specific PP2B knock-out (L7-PP2B) mice show deficits
in motor learning, consolidation, and procedural learning
(Schonewille et al., 2010; Gao et al., 2012) while behaving
normally in standard non-motor tasks (Galliano et al., 2013).
In their experiment, Rahmati and colleagues tested how the
impairment of the PF-PC LTP influenced the performance in
the whisking-based object localization task (Figure 3A). They
demonstrated that learning in L7-PP2B mice was severely
impaired, indicating that this task can depend, at least to some
extent, on cerebellar plasticity.

We recreated in-silico the impaired cerebellum dramatically
reducing the constant LTP [see (2)] to 10% (LTPL7−PP2B = 0.001).
We repeated each experiment (i.e., 27 sessions, 10 trials each,
therefore 270 trials) of the localization protocol 10 times, using
the impaired cerebellar model. Then we compared the curves of
hit rate and false alarms between L7-PP2B and control mice.

2.3. Hardware and Software
For the simulations, we have used a local installation of the NRP
version 3.1, exploiting Python 3.8 (RRID:SCR_008394), Gazebo
11 (Aguero et al., 2015), and ROS Noetic (Quigley et al., 2009).

The simulation of the controller has been done with NEST,
a software simulator for spiking neural networks (Gewaltig and
Diesmann, 2007; Eppler et al., 2008; Plesser et al., 2015). We used
NEST 2.18 (Jordan et al., 2019) (RRID:SCR_002963), interfaced
through PyNN 0.9.5 (Davison, 2008) (RRID:SCR_002963).

All the simulations have been carried out on a Desktop PC
provided with Intel Core i7-2600 CPU @ 3.40 GHz and 16 GB of
RAM, running 64 bit Ubuntu 20.04.2 LTS.

3. RESULTS

We successfully developed a SNN model of the sensorimotor
peripheral whisker system, modeling trigeminal ganglion,
trigeminal nuclei, facial nuclei, and central pattern generator
neuronal populations. This peripheral SNN was embedded in a
virtual mouse robot, and it was properly connected to an adaptive
cerebellar SNN. The whole system was able to drive active
whisking with learning capability, matching neural correlates of
behavior experimentally recorded in mice.

3.1. Motor Pathway
The four whiskers are controlled by the motoneurons present
in the FN. They are working under the control of a single CPG
neuron, firing at 4 Hz, which rhythmically excites protractors and
retractors neurons. Motoneurons spikes are then transformed
into torques applied independently at each whisker. As shown in
Figure 3B, during a free whisking period, the spiking pattern of
the four groups of neurons is very similar, with a precise temporal
alternation between protractors, causing the whisker to move
forward, and retractors, pulling the whiskers back to the initial
position.Whiskers’ movements are slightly shifted with respect to
the spikes due to the delays introduced by the conversion between
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FIGURE 4 | (A) Spiking activity of the Trigeminal Ganglion (TG) neurons during

GO and NOGO trials. Each row represents the activity of one neuron, and

different shades of red are used to plot the activity of the four groups of TG

neurons. The inset shows a magnified portion of the full scatterplot, focusing

on a single protraction-retraction movement of the whiskers. (B) Firing rates of

TG populations were measured experimentally during a single

protraction-retraction movement, as reported in Ahissar and Knutsen (2016).

Vertical dashed lines represent the four main events: the start of the

protraction, contact of the whisker against an object, the start of the retraction,

detach of the whisker from the object. (C) Firing rates were recorded from the

simulation of the SNN model of TG populations. The length of each bin is 10

ms. Colors are the same as (A,B).

spikes and torques and by the mechanical inertia of the whiskers.
The mean firing rate of protractors and retractors neurons is
4 Hz, with a peak firing rate of 49 and 55 Hz, respectively.
Figure 3C shows how the whisker trajectory changes during GO
and NOGO trials. Namely, in GO trials, a bar is placed for 1
s in the left whisker field; therefore, whiskers L0 and L1 hit it,
and their range of motion is reduced to ∼ 15 degrees. The same
behavior can be observed during NOGO trials for whiskers R0
and R1.

3.2. Sensory Pathway
Neurons in the TG and TN compose the sensory pathway,
and TG neurons do the first elaboration stage. Each group of
TG shows specific activity patterns depending on its function
(Figure 4A). TG whisking neurons follow the angular profile of

each of the four whiskers; it is possible to notice the differences
between GO and NOGO trials, where left and right whiskers
change their spatial profile when hitting the bar in the first second
of each trial. Their mean firing rate is 4 (± 2) Hz. TG contact
neurons fire at ∼ 5 Hz when the whisker hits the bar, while
TG detach neurons when the whisker is no longer in contact
with the bar because the bar has been removed or because the
whisker has been retracted. TG pressure neurons are active for
the whole duration of the contact between the whisker and the
bar (27 ± 18 Hz). In the SNN model, we have included an
additional population, TG high threshold neurons, which are
activated when the contact happens close to the nose of the robot
(<2 cm). However, in our protocol, the bar is placed at a higher
distance, therefore, those neurons were never activated.

Figures 4B,C provide a direct comparison between the firing
rates of the different TG populations during one whisker
movement. Figure 4B has been adapted from Ahissar and
Knutsen (2016), while in Figure 3C the firing rates of the neurons
in a specific trial (the magnified inset from Figure 4A) have been
computed with bins of 10 ms. It is possible to appreciate that
in-silico TG neurons show a behavior comparable to the one of
biological neurons, especially for the timing of their response
with respect to the events of protraction, contact, detach, and
retraction.

3.3. Learning Performance
We have shown that the SNN representing the sensorimotor
whisker system can encode the sensory and motor signals
exchanged with a robotic mouse in a biologically realistic way. To
demonstrate how this system can be used to recreate a complex
behavioral test, we connected the whisking sensory system to an
adaptive SNN, and we challenged the integrated system in the
object localization experiment proposed by Rahmati et al. (2014).

The aim of the mouse is to lick during the GO trials and
to refrain from licking during the NOGO trials, distinguishing
between the two conditions according to the position of a bar
placed into their whisker field. Figure 5B reports the percentages
of correct licks in GO trials and the number of incorrect licks in
NOGO trials. The reference behavioral data recorded in animals
are reported in Figure 5A.

Considering control animals, it is possible to see that mice lick
continuously in the first sessions (i.e., hit rate and false alarms
are both close to 100%) without distinguishing between GO and
NOGO trials. While the experiment proceeds, the animals learn
to refrain from licking during the NOGO trials. In fact, the
percentage of false alarms decreases toward 0%. At the same time,
the rate of correct licks remains close to 100%.

Control and L7-PP2B mice differed in their learning skills.
Both started the training with high hit and false alarm rates. As
a result, they performed close to the guess rate. However, during
the subsequent sessions, control mice consistently increased
accuracy, specifically reducing their response to NOGO trials.
In contrast, L7-PP2B mice continue for more sessions to
not discriminate between GO and NOGO trials. In the later
sessions, also L7-PP2B diminished their licks in the NOGO trials.
Still, their learning trajectories remained noisier than those of
controls, taking a longer time to reach high-performance levels.
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FIGURE 5 | (A) Learning curves recorded in the experiment performed by Rahmati et al. (2014). The upper row shows the Hit rate (i.e., the percentage of correct

responses in GO trials) along with sessions, where each session is composed of 10 trials. The lower row shows the False alarms (i.e., the percentage of incorrect

responses in NOGO trials) along with sessions. The blue and red curves show the mean values for control animals and knock-out (L7-PP2B) mice. Shaded areas

show the standard deviation. (B) Learning curves recorded from the in-silico experiments (10 control and 10 knock-out models). Colors are the same as in (A). (C)

Spiking activity of the DCN neurons during GO (green) and NOGO (red) trials, in the first session (left column) and after 10 sessions of training (right column). The first

row reports the activity of one Control simulation, while the second row reports one knock-out simulation. Each dot is a spike of one of the 36 DCN in the cerebellar

network. The order of GO and NOGO trials is randomized for each session and simulation, but all sessions have 5 GO and 5 NOGO trials.

This observation suggested that a functional LTP mechanism
was essential to obtain a superior ability to rapidly discriminate
between GO and NOGO cues and then respond accordingly.

The performances and the learning trajectories of control
and L7-PP2B in-silico models (Figure 5B) are similar to their
biological counterparts. While both models perfectly recognize
GO trials, the control model learned to refrain from licking in
NOGO trials faster and stably. The variability present between
the 10 different tests is due to the various sequences of GO and
NOGO trials, which were randomly extracted for each session.

Looking at the spiking activity of the cerebellar network,
particularly in the DCN population (Figure 5C), which drives
the response of the mouse, it is possible to appreciate the

different evolution in the spiking patterns. Control and L7-PP2B
simulations have a similar activity in the DCN during the 10
trials of the first session, the neurons fire regardless of the input
arriving from the whisker system (right or left contacts), and
therefore DCN generate a response during both GO and NOGO
trials. After 10 sessions of training, the Control simulation shows
intense DCN activity during GO trials and weak or null activity
during NOGO trials, proving that the cerebellar network has
learned the association between left/right stimulation with the
presence/absence of the reward. This behavior is impaired for the
L7-PP2B simulation, in fact, there are still several DCN that are
firing during both GO andNOGO trials, thus causing a high False
alarm rate.
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Each session took about 140 min for a simulated time of 540 s
(i.e., 270 trials of 2 s each), with a slow down with respect to the
real-time equal to∼ 15 times. The maximumRAM consumption
was equal to∼ 15 GB.

4. DISCUSSION AND CONCLUSIONS

We developed a spiking neural model of the mouse whisker
system, covering both sensory and motor pathways and
their interconnections. The implemented system considers the
different roles that groups of cells have at the various stages
of sensorimotor processing, providing coding for complex
information such as the object localization performed during the
active whisking. This system, properly connected to an adaptive
cerebellar-inspired spiking network, reproduced complex in-vivo
experiments using the neurorobotics platform.

The paper focuses on the methodological aspects of the
neurorobotics implementation of the whisker system, including
its bioinspired components and their interconnections. In
addition, we aimed at developing and making available a spiking
neural network controller that can be incorporated into a virtual
robotic platform. Specifically, the developed whisker system
model can be exploited to study the signal transmission in
rodent whisking, which is a relevant paradigm of sensorimotor
integration. We have then included an exemplary application to
show how the system can be used to emulate an experimental
protocol that involves the whisker system.

The peripheral whisker system showed appropriate discharge
patterns as in in-vivo experimental recordings during whisking,
in precise time windows of exploration and object interaction and
depending on which side the stimulus was presented within the
whisker field.

The peripheral system, when wired to a cerebellar SNN with
plasticity and tested in an object-localization task, was able to
reduce the number of useless responses along a sequence of trials
(triggered by the NOGO trials) which did not correspond to any
reward. However, this learning curve was slowed down when the
plasticity parameter (LTP rate) of the cerebellar SNNwas strongly
reduced, as in knock-out mice recorded experimentally.

The integrated circuit, entirely made of spiking neurons,
proved the good integration of different ways of neural coding.
In fact, while the main parameter correlating response patterns to
behavior was the average firing frequency of the DCNpopulation,
other elements of the whisker system used a variety of encoding
strategies. For instance, the time-coded activity of TG contact and
TG detach cells. Also, the TG whisking cells encode the current
whisker position by means of their Gaussian-shaped sensitivity.

The model here proposed can be used as a reference for future
advanced neurorobots and neuroscience in-silico experiments to
investigate the role of cerebro-cerebellar loops and cerebellar
physiology in whisking protocols. We invite computational
neuroscientists to leverage our system to implement in-silico
experiments to shed light on unsolved scientific questions. There
are many possible experiments and manipulations that can be
done on the proposed system (e.g., lesion studies with the
deactivation of one or more neural populations). However, it is

advisable to carefully think of what are experiments having a
feasible counterpart in the biological world.

4.1. Limitations and Future Challenges
Considering the mechanical aspects, a limitation of the physical
simulator (Gazebo) regards the properties of the materials used.
For example, rodents rely on whiskers bending to recognize
the shape of objects and on their resonance frequencies to
detect textures (Neimark et al., 2003; Jones et al., 2009), but the
current state of the simulators used by the NRP supports only
rigid bodies. Using only stiff whiskers makes object recognition
tasks more difficult unless maybe using large arrays of finely
spaced whiskers. Therefore, this work focused on extracting only
spatial information, which can be easily performed with just rigid
whiskers, and not more sophisticated features of the touched
object.

Much of the work on the whisker system consisted in the
encoding of information in TG primary afferents, ignoring all
of the internal brain structures involved in the whisker system,
in particular, the somatotopic mapping emerging in the TN
and propagated in the thalamocortical system. Loops between
the thalamus and cortex have been cited as a possible location
for mechanisms decoding phase information with the use of
neuronal phase-locking loops. A possible future development can
be exploring other loops in the brainstem outside the TN, such as
the ones involving the superior colliculus and their interactions
with attention and foveation (Kaneshige et al., 2018).

The absence of bidirectional interactions with the
sensorimotor cortex does not allow to study voluntary
modulation of the whisking action. However, lesion studies
have shown that primary sensory cortex ablation prior to
learning did not affect whisking task acquisition (Hong et al.,
2018). The interaction with higher-level brain areas does not
seem to be needed with a simple free whisking task like the one
we presented. Given that the model is based on open-source
simulators and the code is made available to the community,
neuroscientists could easily integrate spiking models of the
sensorimotor cortex in our model in future work to investigate
voluntary control of whisking movements. In addition, it is
known that multiple brain areas interact to generate behaviors.
However, brain models including only some of the involved
circuits can help clarify the specific roles of these subcircuits,
isolating their contribution to the output behaviors.

The work on the cerebellar control mechanisms was mainly
limited by the long simulation times of the NRP, which influenced
the choice of network and learning parameters. Given the
limited number of mossy fibers and granule cells (100 and
2,000, respectively), the cerebellar network showed a reduced
generalization capability. The discrimination task, in this case,
was between two very different conditions (object hit with the
left or with the right whiskers). Mice have a higher resolution
since they can recognize slightly moved objects or objects with
different textures. With larger populations, training could make
different sub-populations respond to other inputs, encoding for
more complex features of the sensed environment. Future work
can explore this hypothesis, making rigorous analyses on cell
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responses and optimizing the network size to the variety of
input patterns.

We have chosen I&F neuron models as building blocks
of the SNN network. However, nowadays, there are much
more complex models, taking into account many mechanisms
related to membrane potential and ionic currents (biophysical
models; Hines and Carnevale, 2001) or more advanced I&F
neuron models (Izhikevich, 2003; Geminiani et al., 2019). Even
though these models are more accurate representations of the
biological elements, their complexity would require too much
computational power to simulate a network made of thousands
of neurons, which would eventually prevent embedding these
models as controllers in neurorobots. Therefore, the model we
are proposing is a trade-off between computational efficiency
and biological realism. Similarly, the system can work with more
or fewer neurons, but the performances will change from both
behavioral and computational points of view. More neurons
will yield a higher resolution and a more precise frequency
modulation, at the same time with an increase in computational
complexity. The whisker system that we propose has numbers
in the same order of magnitude as the biological entities, with
some simplifications (e.g., only four whiskers) needed for feasible
simulations.

NEST-based simulations offer a great possibility to develop
and test biologically inspired models but require high-
performance computing for large-scale models (Jordan et al.,
2018) and therefore do not allow performances sufficient to
control robots in real-world situations. This could enable testing
the robustness of the bioinspired controller against common
environmental noise, increasing the similarity with experimental
results [e.g., the imperfect (<100%) hit rates accuracies achieved
by experimental animals]. An already available solution to
gain real-time performances can be to rely on spiking neural
networks running on neuromorphic hardware. Very recently,
a cerebellar-inspired model made of 97,000 neurons and 4.2
million synapses has been implemented on the neuromorphic
platform SpiNNaker (Bogdan et al., 2021). This solution could
be applicable if the plasticity rule used at PF-PC synapses,
supervised by IO activity, will be implemented on this or other
neuromorphic systems. On the other hand, the SNN whisker
system here presented can be simulated on SpiNNaker chips
since it has been developed using PyNN, which supports both
NEST and SpiNNaker as simulators.

4.2. Conclusions
Neuroscientists have not fully uncovered the neural mechanisms
for mouse whisking, but it is clear that it involves a complex
architecture composed of multiple sensorimotor loops. In this
work, we developed and tested a spiking computational model of
the peripheral whisker system, reproducing the neural dynamics
observed in its different components and embedded in a virtual
mouse neurorobot controlled by a cerebellar SNN.

The virtual mouse enriched with this peripheral whisker
system may be connected to more realistic multi-area brain
models to show how these regions together may control
the precise timing of whisker movements and coordinate
whisker perception.

In the future, refined versions of the model could exhibit
more advanced features, such as the recognition of surface
textures, identification of movements of the touched object,
or other complex touch-guided behaviors. In addition, from a
technological perspective, neuromorphic implementations can
speed up the computation until reaching real-time performances,
allowing the possibility of embedding the whisker system in
physical robots.
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Supplementary Video 1 | The video makes it possible to see the mouse whisker

system in action. First, the free whisking activity is shown: protraction and

retraction of the four whiskers are driven by the neural activity of the Facial Nuclei.

Then, the object-localization protocol is shown. The mouse touches with the

whiskers the bar that is placed in its left (GO trials) or right (NOGO trials) whisker

fields. A small shelf is positioned vertically above the mouse’s nose, it changes

color according to the trial condition (GO: green, NOGO: red). The DCN activity of

the cerebellar circuit triggers the response of the mouse, which raises its head to

touch the shelf. A reward is sent to the IO neurons of the cerebellar circuit only

during GO trials (correct responses) while it is not sent during NOGO trials (false

hits). In early trials, the mouse is responding during both GO and NOGO trials

since it has not learned yet that only GO trials provide a reward. During late trials,

the mouse learned to respond during GO trial only, refraining from raising its head

during NOGO trials. Note that there are some glitches (e.g., the tremor of the 3D

mesh representing the mouse body and the apparent random detachment of the

whiskers) that are just rendering errors of the NRP while the actual physical

behavior is correctly simulated.
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