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Abstract Recent models represent gas (methane) migration in low permeability8

media as a weighted sum of various contributions, each associated with a given9

flow regime. These models typically embed numerous chemical/physical parame-10

ters that cannot be easily and unambiguously evaluated via experimental investiga-11

tions. In this context, modern sensitivity analysis techniques enable us to diagnose12

the behavior of a given model through the quantification of the importance and13

role of model input uncertainties with respect to a target model output. Here,14

we rely on two global sensitivity analysis approaches and metrics (i.e., variance-15

based Sobol’ indices and moment-based AMA indices) to assess the behavior of16

a recent interpretive model that conceptualizes gas migration as the sum of a17

surface diffusion mechanism and two weighted bulk flow components. We quan-18

titatively investigate the impact of (i) each uncertain model parameter and (ii)19

the type of their associated probability distribution on the evaluation of methane20

flow. We then derive the structure of an effective diffusion coefficient embedding21

all complex mechanisms of the model considered and allowing quantification of22

the relative contribution of each flow mechanism to the overall gas flow.23

Article Highlights24

– Relative importance of parameters driving gas flow in low permeability media25

is assessed.26

– The Influence of parameter probability distribution on gas flow statistics is27

appraised.28

– A simple effective diffusion model embedding major methane flow mechanisms29

is derived.30
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1 Introduction32

Methane is recognized as a potential energy source to assist transition to a car-33

bon free energy landscape (Hughes, 2013), considerable reserves of methane being34

associated with subsurface reservoirs worldwide (U.S. Energy Information Admin-35

istration, 2015). After its generation, this gas typically accumulates in reservoir36

regions subdued to low permeability layers (i.e., caprocks) that prevent its upward37

migration (Dembicki-Jr., 2017). Due to the partial sealing efficiency of caprocks,38

some amount of gaseous phase hydrocarbons might cross such barrier and reser-39

voir gas can then be released into the overburden to (eventually) reach the surface40

(Schlömer and Krooss, 1997; Schloemer and Krooss, 2004). In this context, appro-41

priate modeling approaches to quantify gas migration in low-permeability geoma-42

terials can assist the appraisal of the feasibility of a methane recovery project.43

A variety of models depicting gas movement in low permeability geomaterials44

have been proposed (Wu et al., 2016; Sun et al., 2017; Rani et al., 2018; Wang45

et al., 2019). These models typically estimate the mass flow rate of gas as the46

result of a combination of various gas transport mechanisms taking place across47

the porous system. Parameters associated with these models, describing chemical,48

mechanical, flow, and transport features governing feedbacks between gas and the49

host rock matrix are always affected by uncertainty. The conceptual model of Wu50

et al. (2016) depicts the mass flow rate of a gas across a low permeability medium51

as the sum of three key processes: (i) a surface diffusion, and two weighted bulk52

diffusion components corresponding to (ii) slip flow and (iii) Knudsen diffusion.53

This model takes into account changes in the porous system caused by mechanical54

deformation and adsorption/desorption dynamics. The model embeds numerous55

parameters which are typically estimated through (direct or indirect) laboratory-56

scale experiments. Considering the set of complex mechanisms involved, these57

types of experiments are costly, time demanding, and their results are prone to58

uncertainty. The latter is also related to the intrinsic difficulties linked to replicat-59

ing operational field conditions at the laboratory scale as well as to the challenges60

stemming from transferability of results to heterogeneous field scale settings (Pan61

et al., 2010; Yuan et al., 2014; Tan et al., 2018).62

Due to our still incomplete knowledge of the critical mechanisms driving gas63

movement in low permeability media (Singh and Myong, 2018; Javadpour et al.,64

2021) and the complexities associated with the estimation of model parameters,65

model outputs should be carefully analyzed considering all possible (aleatoric and66

epistemic) sources of uncertainty. In this sense, sensitivity analysis approaches are67

important tools enabling us to (i) quantify uncertainty, (ii) enhance our under-68

standing of the relationships between model inputs and outputs, and (iii) tackle69

the challenges of model- and data-driven design of experiments (Dell’Oca et al.,70

2017). Hence, sensitivity analysis techniques may be effectively used in the context71

of methane flow modeling efforts to (i) quantify and rank the contribution of our72

lack of knowledge on each model parameter to the uncertainty associated with73

model outputs; (ii) identify model input-output relationships; and (iii) enhance74

the quality of parameter estimation workflows, upon focusing efforts on param-75

eters with the highest influence to target model outputs (Saltelli et al., 2010;76
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Dell’Oca et al., 2020). In cases where parameters associated with a model have77

already been estimated (e.g., through model calibration), the main purpose of a78

Global Sensitivity Analysis, GSA, is to quantify the uncertainty still remaining af-79

ter model calibration, thus guiding additional efforts for its characterization (e.g.,80

Dell’Oca et al. (2020) and references therein). The probability density function81

(pdf) associated with each model parameter at this stage will possibly be differ-82

ent from the one employed before model calibration and some model parameters83

might be associated with a reduced uncertainty. In cases where processes are de-84

scribed through black-box models, GSA can be employed to quantify the influence85

that the variability of hyperparameters embedded in these models can have on86

their outcomes. We note that if uncertainty of some model parameters is further87

constrained, for example through stochastic inverse modeling (e.g., Ceresa et al.88

(2021)), results of the uncertainty quantification might also change. In this work89

we illustrate the methodological framework and the workflow required for GSA90

of a methane flow model and provide the elements to perform such an analysis91

for diverse scenarios. In order to assist this process, we provide a repository with92

scripts developed during this work (see declaration section).93

In this work we rely on GSA approaches to study the behavior of the afore-94

mentioned gas migration model targeting low permeability media. While previous95

works focus on only a few selected model parameters (Song et al., 2016; Wu et al.,96

2017; Sun et al., 2017), a comprehensive diagnosis of the system behavior based97

on rigorous and modern GSA approaches taking into account the way all model98

parameters influence model output uncertainty is still missing. Here, we do so99

by implementing two GSA techniques, respectively based on the evaluation of (i)100

the classical (variance-based) Sobol’ indices (Saltelli and Sobol’, 1995) and (ii)101

the recent moment-based GSA metrics proposed by Dell’Oca et al. (2017). We102

recall that GSA approaches relying on Sobol’ indices are widely used to quantify103

the relative expected reduction of variance of the target model output due to the104

knowledge of (or conditioning on) a given parameter. These have been employed105

in several applications, including diagnosis of models related to, e.g., flood risk106

assessment (Koks et al., 2015), overpressure risk assessment in sedimentary basins107

(Colombo et al., 2017), and energy storage (Xiao et al., 2021). A critical limita-108

tion of variance-based GSA methodologies is that the uncertainty of the output is109

considered to be completely characterized by its variance. Such an assumption can110

lead to an incomplete characterization of the system behavior. The moment-based111

GSA approach introduced by Dell’Oca et al. (2017) is designed to enhance our112

capability to evidence model behavior upon including the quantification of model113

parameter uncertainty on the (statistical) moments of the pdf of a model output114

of interest. As such, this comprehensive approach yields information enabling us115

to characterize various aspects of uncertainty, without being limited solely to the116

concept of variance. The ensuing indices (termed AMA indices, after the initials117

of the authors (Dell’Oca et al., 2017)) have been effectively employed in a variety118

of contexts, including geophysical analyses related to gravimetric responses due to119

pumping tests (Maina et al., 2021), biochemical degradation of compounds such120

as gliphosate in soils (la Cecilia et al., 2020), and groundwater flow, including121

its feedbacks with evapotranspiration (Bianchi Janetti et al., 2019; Maina and122

Siirila-Woodburn, 2020).123

This work is organized as follows: Section 2.1 briefly illustrates the complete124

model we consider to describe methane flow in low permeability media. The main125
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theoretical elements of the GSA approaches employed are described in Section126

2.2. Key results of the GSA are presented in Section 3. Here, we also derive and127

discuss novel effective diffusive formulations, which have the ability to encapsulate128

all physical-chemical mechanism included in the full methane flow model described129

in Section 2.1. Finally, conclusions are drawn in Section 4.130

2 Materials and Methods131

2.1 Gas flow in low permeability media132

Models adopted to quantify gas migration in low permeability media can be clas-133

sified according to their complexity, in terms of, e.g., conceptualization and math-134

ematical rendering of the embedded processes, as well as number of their char-135

acteristic parameters. Among existing models associated with a high degree of136

complexity and including multiple transport processes jointly contributing to the137

total gas migration across the system (Mehmani et al., 2013; Wu et al., 2015a,138

2016, 2017; Sun et al., 2017; Zhang et al., 2018; Javadpour et al., 2021), here we139

consider the model of Wu et al. (2016). The selected model allows considering me-140

chanical deformation as well as relevant features associated with real gases such141

as variations in the gas viscosity (η), and the effects of the compressibility (Cg)142

and gas deviation (Z) factors caused by pressure and temperature changes.143

The model introduced by Wu et al. (2016) rests on a conceptual picture ac-144

cording to which the total mass flow rate of gas per unit of area (J) is rendered145

through the sum of (i) a surface diffusion (Js) and two weighted bulk diffusion146

components, corresponding to (ii) slip flow (Jv), and (iii) Knudsen diffusion (Jk),147

i.e.,148

J = Js + wvJv + wkJk. (1)

The surface diffusion component is given by (Wu et al., 2015b)149

Js = −ζms
DsCsc

p

∂p

∂l
, (2)

where p is (gas) pore pressure and ∂p
∂l represents the strength of the driving force150

through the system, corresponding to the spatial gradient of gas pore pressure.151

The (dimensionless) coefficient ζms is intended to take into account the possibility152

of applying the model (originally developed for capillary tubes) to a complex pore153

space and is defined in Equation (17) of the Appendix where it is shown that154

ζms depends on porosity (ϕ), tortuosity (τ), pore size (r) (i.e. pore radius), and155

gas coverage on the geomaterial (θ). The term Ds in Equation (2) is the surface156

diffusion coefficient, which is expressed (as shown in Equation (25)) in terms of gas157

temperature (T ), isosteric adsorption heat of the geomaterial (∆H), a parameter158

(κ) related to the blockage/migration ratio of the adsorbed molecules, and θ.159

Finally, Csc, defined in Equation (28), is the adsorbed concentration, which in160

turn depends on θ and on the gas molecule diameter (dm).161

The model proposed by Wu et al. (2016) allows representing the mechanical162

deformation of the pore space (in terms of variation of permeability and porosity163

with pressure) through power-law relationships and making use of the classical164

Kozeny-Carman equation. Here, we rest on their original model formulation, which165
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naturally leads to Equations (19) and (20), clearly evidencing that both r and ϕ166

evolve with p as a function of a reference pore radius (ro) and reference porosity167

(ϕo), respectively.168

The weight coefficients of the slip flow (wv) and Knudsen diffusion (wk) com-169

ponents in Equation (1) are given by (Wu et al., 2016)170

wv =
1

1 +Kn
, (3)

171

wk =
1

1 + 1/Kn
. (4)

Here, Kn is the (dimensionless) Knudsen number defined as172

Kn =
λ

2r
, (5)

with173

λ =
η

p

√
πZRT

2M
, (6)

where M and R are the gas molar mass and universal constant, respectively. Note174

that Kn relates the mean free path of the gas molecules (λ) to a representative175

length of the system (Civan, 2010), here taken as the pore diameter.176

The slip flow component is dominant in systems where Kn < 0.1 (Ziarani and177

Aguilera, 2012) and can be evaluated as (Karniadakis et al., 2005; Wu et al., 2016)178

179

Jv = −ζmb
r2pM

8ηZRT
(1 + αKn)

(
1 +

4Kn

1 +Kn

)
∂p

∂l
. (7)

Here, ζmb is intended to take into account the possibility of applying the slip180

flow formulation (7) to a complex pore space (see Eq. (23)) and α is the rarified181

effect coefficient for a real gas which, according to Karniadakis et al. (2005), is182

evaluated through Equation (24).183

The Knudsen flow component is dominant in systems where Kn > 10 (Ziarani184

and Aguilera, 2012) and is evaluated as (Darabi et al., 2012; Liu et al., 2016)185

Jk = −2

3
ζmbrδ

Df−2

(
8ZM

πRT

)1/2
p

Z
Cg

∂p

∂l
. (8)

Here, Df represents the fractal dimension of the pore surface and δ denotes the186

ratio between dm and r.187

We conclude by noting that the model here described includes a total of 15 pa-188

rameters, which are related to the richness of physical processes embedded therein189

(See also Section 3.3). All quantities here introduced are listed in Table 1 and in190

the list of symbols and nomenclature Section.191
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2.2 Global Sensitivity Analysis192

We perform a rigorous sensitivity analysis of the model illustrated in Section 2.1 to193

diagnose its behavior with reference to the estimate of methane flow as driven by194

imperfect knowledge of the associated parameters. Here, the uncertainty associated195

with the selection of the interpretative model is not analyzed. Nevertheless, one196

could also consider quantification of uncertainty of model outputs in the presence197

of uncertain interpretive models. In this context, uncertainty of a target variable198

which might result from the use of a collection of interpretive (conceptual and199

mathematical) models, could be assessed upon relying, for example, on the ap-200

proach illustrated by Dell’Oca et al. (2020). Our analysis is intended to yield a201

robust quantification of the relative importance of uncertain model parameters to202

a model output of interest. As mentioned in the Introduction, we rely on two GSA203

approaches, corresponding to (i) the classical variance-based technique grounded204

on the evaluation of the well-known Sobol’ indices (Saltelli and Sobol’, 1995) and205

(ii) the moment-based GSA framework introduced by Dell’Oca et al. (2017).206

Model parameters are treated as statistically independent, as the amount207

of available information does not enable us to clearly identify cross-correlations208

amongst parameters and to quantify joint distributions. We consider three differ-209

ing characterizations of pdf describing uncertainty of model parameters: (a) all pa-210

rameters are represented through uniform pdfs, (b) all parameters are represented211

by truncated Gaussian pdfs, and (c) the reference pore radius is characterized by212

a (truncated) log-normal pdf, while all remaining parameters are associated with213

uniform pdfs. Case a is representative of an approach where information on the214

considered parameters is limited so that all parameter values within the identi-215

fied range of variability are equally weighted in the analysis (other studies relying216

on the same assumption include, e.g., Ciriello et al. (2013); Laloy et al. (2013);217

Sochala and Le Mâıtre (2013); Bianchi Janetti et al. (2019); Dell’Oca et al. (2020)).218

Case b is implemented as an alternative uninformed case, making use of the widely219

adopted hypothesis that model parameters are normally distributed. Case c takes220

advantage of the findings of Naraghi et al. (2018) who provide some experimen-221

tal evidence suggesting that the pdf of pore radii in shales can be interpreted222

through a log-normal model. Our choice of performing sensitivity analyses accord-223

ing to configurations associated with diverse pdfs characterizing uncertain model224

parameters enables us to analyze the influence of model parameter pdf (which is225

generally unknown a priori) on the results of the GSA and, ultimately, on gas flow226

forecasting.227

Considering the computational cost associated with multiple model evaluations228

(corresponding to 10−4 seconds per simulation on an Intel Xeon Gold 6148 CPU229

@ 2.4 GHz) required for these analyses and the corresponding cost for random230

sampling across the considered high dimensionality model parameter space, our231

analyses rest on 108 model evaluations. The latter has been deemed to constitute232

an acceptable trade-off between the need to obtain stable results and computa-233

tional efforts (details not shown). The pressure gradient acting on the system is234

set as a given boundary condition (and equal to 0.1MPa/m) in all test cases.235
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2.2.1 Variance-based Sobol’ Indices236

Sobol’ indices (Saltelli and Sobol’, 1995) can assist the appraisal and quantification237

of the relative expected reduction of the variance of a target model output due to238

knowledge of (or conditioning on) a given model parameter, which would otherwise239

be subject to uncertainty. In this context, considering a model output y, which240

depends on N random parameters collected in vector x = (x1, x2, ..., xN ) and241

defined within the space Γ = Γ1×Γ2×...×ΓN (Γi = [xi,min, xi,max] corresponding242

to the support of the i-th parameter, xi), the principal Sobol’ index Sxi associated243

with a given model parameter xi is evaluated as244

Sxi =
V [E [y|xi]]

V [y]
. (9)

Here, E [·] and V [·] represent expectation and variance operators, respectively; the245

notation y|xi denotes conditioning of y on xi. Note that Sxi describes the relative246

contribution to V [y] due to variability of only xi. Joint contributions of xi with247

other model parameters included in x to the variance of y are embedded in the248

total Sobol’ indices (details not shown). We recall that relying on Sobol’ indices to249

diagnose the relative importance of uncertain model parameters to model outputs250

is tantamount to identifying uncertainty with the concept of variance of a pdf.251

As such, while Sobol’ indices are characterized by a conceptual simplicity and252

straightforward implementation and use, they provide only limited information253

about the way variations of model parameters can influence the complete pdf of254

model outputs.255

2.2.2 Moment-Based AMA Indices256

The recent moment-based GSA approach proposed by Dell’Oca et al. (2017, 2020)257

rests on the idea that the quantification of the effects of model parameter un-258

certainty on various statistical moments of the ensuing pdf of model outputs can259

provide enhanced understanding of model functioning. Dell’Oca et al. (2017) intro-260

duce Moment-Based sensitivity metrics (termed AMA indices) according to which261

one can evaluate the influence of uncertain model parameter on key elements of the262

model output pdf, as embedded in its associated statistical moments. The AMA263

indices are defined as follows (Dell’Oca et al. (2017)):264

AMAMxi =
1

|M [y]|E [|M [y]−M [y|xi]|] . (10)

Here, AMAMxi represents the indices associated with a model parameter xi265

and a given statistical moment M of the pdf of model output y (considering the266

first four statistical moments of y, M = E for the mean, M = V for the variance,267

M = γ for the skewness, and M = k for the kurtosis). The AMA indices are268

intended to quantify the expected change of each statistical moment of y due to269

our knowledge of xi. Large values of these indices indicate that variations of the270

associated parameter strongly affect the statistical moments of y.271
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Table 1 Ranges of variability for the methane migration model uncertain parameters consid-
ered in the GSA. Coefficient of variation, criteria for the selection of the range of variability,
and reference considered for the definition of each range of variability is also listed.

Parameter - (Units) - Symbol Range (CV%) Criteria support Reference

Reference pore radius - (nm) - ro 2-100 (55) Literature Wu et al. (2016)
Reference porosity - (-) - ϕo 0.005-0.1 (52) Literature Li et al. (2006)
Pore pressure - (MPa) - p 0.5-50 (57) Literature Wu et al. (2016)
Tortuosity - (-) - τ 2.8-5.8 (20) Literature Mohd Amin et al. (2014)
Temperature - (K) - T 337-473 (10) Literature Chiquet et al. (2007)
Overburden pressure - (MPa) - pc 51-90 (16) Literature Chiquet et al. (2007)
Porosity exponent - (-) - q 0.014-0.056 (35) Literature Dong et al. (2010)
Pore radius exponent - (-) - t 0.02-0.04 (19) Literature Dong et al. (2010)
Block/migration ratio - (-) - κ 0.1-2 (52) Literature Wu et al. (2015b)
Fractal dimension - (-) - Df 2.1-2.9 (9) Theoretical Limits Coppens (1999)
Isosteric adsorption heat - (J/mol) - ∆H 12000-16000 (8) Literature Wu et al. (2015b)
Reference Langmuir pressure - (Pa) - pLo

41-128 (30) CV Wu et al. (2015b)
Parameter - (-) - α0 1.02-1.36 (8) Literature Karniadakis et al. (2005)
Parameter - (-) - α1 2-6 (30) CV Karniadakis et al. (2005)
Parameter - (-) - β 0.2-0.6 (30) CV Karniadakis et al. (2005)

3 Results and Discussion272

3.1 GSA of methane flow model273

The 15 uncertain model parameters of model (1) are considered to vary across the274

support defined through the ranges of variability listed in Table 1. These ranges275

have been designed upon considering available literature references (values typi-276

cally employed for the model parameters in low permeability geomaterials). With277

reference to three of the model parameters, i.e., Lpo , α1 and β, only very limited278

information is available from the literature, to the best of our knowledge (Karni-279

adakis et al., 2005). Thus, we take the values considered by Wu et al. (2017) and280

Karniadakis et al. (2005) as the centers of corresponding intervals of variability281

associated with a given coefficient of variation, that we set equal to 30%, which282

enables us to imprint these parameters with a sufficiently broad range of variabil-283

ity, similar to what found for the remaining uncertain parameters (see Table 1).284

Finally, we allow the fractal dimension Df to vary within its theoretical bounds285

(i.e., 2< Df <3) (Coppens, 1999; Coppens and Dammers, 2006). Methane prop-286

erties (such as viscosity, compressibility, and deviation factor) are estimated using287

miniREFPROP (Lemmon et al., 2018), a tool that incorporates equations of state288

for a variety of gas species. With reference to methane miniREFPROP relies on289

the equation of state proposed by Setzmann and Wagner (1991).290

Table 2 lists the moment-based GSA indices related to mean (AMAExi), vari-291

ance (AMAVxi), skewness (AMAγxi), and kurtosis (AMAkxi) of J as well as the292

principal Sobol’ indices (Sxi) evaluated for methane flow rate values rendered by293

Eq. (1) for the case in which all model parameters are modeled as independent294

and identically distributed random variables, each characterized by a uniform pdf295

(Case a).296

While the strength of the influence of the reference pore radius (ro) on the297

model output is not the same for the (first four) statistical moments, the AMA298

indices clearly suggest that conditioning on ro has (overall) the strongest impact299

on the first four statistical moments of methane flow. This is then followed by ref-300

erence porosity, pore pressure, tortuosity, and temperature. While the remaining301
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Table 2 Moment-based GSA indices AMAMxi and Sobol’ principal indices Sxi for all xi

parameters included in Equation (1). All model parameters are described by uniform pdfs
(Case a). Values of each metric identifying the most influential parameters are reported in
bold.

xi AMAExi AMAVxi Sxi AMAγxi AMAkxi

ro 0.728 0.798 0.417 0.562 0.757
ϕo 0.453 0.643 0.160 0.345 0.464
p 0.335 0.484 0.091 0.208 0.476
τ 0.181 0.356 0.026 0.114 0.213
T 0.094 0.163 0.007 0.027 0.046
q 0.061 0.119 0.003 0.011 0.022
t 0.057 0.114 0.003 0.01 0.021
pc 0.028 0.063 0.001 0.008 0.014
κ 0.010 0.005 0 0.004 0.007

∆H 0.001 0.002 0 0.002 0.005
Df 0.002 0.003 0 0.002 0.004
pLo

0.002 0.003 0 0.002 0.004
α0 0.001 0.002 0 0.002 0.004
α1 0.001 0.002 0 0.002 0.004
β 0.001 0.002 0 0.002 0.004

Fig. 1 First four statistical moments of methane flow J (Ton/m2 year) conditional on values
of the most influential model parameters (see Table 2): (a) expected value, (b) variance, (c)
skewness, and (d) kurtosis. The corresponding unconditional moments (i.e. SMY ) are also de-
picted (gray bold horizontal lines). Intervals of variation of the uncertain model parameters are
rescaled within the unit interval for graphical representation purposes. All model parameters
are described by uniform pdfs (Case a).

model uncertain parameters still exert some influence on the (first four) statistical302

moments of J (as evidenced by the non-zero values of AMA indices), the strength303

of their influence can be considered as marginal when compared to the above men-304

tioned quantities, which are seen to be key in driving the main features of the pdf305

of methane flow. In the following we denote as most influential parameters for306

metrics AMAMxi or Sxi all parameters xi where AMAMxi/
∑

xi
AMAMxi ≥ 5%307

or Sxi/
∑

xi
Sxi ≥ 5%, respectively. Most influential parameters identified by each308
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metric are reported in bold in Table 2. Values of the Sobol’ principal indices are309

generally consistent with the results stemming from the moment-based GSA, even310

as τ and T are not identified as influential to the model output according to the311

Sobol’ principal index. This result is consistent with the observation that condi-312

tional variance can be larger or smaller than its unconditional counterpart (see313

also Fig. 1b) in a way that its integral over ΓT vanishes. A similar effect associ-314

ated with the principal Sobol’ indices was identified by Dell’Oca et al. (2017) with315

reference to the Ishigami function, which is a widely used analytical benchmark316

in sensitivity studies.317

Figure 1 depicts the first four statistical moments of J conditioned on values318

of the five most influential uncertain parameters selected on the basis of Table 2.319

Uncertain parameters are normalized to span the unit interval, for ease of inter-320

pretation. Unconditional moments are also depicted as a reference. We note that321

when considering conditioning on the model parameters which have been identi-322

fied as non-influential according to the metrics employed, the difference between323

conditional and unconditional moments is negligible (details not reported).324

As expected, conditioning on values of the reference pore radius (ro) yields the325

most marked effects to all of the statistical moments considered (see black dotted326

curves in Figure 1). Mean and variance of methane flow generally increase with ro.327

A minimum mean methane flow value is attained for 2< ro <15 nm (corresponding328

to the range of normalized values comprised between 0 and 0.15 in Figure 1). The329

dominant transport mechanism for ro <15 nm is surface diffusion, the strength330

of its contribution decreasing with increasing ro. As ro increases, the strength of331

the contribution related to surface diffusion decreases faster than the correspond-332

ing increase of the slip flow contribution, thus resulting in a minimum value for333

the expected methane flow for values of the reference pore radius comprised in334

the aforementioned range. Otherwise, skewness and kurtosis (i) are affected by335

variations of the reference pore radius when the latter is smaller than 20 nm (cor-336

responding to a normalized value of 0.18); and (ii) are generally constant for ro >337

20 nm. Nevertheless, we note that these (statistical) moments are still remarkably338

different from their unconditional counterparts even for large ro values, thus evi-339

dencing the impact of acquired knowledge on ro on reducing the asymmetry (as340

rendered by the skewness) and the peakedness and tailedness (i.e., the probability341

associated with extreme values, as rendered by the kurtosis) of the methane flow342

pdf.343

Conditioning on pore pressure imprints variations to the statistics of the model344

output which are qualitatively similar to those associated with ro. Larger values345

of mean and variance of J are linked to larger values of p. This result descends346

from the linear relationship between pore pressure and slip flow (Equation (7)),347

the latter being the dominant mechanism in systems formed by larger pores. Con-348

ditional skewness and kurtosis are constant (albeit different from their uncondi-349

tional counterpart) across most of the variability range of p, sharp variations of350

these quantities being associated with conditioning on low values of p (i.e., corre-351

sponding to pore pressure values smaller than 10 MPa). Our findings about the352

influence of p on J are consistent with the results of Sun et al. (2017). These au-353

thors find that increasing values of pore pressure lead to an increase of apparent354

permeability (which is in turn linearly proportional to gas flow) for ro > 10 nm.355

Wu et al. (2016) document a similar behavior due to the dominance of the slip flow356
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component (which is proportional to p; see Equation (7)) in systems characterized357

by large pores.358

While the impact of reference porosity and tortuosity is not analyzed in any359

of the available previous studies (Wu et al., 2015b, 2016, 2017; Sun et al., 2017;360

Zhang et al., 2018), our results rank ϕo and τ as the second and fourth most influ-361

ential parameters in the evaluation of the pdf of J , respectively (see Table 2). The362

correction factors for bulk (eq. (23)) and surface (eq. (17)) diffusion flow increase363

linearly with reference porosity. Thus, increased values of ϕo yield corresponding364

increases of the methane flow (and hence of its first two statistical moments) inde-365

pendent of the dominant transport mechanism. Conditional mean and variance of366

J decrease with increasing values of tortuosity. This is in line with the observation367

that all gas transport mechanisms are characterized by an inverse proportionality368

between J and τ through the correction factor which is related to these processes369

taking place within a porous domain. These elements are consistent with a phys-370

ical picture according to which fluid flow rates across a porous geomaterial are371

expected to increase and decrease with increasing porosity and tortuosity, respec-372

tively. Unlike pore pressure and reference pore radius, conditioning on reference373

porosity and tortuosity yields a reduction of skewness and kurtosis of the pdf of J ,374

whose conditional values remain constant independent of the value of ϕo and/or375

τ .376

Conditioning on temperature (T ) affects the mean and variance of the methane377

flow pdf in a way which is qualitatively similar to the effect of tortuosity (albeit378

quantitatively to a lesser extent) due to the inverse proportionality between J and379

T . Otherwise, the overall shape of the pdf of J is not significantly influenced by the380

knowledge of T , values of conditional skewness and kurtosis practically coinciding381

with their unconditional counterparts.382

The results listed in Table 2 suggest that statistical moments of methane flow383

are virtually insensitive to the remaining parameters (i.e., 10 of the 15 model384

parameters). Therefore, setting any of these parameters at given values within385

the variability space considered in our analysis yields only minor changes in the386

prediction of J . In this context, our results suggest that methane flow can be387

assessed with an acceptable degree of reliability even in the presence of scarce388

information about several parameters embedded in Equation (1) such as, e.g., the389

overburden pressure (i.e., pc), the power-law exponents related to porosity (i.e.,390

q) and pore radius (i.e., t), the fractal dimension of the pore surface (i.e.,Df ),391

or the isosteric adsorption heat of the geomaterial (i.e., ∆H). Further to this,392

our results suggest the opportunity to prioritize allocation of resources to robust393

characterization of (in descending order) reference pore radius, reference porosity,394

pore pressure, tortuosity, and temperature.395

3.2 Impact of the model parameter pdfs on GSA results396

In this section we analyze the impact of the choice of model parameter distribu-397

tion on the pdf of J . As described in Section 2.2, we compare the GSA outcomes398

obtained with a uniform pdf for all model parameters (Case a) and illustrated399

in Section 3.1 against those computed when (i) all model parameters are char-400

acterized through (truncated) Gaussian pdfs (Case b) and (ii) ro is described by401

a (truncated) log-normal pdf while the remaining parameters are described as in402
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Table 3 Moment-based GSA indices AMAMxi and Sobol’ principal indices Sxi for all xi pa-
rameters included in Equation (1). All model parameters are described by truncated Gaussian
distributions (Case b). Values of each metric identifying the most influential parameters are
reported in bold.

xi AMAExi AMAVxi Sxi AMAγxi AMAkxi

ro 0.787 0.828 0.761 0.608 0.692
ϕo 0.452 0.674 0.242 0.306 0.402
p 0.321 0.481 0.131 0.152 0.302
τ 0.182 0.363 0.041 0.088 0.157
T 0.100 0.178 0.012 0.027 0.042
q 0.063 0.122 0.005 0.010 0.018
t 0.059 0.117 0.004 0.009 0.016
pc 0.025 0.056 0.001 0.006 0.011
κ 0.007 0.005 0 0.005 0.008

∆H 0.001 0.002 0 0.003 0.007
Df 0.001 0.003 0 0.002 0.005
pLo

0.001 0.002 0 0.003 0.006
α0 0.001 0.002 0 0.002 0.005
α1 0.001 0.002 0 0.003 0.006
β 0.001 0.002 0 0.003 0.006

Case a (Case c). To provide a consistent comparison, Gaussian and log-normal403

pdfs are defined to honor the same mean and variance of the scenario associated404

with Case a.405

Table 3 lists values of AMA and principal Sobol’ indices for each of the pa-406

rameters embedded in Equation (1) for Case b. Results of Table 3 and Table 2 are407

qualitatively similar, i.e., the GSA yields similar results considering a uniform or408

a (truncated) Gaussian pdf for all model parameters. Our results imbue us with409

confidence about the documented ranking of parameter importance, with reference410

pore radius, reference porosity, pore pressure, tortuosity, and temperature identi-411

fied as the model parameters being the key drivers to the evaluation of the major412

features of the pdf of methane flow. Values of statistical moments of J conditioned413

on model parameters for Case b are very similar to those depicted in Figure 1 for414

Case a (details not shown).415

416

Table 4 lists the AMA and the principal Sobol’ indices associated with J for417

Case c. In this case, it is even more evident that the uncertainty of ro is strongly418

dominant on the evaluation of the pdf of methane flow. Additionally, the block-419

age/migration ratio of the adsorbed molecules (κ) gains importance with respect420

to previous cases, quantitatively impacting the pdf of J to an extent which is simi-421

lar to what exhibited by temperature. This feature is attributed to the abundance422

of small pores in this scenario, which favors the dominance of the surface diffusion423

flow mechanism (linked to parameter κ).424

Figure 2 depicts the first four statistical moments of methane flow conditioned425

on values of influential uncertain parameters for Case c (see Table 4). Uncondi-426

tional moments are also shown as a reference. Overall, the results are qualitatively427

similar to those embedded in Figure 1 for Case a. The unconditional mean and428

variance of J in Case c are reduced (to approximately one-fourth and one-sixth,429

respectively) with respect to the corresponding values for Case a. Otherwise, un-430

conditional skewness and kurtosis increase by about 2.6 and 6 times, respectively.431
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Table 4 Moment-based GSA indices AMAMxi and Sobol’ principal indices Sxi for all xi

parameters included in Equation (1). Reference pore radius (ro) is described by a (truncated)
lognormal distribution and the remaining model parameters are described by uniform distribu-
tions (Case c). Values of each metric identifying the most influential parameters are reported
in bold.

xi AMAExi AMAVxi Sxi AMAγxi AMAkxi

ro 3.332 3.649 2.803 0.788 0.883
ϕo 0.452 0.690 0.064 0.212 0.404
p 0.192 0.507 0.012 0.152 0.263
τ 0.181 0.358 0.011 0.070 0.167
T 0.090 0.173 0.003 0.024 0.050
q 0.063 0.121 0.001 0.008 0.020
t 0.041 0.112 0.001 0.008 0.020
pc 0.023 0.061 0 0.007 0.016
κ 0.112 0.010 0.005 0.021 0.027

∆H 0.002 0.006 0 0.004 0.010
Df 0.02 0.008 0 0.011 0.018
pLo

0.025 0.007 0 0.011 0.017
α0 0.002 0.006 0 0.005 0.013
α1 0.002 0.006 0 0.005 0.012
β 0.002 0.006 0 0.004 0.010

Fig. 2 First four statistical moments of methane flow J (Ton/m2 year) conditional on values
of the most influential model parameters (see Table 4): (a) expected value, (b) variance, (c)
skewness, and (d) kurtosis. The corresponding unconditional moments (i.e. SMY ) are also
depicted (gray bold horizontal lines). Intervals of variation of the uncertain model parameters
are rescaled within the unit interval for graphical representation purposes. ro is described by a
truncated log-normal pdf and the remaining model parameters are described by uniform pdfs
(Case c).

These behaviors are attributed to the larger frequency of small reference pore ra-432

dius values considered in Case c with respect to Case a (and b). Low values of433

reference pore radius are associated with large values of surface diffusion and to434

small values of mean and variance of methane flow. Conditioning on ro and ϕo435

imprints variations to the model output mean and variance across the entire range436

of variability of these parameters (Figure 2). We further note that conditioning437
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on ro strongly reduces skewness and kurtosis of the pdf of J , thus reducing the438

probability associated with extreme (large) values of J .439

Conditioning on p induces variations in the (first four) statistical moments440

of the model output. Conditioning on larger values of this quantity yields the441

highest values of mean and variance of the model output. A minimum in the442

values of conditional variance, skewness, and kurtosis is observed in the interval443

1MPa< p <15MPa. Finally, the blockage/migration ratio of adsorbed molecules444

displays (a small but noticeable) influence on the model output pdf. Mean and445

variance of J decrease with increasing values of κ. This behavior is expected,446

given the nature of κ, high values of this parameter being related to significant447

blockage of gas molecules on the geomaterial surface.448

3.3 Scaling of gas flow model and identification of dominant flow mechanisms449

A pure diffusion modeling approach has been shown to represent with an accept-450

able degree of accuracy the movement of methane in low permeability media (Lu451

et al., 2015). Such a model embeds all physics governing the system dynamics in452

a unique parameter (i.e., a diffusion coefficient D) and, under steady-state condi-453

tions, the mass flow-rate of methane can be expressed as:454

Jd = −D
∂C

∂l
, (11)

where ∂C/∂l represents the spatial gradient of methane concentration (C), i.e., the455

driving force of the system. Considering an isothermal system under single-phase456

flow and introducing the density of methane, ρ = pM/RTZ, Equation (11) can be457

written as:458

Jd = − DM

RTZ

(
1− p

Z

dZ

dp

)
∂p

∂l
. (12)

We complete our set of results and discussion by noting that the model illus-459

trated in Section 2.1 coincides with a pure diffusion model (Equation (12)) under460

single-phase conditions, as we illustrate in the following.461

Equation (1) can be written as:462

J = −B
∂p

∂l
, (13)

with B = Bv +Bk +Bss, where463

Bv = wvζmb
r2pM

8ηZRT
(1 + αKn)

(
1 +

4Kn

1 +Kn

)
,

Bk = wk
2

3
ζmbrδ

Df−2

(
8ZM

πRT

)1/2
p

Z
Cg,

Bss = ζms
DsCsc

p
.

(14)

Comparing Equations (12) and (13), it can be seen that the diffusion coefficient464

D can be decomposed according to each flow mechanism as:465

D = Dv +Dk +Dss, (15)
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Fig. 3 Relative contribution of the effective diffusion coefficients (Dv , Dk, and Dss) to the
overall diffusion coefficient D rendered by Equations (15) and (16). Intervals of variation of the
uncertain model parameters are rescaled within the unit interval for graphical representation
purposes.

with466

Di =
Bi RTZ

M
(
1− p

Z
dZ
dp

) , (16)

where i = v, k, ss. Note that we introduce three effective diffusion coefficients467

in Equation (15). These are respectively associated with the slip flow (Dv), the468

Knudsen diffusion (Dk), and the surface diffusion (Dss) components of model (1)469

and are to the best of our knowledge, new for the flow model considered in this470

work. The variety of mechanisms included in model (1) are fully encapsulated in471

an overall diffusion coefficient D as illustrated in Equations (12), (15), and (16),472

where the contribution of each of the processes described in Section 2.1 is clearly473

recognizable.474

Figure 3 depicts color maps quantifying the relative strength of the contribution475

of the three flow mechanism (slip flow in red, Knudsen diffusion in green, and476

surface diffusion in blue) to the overall diffusion coefficient defined by Equation477

(15) considering various combinations of all uncertain parameters embedded in478
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Fig. 4 Probability density functions (in logarithmic (a) and natural (b) scale) of the overall
diffusion coefficient rendered by Equation (15) for model parameters characterized by: (i)
uniform distributions (Case a), (ii) truncated normal distributions (Case b), and (iii) uniform
distributions with the exception of ro which is represented by a log-normal distribution (Case
c). Dashed curves represent a ML- based fit with a log-normal model for each case

Table 5 Sample mean, variance, coefficient of variation, skewness, and kurtosis of the overall
diffusion coefficient D (m2/s) (Equation (15)) together with parameters of log-normal models
(µ and σ) evaluated through ML fits against sample pdfs.

Feature Case a Case b Case c

Mean (×10−6) 3.14 2.96 0.78
Variance (×10−12) 16.3 9.53 2.46
CV 1.29 1.04 2.01
Skewness 2.21 1.95 5.90
Kurtosis 9 8.1 53.54
µ -13.53 -13.31 -14.92
σ 1.47 1.21 1.26

Equation (1) for all scenarios investigated. Each sub-plot depicts the average value479

of the ratio Di/D as a function of two parameters (i.e., averaging is performed with480

respect to uncertain parameters with the exception of the two varying along the481

(normalized) axes of the subplots), selected amongst those which were classified482

as most influential to the system (see Sections 3.1 and 3.2).483

Our results indicate that the dominant flow mechanism in defining the overall484

diffusion coefficient (and consequently the methane flow) is slip flow (in red in485

Figure 3) in all of the analyzed cases. An exception is observed for small values486

of the reference pore radius and/or small pore pressure, where surface diffusion is487

dominant. The contribution of Knudsen diffusion mechanism is always negligible.488

This suggests that it is possible to simplify Equation (1) by neglecting the Knudsen489

diffusion mechanism in the evaluation of methane flow.490

Further simplifications of the methane flux model illustrated in Section 2.1491

can be considered when the dominance of a given flow mechanism can be clearly492

established. For example, Figure 3 suggests that the identification of the dominant493

flow mechanism is affected by the pdf of the uncertain model parameters. If ro is494

represented by a Gaussian (or uniform) pdf, J is mainly dominated by slip flow495

or surface diffusion with a sharp transition zone between these two mechanisms.496

Otherwise, when ro is represented by a log-normal pdf both mechanisms (i.e.,497

slip flow and surface diffusion) may play an important role in the estimation of498

methane migration independent of the value of the model parameters.499
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Finally, we evaluate the pdf of the overall diffusion coefficient (D) by making500

use of Equations (15) and (16) for all scenarios analyzed. Sample pdfs as well501

as corresponding Maximum Likelihood (ML) fits of log-normal distributions are502

depicted in Figure 4 in logarithmic and natural scales. Positive skewness and large503

kurtosis are evident for all cases, these being larger for Case c, as illustrated in504

Section 3.2. These results reinforce the observation of higher frequencies of low J505

values in Case c with respect to the other settings investigated. Sample statistical506

moments (mean, variance, coefficient of variation, skewness, and kurtosis) of the507

pdf of D are listed in Table 5 together with the parameters of the ML-based508

log-normal models. The overall diffusion coefficient can vary across about four509

orders of magnitude (i.e., between 10−9 and 10−5 m2/s). As expected, the largest510

variance of D is associated with Case a, where all parameters of model (1) are511

characterized by uniform pdfs. Otherwise, the largest coefficient of variation of D512

is associated with Case c. Finally, we remark that the results embedded in Figure513

4 can be of practical assistance, as they allow for fast evaluations of the probability514

that methane flow in low permeability media exceeds a given threshold value.515

4 Conclusions516

We perform a rigorous Global Sensitivity Analysis (GSA) to assess the impact of517

uncertain model parameters on the evaluation of methane flow (J) in low per-518

meability media, such as caprocks. We study three cases that consider differing519

characterizations of the probability density function (pdf) describing model uncer-520

tain parameters to assess the impact of this choice on the results of the analysis.521

Such cases are: (i) all model parameters represented through uniform pdfs, (ii) all522

model parameters represented through (truncated) Gaussian pdfs, and (iii) refer-523

ence pore radius characterized by a (truncated) log-normal pdf while all remaining524

parameters are associated with uniform pdfs.525

Our work leads to the following main conclusions:526

1. The uncertainty of methane flow is governed by uncertainty in the reference527

pore radius, followed (in decreasing order of importance) by reference poros-528

ity, pore pressure, tortuosity, temperature, and (to a lesser extent) blockage529

migration ratio of adsorbed molecules. The remaining parameters of the in-530

vestigated model (Section 2.1) being practically uninfluential. This result can531

assist future efforts to allocate resources during experimental activities aimed532

at characterizing methane flow in caprocks.533

2. The gas flow model introduced by Wu et al. (2016) (Section 2.1) can be related534

to a simple pure diffusion model by introducing an overall diffusion coefficient535

(D). The latter represented by the contribution of three effective diffusion536

coefficients, each associated with a well-defined flow mechanism. The ensuing537

mathematical structure of D allows distinguishing the relative contribution of538

all flow mechanisms to the overall methane flow. The relationship we derive also539

enables one to estimate the pdf of D when the model parameters are uncertain.540

The latter is a useful tool which can assist the probabilistic evaluation of J541

even in the absence of the detailed amount of information which is typically542

required to characterize the full methane flow model.543

3. The shape of the pdf employed to characterize uncertain model parameters544

affects the results of our GSA. Additionally, it has a marked effect in the defi-545
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nition of the dominating transport mechanisms of the model. With reference to546

the model parameter variability considered in this study, as evaluated on the547

basis of available information, our results suggest that the dominant transport548

mechanism is slip flow. Surface diffusion plays also an important role, espe-549

cially for low values of reference pore radius and pore pressure, while Knudsen550

diffusion is negligible in all of the test cases analyzed.551

Appendix: Additional mathematical details related to the description552

of the gas flow model introduced in Section 2.1553

The correction factor ζms is given by554

ζms =
ϕ

τ

(
1− rad

r

)2
[(

1− rad
r

)−2
− 1

]
, (17)

with555

rad = r − dmθ, (18)

556

r = ro

(
pc − p

po

)−t

, (19)

557

ϕ = ϕo

(
pc − p

po

)−q

, (20)

where rad is thickness of the adsorbed gas layer, dm is gas molecule diameter, pc558

is overburden pressure, po is atmospheric pressure, and θ is evaluated through a559

Langmuir equilibrium isotherm as:560

θ =
p/Z

pL + p/Z
, (21)

where pL is a Langmuir pressure evaluated with561

pL = pLo
exp

(
−∆H

RT

)
. (22)

The correction factor ζmb is expressed as562

ζmb =
ϕ

τ

(
1− rad

r

)2
. (23)

The value of α (in Eq. (7)) is evaluated through563

α = α0
2

π
tan−1

(
α1K

β
n

)
, (24)

where uncertain parameters α0, α1, and β allow to represent the variation of α as564

a function of Knudsen number (Kn). Here, α0 represents the maximum value of565

α for large values of Kn, α1 governs the values of α for small values of Kn, and β566

defines the slope of the relationship between Kn and α for low values of Kn.567
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The surface diffusion coefficient (Ds) is given by568

Ds = D0
s

(1− θ) + κ
2 θ(2− θ) +H(1− κ)(1− κ)κ2 θ

2(
1− θ + κ

2 θ
)2 , (25)

with569

D0
s = 8.29× 10−7 exp

(
−∆H0.8

RT

)
, (26)

570

H(1− κ) =

{
0, if κ ≥ 1

1, 0 ≤ κ ≤ 1
. (27)

The adsorbed concentration (Csc) is given by571

Csc =
4θM

πd3mNA
, (28)

where NA is the Avogadro Constant (6.02×10−23/mol).572

List of Symbols and Nomenclature573

Symbol Refers to Units Evaluated

Cg Gas compressibility 1/MPa MiniREFPROP
Csc Adsorbed concentration kg/m3 Equation 28
dm Gas molecule diameter nm 0.38

∂p/∂l Gradient of gas pore pressure MPa/m 0.1
D Overall diffusion coefficient m2/s Equation 15
Ds Surface diffusion coefficient m2/s Equation 25
Dk Knudsen effective diffusion coefficient m2/s Equation 16
Dss Surface effective diffusion coefficient m2/s Equation 16
Dv Slip flow effective diffusion coefficient m2/s Equation 16
J Mass flux of gas per unit of area kg/(m2s) Equation 1
Jk Knudsen diffusion kg/(m2s) Equation 8
Js Surface diffusion kg/(m2s) Equation 2
Jv Slip flow kg/(m2s) Equation 7
Kn Knudsen number - Equation 5
M Gas molar mass kg/mol 1.6 × 10−2

pL Langmuir pressure MPa Equation 22
po Atmospheric pressure MPa 0.1
r Pore size nm Equation 19
R Universal gas constant J/(mol K) 8,3144
rad Thickness of adsorbed gas layer nm Equation 18
wk Knudsen diffusion flux weight factor - Equation 4
wv Slip mass flux weight factor - Equation 3
Z Gas deviation factor - MiniREFPROP
α Rarified effect coefficient for gas - Equation 24

ζms Correction factor of surface diffusion - Equation 17
ζmb Correction factor bulk flow - Equation 23
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η Gas viscosity Pa s MiniREFPROP
θ Gas coverage of the geomaterial - Equation 21
λ Mean free path of gas molecules m Equation 6
ϕ Porosity - Equation 20
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