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Abstract: There is considerable interest in delineating the molecular mechanisms of action of trans-
forming growth factor-β (TGF-β), considered as central player in a plethora of human conditions,
including cancer, fibrosis and autoimmune disease. TGF-β elicits its biological effects through
membrane bound serine/threonine kinase receptors which transmit their signals via downstream sig-
nalling molecules, SMADs, which regulate the transcription of target genes in collaboration with var-
ious co-activators and co-repressors. Until now, therapeutic strategy for primary Sjögren’s syndrome
(pSS) has been focused on inflammation, but, recently, the involvement of TGF-β/SMADs signalling
has been demonstrated in pSS salivary glands (SGs) as mediator of the epithelial-mesenchymal
transition (EMT) activation. Although EMT seems to cause pSS SG fibrosis, TGF-β family members
have ambiguous effects on the function of pSS SGs. Based on these premises, this review highlights
recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in pSS
that are dictated by orchestrations of SMADs, and describe TGF-β/SMADs value as both disease
markers and/or therapeutic target for pSS.

Keywords: SMAD; Sjögren’s syndrome; epithelial-mesenchymal transition; fibrosis; TGF-β; inflammation

1. Introduction
1.1. Fibrosis in Sjögren’s Syndrome

Salivary gland (SG) fibrosis is a recently associated feature of Sjögren’s syndrome (SS),
a chronic inflammatory autoimmune disease and multisystem exocrinopathy characterised
by dry mouth and dry eyes with wide-ranging extra-glandular involvement [1]. As can
be deduced from daily clinical practice, an acute inflammation can be recovered quickly,
but chronic inflammation characterizing SS, will progress to irreversible fibrosis with SGs
damage and impaired regenerative capacity. It gives rise to accumulation of excessive
connective tissues and extracellular matrix (ECM) components, eventually resulting in SG
dysfunction [2]. Until recently, researchers have been focusing on studying the mechanisms
of inflammation-mediated SG fibrosis. Fibrosis is a common consequence of tissue damage
and inflammation [3] and several diseases genetically related to SS have well-described
fibrotic components, including primary biliary cirrhosis, systemic sclerosis, ulcerative
colitis, and systemic lupus erythematosus [4,5]. Actually, SG fibrosis has been accepted as
SS feature [6]; in fact, a positive relationship between biopsy focus score and SG fibrosis,
and between ocular surface damage and fibrosis were detected [7]. Chronic inflammation
seems to be the principal actor in SG fibrosis in which CD4+ T cells, macrophages and
epithelial cells all play roles in pathological accumulation of ECM components and are
commonly found in glandular lesions in SS [8,9].

1.2. Epithelial-Mesenchymal Transition (EMT) and Fibrosis

Recently, the role of epithelial cells in SG fibrosis has received great attention due to the
understanding of the mechanisms underlying a process called epithelial-mesenchymal tran-
sition (EMT). EMT, a system whereby differentiated epithelial cells undergo transformation
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into a mesenchymal phenotype giving rise to fibroblasts and myofibroblasts, is increasingly
recognized as playing an integral role in the process of repair and scar formation following
epithelial failure in several tissues [2]; furthermore, EMT has recently been recognized
as a process also involved in the onset and progression of fibrotic phenomena [10,11].
The knowledge of the molecular mechanisms underlying EMT have demonstrated that
the fully differentiated epithelial cells, with a state considered immutable, can undergo
significant changes in morphology, function, and polarity [10]. These studies have led
researchers to believe that differentiated cell type, such as a tubular or acinar SG epithelial
cell (SGEC), with a wide set of characteristic secretory, transport, and structural functions,
could radically change its transcriptional process transcribing genes characteristic of mes-
enchymal cell type [12]. The implications of these findings were very important and the
recent explosion of knowledge in the biology of cellular differentiation has highlighted, for
example, the implication of the EMT process activation in oncogenic transformation, where
the loss of epithelial characteristics and subsequent acquisition of mesenchymal features is
a critical program to epithelium-derived cancers progression and invasion [13,14]. More
recently, the capacity of various epithelial cells, including SGEC, to undergo dramatic
changes to give rise to a mesenchymal phenotype has been interestingly linked to a con-
dition of chronic inflammation [15–18]. In addition to the study of EMT, recently, several
investigations focused on endothelial to mesenchymal transition (EndMT); in cerebral
cavernous malformations (CCM), also commonly known as cavernous hemangiomas or
cavernomas, which represent common cerebral vascular malformations, Maddaluno et al.,
showed that endothelial-specific disruption of the CCM1 gene in mice induces EndMT [19],
which contributes to the development of vascular malformations such as vascular dysplasia
and fragility in CCM [20–22]. EndMT in CCM1-ablated endothelial cells is mediated by the
up-regulation of Transforming growth factor-β (TGF-β) and bone morphogenetic protein
(BMP) signalling, and the consequent EndMT activation results crucial in the onset and
progression of CCM disease [19]. In this context, a recent study highlighted a role for
EndMT in brain arteriovenous malformation disease (AVM), a congenital defect affecting
brain microvasculature, demonstrating that germline mutations in several genes related to
TGF-β/BMP signalling are found to contribute to EndMT in AVM [23,24].

1.3. TGF-β, Master Regulator of EMT-Dependent Fibrosis

TGF-β has a critical role in cellular responses, such as development, proliferation and
differentiation. TGF-β is, also, the master regulator to drive EMT-dependent fibrosis in
several organs including the SGs [3,25,26]. EMT in response to TGF-β1, during fibrotic
process, is activated predominantly through the activation of SMAD-mediated pathways,
although non-SMAD signalling has also been implicated in response to a broad range of
context-dependent cellular circumstances [27]. The trigger of the TGF-β family receptors
mediates an intracellular signalling cascade that culminates in phosphorylation-dependent
SMADS transcriptional activation [28]. Based on these data, in this review we will summa-
rize the major advancements that have been made in our understanding of the roles that
SMAD family proteins play in the mechanisms underlying TGF-β-mediated EMT in SS.
Comprehension of the downstream mediators which regulate the TGF-β/EMT signalling
pathway will stimulate further consideration of the cellular mechanisms of fibrogenesis
in the SS SGs, potentially leading to innovative avenues of investigation and treatment of
SGs dysfunction.

2. TGF-β Signal Transduction

TGF-β exists in the mammalian under three small, secreted signalling isoforms TGF-
β1, TGF-β2 and TGF-β3, that are potent regulator of cells growth, differentiation and
immune cellular function [29,30]. Among these three isoforms, TGF-β1 is generally consid-
ered to be the major or predominant isoform, predominantly expressed in the immune sys-
tem and is believed to be an important pleiotropic and immunoregulatory cytokine [29,30].
TGF-β1 exerts powerful pro- or anti-inflammatory functions depending on the pathological
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context because TGF-β1 can contribute to the differentiation of both regulatory T cells and
inflammatory Th17 cells; furthermore; TGF-β1 might be, also, down-regulated in some
autoimmune diseases, and, for example, mice deficient in TGF-β1 develop a multiorgan
autoimmune inflammatory disease leading to death in a short time [31] and various trans-
genic mice whose T cells are unresponsive to TGF-β1 develop autoimmune diseases [31,32];
on the other hand, TGF-β1 is overproduced in many pathological conditions, including
those characterized by a fibrotic evolution such as pulmonary fibrosis, glomerulosclerosis,
renal interstitial fibrosis, cirrhosis, Crohn’s disease (CD), cardiomyopathy, scleroderma and
chronic graft-vs-host disease [3,33]. Regarding the non-canonical SMADs-independent
TGF-β signals, they are generally activated by the interaction of ligands that do not belong
to the TGF-β family to tyrosine kinase receptors Unlike other cytokines, TGF-β1 is synthe-
sized in an inactive complex with its pro-domain, which represents the pre-pro-TGF-β1
precursor. This precursor is modified intracellularly prior to secretion through the cleavage
of the C-terminal pro-region from the N-terminal portion of the protein. The C-terminal
pro-region is referred to as the latency-associated peptide (LAP) while the N-terminal
region is called the mature TGF- β1 or active TGF- β1. Then, the precursor dimeric protein
LAP/TGF-β binds to the latent TGF-β-binding protein [LTBP], and the LTBP/LAP/TGF-β
complex is then secreted from cells and bound to collagen and other ECM proteins [34,35].
At this stage, the complex cannot interact with its receptor and has no biological effect.
The mechanism of activation of LTBP/LAP/TGF-β1 complex may be varied and context-
dependent and several stimuli, such as low pH, proteolysis, and binding to the cell surface
proteins have been identified as capable to liberate active TGF-β1 [35,36]. When TGF binds
to its receptor (TGF-βR), the activated main pathway derived from a complex set of interac-
tions between regulators, activating factors and inhibitors [37–39]. The binding of TGF-β to
the TGF-βR primarily induces SMAD transcription factors, represented consequentially by
two receptor-associated SMADs, SMAD2 and SMAD3 that are directly phosphorylated and
activated by TGF-βR, followed by the activation of a common SMAD, SMAD4 [40–42]. The
activated SMAD-complex translocate into the nucleus, where they interact in a cooperative
manner with sequence-specific DNA-binding cofactors and transcriptional coactivators or
corepressors to regulate the transcription of target genes. In this context of canonical SMAD-
mediated TGF-β signalling mechanisms, the activated receptors also signal through other
molecular transducers, represented, for example, by the mitogen-activated protein kinase
(MAPK) pathways, including the extracellular signal-regulated kinases (Erks), c-Jun amino
terminal kinase (JNK), p38 MAPK, as well as the IκB kinase (IKK), phosphatidylinositol-3
kinase (PI3K) and Akt, and Rho family GTPases, which are collectively known as alter-
native non-canonical SMAD-independent pathways [43,44]. Therefore, TGF-β exerts its
regulation of target cell function via a range of mechanisms. Both SMAD-dependent and
SMAD-independent signalling pathways are tightly tuned to induce a cascade of events
that results cell-type-specific or context-dependent and which has the ability to cross talk
with various other signalling pathways.

3. SMAD Proteins and Their Role in Signal Transduction

SMAD proteins represented specific substrates for type I receptor kinases, known
to be able to trigger a signalling cascade [40]. Proteins belonging to the SMAD family
were first identified in the fruit fly Drosophila melanogaster by Sekelsky et al. who found
that an intracellular protein named Mad (mothers against decapentaplegic) mediates the
signalling of decapentaplegic (dpp), a member of the TGF-β superfamily corresponding to
mammalian bone morphogenetic proteins (BMPs) 2 or 4 (BMP-2/4) [45–47]. The discovery
of orthologous proteins in Caenorhabditis elegans (Sma-proteins) led to the combination of
the two names in SMAD [48]. SMADs act as regulators of BMPs, members of the TGF-
beta superfamily [49,50]. In accordance to current knowledge, the SMADs are the only
TGF-β receptor substrates and TGF-β-downstream effector with a demonstrated ability to
propagate a transcriptional signal. The mechanism of activation of the TGF-β receptors
has been sufficiently clarified for some decades [38]. Briefly, signalling is initiated by
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binding the growth factor to a specific pair of transmembrane protein serine/threonine
kinases, known as Receptor types I and II; following this event, the phosphorylation and
activation of the Receptor type I, which until that time was catalytically inactive, occurs
by the other kinase Receptor type II [51]. The activated type I receptor phosphorylates the
subgroup of SMADs, known as receptor-regulated SMADs (R-SMADs), which then move
into the nucleus [38,52,53]. SMADs are expressed ubiquitously throughout development in
practically all adult tissues [54–56], and many of them (SMAD2, SMAD4, SMAD5, SMAD6
and SMAD8) derived from alternatively spliced mRNAs [54]. Functionally, SMADs fall into
three subfamilies (Figure 1): the first comprises the above cited R-SMADs (SMAD1, SMAD2,
SMAD3, SMAD5, SMAD8), which become phosphorylated by the type I receptors; in
particular, all R-SMADs share an amino-terminal Mad homology 1 (MH1) domain, a central
proline-rich linker, and a carboxy-terminal MH2 domain. Their activation is dependent on
the type I receptors that phosphorylate a common Ser-X-Ser motif present at the extreme
carboxyl terminus of the MH2 domain [57,58]; the second subfamily is represented by
the common mediator SMADs (Co-SMADs: SMAD4); practically, the activation of the R-
SMADs is continued by their assembly with the co-SMAD, SMAD4, leading to the complex
translocation to the nucleus for SMAD-target genes transcription [59]. Finally, into the third
subfamily fall inhibitory SMADs (I-SMADs: SMAD6 and SMAD7), which antagonize the
TGF-β signalling pathway. I-SMADs structure lacks an MH1 domain and the SSXS motif,
but retain a conserved MH2 domain. Recent discoveries clarified that I-SMADs antagonize
the SMAD signalling pathway by associating with the type I receptor, recruiting Smurf1
or Smurf2 E3 ubiquitin ligases, and also through binding the receptor-phosphorylated
R-SMADs and interfering with the association with co-SMAD, or interacting with DNA
and nuclear SMAD complexes [38,52,60] (Figure 1).
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Figure 1. TGF-β signalling is triggered through BMP or TGF-β ligands. Ligands bind the TGF-β
receptor II (TGF-βR-II) which recruits and phosphorylates TGF-β receptor I (TGF-βR-I). In the
TGF-β signalling pathway, TGF-βR-I phosphorylates the SMAD2 and 3, or SMAD1, 5, and 8. The
cofactor SMAD4 forms a heterotrimeric complex with SMAD2/3 and SMAD1/5/8. Activated
SMAD complex, translocate into the nucleus interacting with transcription factors and modulating
or repressing the gene transcription. Feedback regulation is mediated by inhibitory SMAD 6/7. Both
SMAD6 and SMAD7 are in turn induced by TGF-β receptors and regulated through the help of
SMAD ubiquitination regulatory factors (Smurfs) 1 and 2.
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Recently, ubiquitin-dependent mechanisms have emerged as essential regulatory
elements controlling cellular levels of SMADs and TGF-β-dependent EMT. The HECT
(homologous to E6AP C-terminus domain) E3 ubiquitin ligase known as WWP2, together
with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), were identified as
novel SMAD-binding partners. These isoforms interact with SMAD2, SMAD3 and SMAD7
in the TGF-β signalling pathway, modulating the inhibition or activation of SMADs-
mediated cascade [61–63].

4. SMAD and Non-SMAD Pathways in TGF-β Signalling

The physiological responses to TGF-β activation are diverse and vary amongst dif-
ferent cell types and environmental conditions. The TGF-β1/SMAD/Snail pathway is
a particularly dynamic system leading to the TGF-β-stimulated EMT, that induces the
fibrotic process linking to EMT program in several diseases [44,64–66].

All three forms of TGF-β, once bioavailable, interact with the surface of the target
cell using the same receptors: type I (RI, or ALK5); type II (RII) and type III (RIII, or
betaglycan) [67]. TGF-β binds a homodimer of TGF-β type II receptors (TβRII) and the
TGF-β-TβRII complex providing a structural interface that facilitates stable complex for-
mation with a homodimer of the TGF-β type I [68]. Once that the receptor and scaffold
proteins are activated, this complex leads to the phosphorylation of regulatory SMAD2/3
proteins to form the Receptor-mediated-SMAD (R-SMAD)/co-regulatory SMAD4 com-
plex [69]. In unstimulated cells, SMADs constitutively shuttle between the cytoplasm
and nucleus. Upon ligand stimulation, this SMAD complex accumulates in the nucleus
where, interacts with the general transcription machinery to modulate the expression of
300 target genes [70]. The transcription of the genes encoding the zinc finger transcription
factor Snail, for example, was successfully activated [71,72]. Snail plays an active role in
driving the EMT system which affects the loss of epithelial markers as E-cadherin and
claudins and, contemporary, the upregulation of mesenchymal markers such as vimentin
and fibronectin [73]. Peinado et al., demonstrated, in an experimental model represented by
Madin-Darby canine kidney cells treated with TGF-β1, that Snail acts as a strong repressor
of the expression of E-cadherin. In these cells, a TGF-β1-dependent EMT program was
activated, suggesting that Snail is involved directly in the TGF-β1 signalling [74]. Func-
tional studies have showed that SMADs have an essential role in TGF-β-EMT-dependent
fibrosis. In particular, SMAD3 gene silencing inhibits EMT process activation in response
to TGF-β stimulation or mechanical stretch in renal tubular epithelial cells [75], and causes
a reduction of the migratory ability of these cells in response to TGF-β [76]. Conversely,
SMAD2 may play an antagonistic role in the EMT program in vivo. Therefore, interestingly,
there is a complex collaboration between SMAD2 and SMAD3, where cooperation and
antagonism occur simultaneously in the same cellular context. In addition, studies in the
human skin cancer patients demonstrated that the loss of the SMAD2 was linked with trans-
differentiation, and with the strong reduction of E-cadherin expression [77]. Moreover,
in human skin cancer patients frequently an under expression of SMAD2 was observed.
Among EMT-linked target genes, overexpression of the Snail appears to be associated with
SMAD2 loss-triggered EMT [78]. There is now ample evidence that suggests SMAD2 could
either compete with or impede the capacity of SMAD4 to bind SMAD3 and induce the Snail
promoter. Therefore, the loss of SMAD2 determines an intensive binding capacity of the
SMAD3/4 complex to the promoter of the Snail target gene, thus provoking the increase of
the progression of EMT [77]. Likewise, Ju et al. demonstrated that SMAD2 deletion in the
hepatocytes derived from knockout mice underwent the induction of the EMT program,
while SMAD3–/– hepatocytes preserved all their epithelial characteristics and did not ex-
hibit molecular alterations of the EMT system [78]. Like that of SMAD3, the role of SMAD4
is indispensable for the activation of EMT. SMAD4 gene knockdown, using RNA interfer-
ence strategy or transfection with a dominant negative mutant form of SMAD4, resulted in
retained E-cadherin expression in a pancreatic cancer cell line [79]; in association with the
abolition of type I collagen synthesis in vitro, and with strong diminished bone metastasis
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in vivo [80]. The same observations were made in a study conducted on adenocarcinoma,
reporting that genetic ablation of SMAD4 determines the conservation of epithelial mark-
ers and inhibition of the EMT [81]. TGF-β family signalling is finely modulated through
a variety of positive and negative regulators, identified recently [68]. For example, the
I-SMADs, SMAD6 and SMAD7, are included in the list of the inhibitors, since they act as
negative regulators of the TGF-β signalling triggered by EMT [82–85]. Particularly, SMAD7
inhibits the EMT activation induced by TGF-β in multiple tissues [86,87]. Nevertheless,
SMAD7 is tightly associated to the activation of TGF-β in the case of various diseases
with chronic inflammatory features, which often induce EMT-dependent fibrosis process.
It was recently demonstrated that SMAD7 is overexpressed in the colonic mucosa when
chronically inflamed, and in precancerous conditions [88]. This finding was confirmed by
inhibiting SMAD7 through the oral administration of SMAD7 antisense oligonucleotide
in vivo, leading to diminished inflammatory state in mice affected by colitis [88]. SMAD7
gene silencing, indeed, restored TGF-β1 activity, thus blocking inflammatory cytokines
release and resolving the colitis in mice [88]. Similarly, oral administration of anti-SMAD7
antisense oligonucleotide to patients with active CD determines clinical symptoms re-
mission [89]. Regarding the non-canonical SMADs-independent TGF-β signals, they are
generally activated by the interaction with tyrosine kinase receptors of ligands that do
not belong to the TGF-β family of tyrosine kinase receptors [89]. The activated TGF-β1
receptors trigger an intensive response through a wide range of signal transducers [90]; the
active role of these non-SMAD pathways in TGF-β1/EMT-dependent fibrosis was recently
showed utilizing chemical inhibitors directed against one or more of these pathways. The
PI3K/Akt pathway is involved, even in EMT, in TGF-β-mediated fibroblast proliferation
and morphological change characteristic of the EMT program. The use of imatinib mesylate,
a chemical inhibitor, it was demonstrated to prevent TGF-β1/EMT-dependent fibrosis in
the lung [91]. Furthermore, using specific small-molecule inhibitors that inhibit the MAP
kinase or PI3 kinase pathways, Janda et al. evidenced that the Raf-MAP kinase pathway as
synergistically intricate in TGF-β signalling, provoking the progression of tumour events
and metastasis in EpH4 mammary epithelial cells through EMT activation [92]. A represen-
tative scheme of SMADs-canonical and SMADs- independent pathways is represented in
Figure 2.

Based on considerable scientific progress the inhibition of the EMT through the identi-
fication of TGF-β antagonists that block both SMAD- and non-SMAD-dependent pathways
may be among the most important priority research goal for the prevention of cancer and
chronic inflammatory diseases progression. Potential strategies interfering with TGF-β
ctivity for fibrosis therapy are summarized in Table 1 [93].
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Figure 2. Schematic illustration of canonical and non-canonical TGF-β signalling pathways. Canoni-
cal SMAD-dependent TGF-β signalling is initiated by TGF-β ligand binding to receptors TGFBRI/RII,
which once activated, lead to the phosphorylation and activation of SMAD2/3 which, in turn, binds to
cofactor SMAD4. The trimeric SMAD complex translocate into the nucleus, where they interact with
other transcription factors to regulate target gene expression. In the SMAD-independent pathways,
the TGF-β receptor complex transmits its signal through other factors, such as RAS-RAF-MEK-ERK.
Once activated, ERK1 and ERK2 can facilitate EMT by increasing the expression of EMT transcription
factors. Moreover, activated TAK1/JNK/JUN factors act to regulate cellular apoptosis and prolif-
eration, whereas they can also mediate metastasis, angiogenesis and cellular growth through other
transcription factors.

Table 1. Potential therapy interfering with TGF-β dependent fibrosis.

Strategy [93] Potential Therapy

Block activation of TGF-β receptors inhibitors Small molecule inhibitors

Block coactivator recruitment and function Aptamers (Trx-SARA)

Block ligand production or activity Isotype-specific neutralizing antibodies

Soluble TβR1-3 receptors

Antibodies to avß6 integrin

Natural TGF-β binding proteins (eg. Decorin)

Nucleic acid-based (antisense, ribozyme, siRNA)

Inhibition of the SMAD Pathway Physiologic endogenous inhibitor Smad7

halofuginone (HT-100)

SIS3, targets SMAD3 phosphorylation

Adenovirus vector gene transfer of SMAD7
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5. SMADs Signalling Pathways Activated by TGF-β1-Dependent EMT in pSS

Recently, considerable attention has been paid to the chronic inflammatory disorders
of pSS, and although inflammatory status is often associated with pathological fibrosis, the
mechanisms that lead to this condition and the key role of EMT in linking inflammation
and SG fibrosis are not clear. Emerging evidences suggest that epithelial cells are also an
important source of myofibroblasts in organ fibrosis [94,95] and this trans-differentiation is
evaluated as a tightly specialized system of the EMT process that may be a central event
in the SG fibrosis. Therefore, the chronic inflammatory microenvironment common to
fibrotic and inflammatory disease has emerged as a decisive element in triggering the
pathological EMT program [94]. Despite the growing interest of the EMT in several organs,
the precise molecular mechanisms through which EMT occurs in SGEC playing a role
in the induction of the SG fibrosis in pSS are still poorly understood. Recently, to clarify
these doubts, Sisto and collaborators have applied different approaches to investigate
EMT process in SGs [26]. Findings obtained demonstrated that in SG tissues, derived
from biopsies of patients affected by pSS, the levels of TGF-β1 protein are increased in
comparison to those found in healthy SGs tissue, and, since the signal triggered by TGF-
β1 is involved during the fibrotic condition, the authors analysed whether the TGF-β1
signalling pathway is activated in human pSS SGs [96]. As expected, this investigation
demonstrated that TGF-β1 activates the members of SMAD family through SMAD2/3
phosphorylation; in addition, the expression of the co-SMAD protein, SMAD4 is markedly
elevated in the pSS tissue compared with healthy SG tissues. Interestingly, recent evidences
revealed a strong positivity for EMT mesenchymal phenotype factors as vimentin and
collagen type I in pSS specimens; furthermore, Snail, a transcriptional repressor and
promoter of EMT, is over-expressed in comparison with normal SG tissue. On the other
hand, the expression levels of epithelial marker E-cadherin was decreased in diseased SG
biopsies, evidencing that TGF-β1 triggers the EMT program in SGEC through the canonical
TGF-β1/SMAD/Snail signalling [26,97]. Results obtained at the molecular level were
confirmed by microscopic investigations carried out in vitro, clearly evidencing phenotypic
changes characteristic of EMT in SGEC, in response to TGF-β1 treatment; epithelial cells
have undergone phenotypic transition into myofibroblasts, the key effector cells of the
fibrotic states [97,98]. Interestingly, several lines of findings highlight that SGEC derived
from healthy SG biopsies, exposed to TGF-β1 stimulation, acquired a more fibroblast-
like morphology; whereas when cultured in the absence of TGF-β1 or in the presence
of the TGF-β1-pathway inhibitor SB-431542, the cells conserved a classic cobblestone
epithelial morphology [64]. In this context, a recent study, compared the gene and protein
levels of SMAD2/3/4, Snail, E-cadherin, vimentin, and collagen type I isolated from
TGF-β1-treated SGEC and the expression levels of the same factors in pSS SGEC. An
interesting finding was obtained through this approach, reporting that both regulatory-
SMAD 2, 3, and co-SMAD 4 and Snail factor is highly expressed both at gene and protein
level following TGF-β1 treatment of healthy SGEC reaching values comparable to those
observed in pSS SGEC. In addition, in the cells treated with TGF-β1 as well as in pSS SGEC,
an important reduction in the epithelial phenotype marker E-cadherin and an increase in
the mesenchymal phenotype markers, vimentin and collagen type I, were demonstrated.
All these evidences confirmed that TGF-β1 induces the EMT via the TGF-β1/SMAD/Snail
canonical signalling pathway [65,97], so modulating and promoting the progression of the
EMT-dependent fibrosis in pSS SGEC (Figure 3).
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Figure 3. Hypothetical scheme illustrating TGF-β/EMT signalling in SS. TGF-β activates both the
canonical SMAD2/3 pathway and the non-canonical MAPK pathway, triggering the EMT process.
An inflammatory microenvironment including proinflammatory cytokines such as IL-17, IL-22,
and IL-6 may induce EMT through the TGF-β/SMAD and non-SMAD signalling pathways. The
activation of transcription factors such as Snail, promotes the prolonged activation of EMT, repressing
epithelial marker genes, as E-Cadherin, and activating genes regulating the mesenchymal phenotype,
as Vimentin and Collagen Type 1. The epithelial cells trans-differentiated in myofibroblasts are
responsible for progressive SG fibrosis. Alternatively, TGF-β can trigger the signals via non-SMAD
pathways, such as the MAPK signalling cascade including phosphorylated ERK1/2, that ultimately
lead to the activation of the EMT-dependent fibrosis program. An alternative hypothetical mechanism
was also showed mediated by IFN-γ that, through the Jak1/Stat1 activation, causes the SMAD7-
mediated inhibition of TGF-β signalling.

6. Inflammatory Mediators Trigger EMT in pSS through the Activation of
TGF-β1/SMADs Canonical and Non-Canonical Pathways

Once the activation of the EMT program has been demonstrated in pSS as dependent
on the activation of the cascade mediated by TGF-β1, researchers wondered whether the
inflammatory microenvironment could influence the activation of SMADs and mediate
EMT-dependent fibrosis. The ability of pro-inflammatory cytokines to directly drive EMT
through signalling pathways involved in the pathogenesis of pSS has not until recently
been investigated, but innovative data were accumulated providing evidences that inflam-
matory mediators characterizing pSS play a role in both the initiation and the perpetuation
of pathological SG fibrosis [98,99]. Inflammatory cell factors present in injured SG of pSS pa-
tients amplified the epithelial-derived cytokine cascade [98,99] and some of these cytokines
present in abundance in inflamed SG appear to be directly involved in the activation of
the EMT program in pSS by acting on the activation of SMADs proteins. Interestingly,
considerable levels of interleukin (IL)-22, strictly associated with a reduced salivation,
have recently been identified in pSS patients’ sera [100,101]. Additionally, a recent study
reported that the pro-inflammatory cytokines IL-22 and IL-17 are markedly present in the
SGs of patients affected by pSS, both correlated with the degree of inflammatory status [17].
Furthermore, contemporary expression of IL-17 and IL-22 in the inflamed pSS SG seems
to suggest a central key role in the EMT program. As hypothesized, IL-17 and IL-22
were demonstrated to promote the activation of the EMT-dependent fibrotic cascade in
healthy SGEC and, furthermore, a combined action of both IL-17 and IL-22 accentuates
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the progression of the EMT system [17]. To demonstrate the role of SMADs in this pro-
inflammatory cytokines-mediated EMT-dependent fibrosis program activated in pSS, the
investigations have currently focused on IL-17 because accumulated data support a pivotal
role of IL-17 as an attractive target for the individuation of new treatment for autoimmune
diseases [102,103]. Recent findings suggested an unexpected role for IL-17 which seems
to activate both the SMAD-mediated canonical pathway and the non-canonical SMAD
independent pathway in pSS. In particular, the induction of Erk 1/2 signalling by TGF-β1,
in healthy SGEC with IL-17 as stimulus was demonstrated independently from the con-
comitant activation of the canonical IL-17-dependent TGF-β1/SMAD signalling. Indeed,
blocking SMAD2/3 phosphorylation and activation through the use of the specific in-
hibitor SB431542 the basal or IL-17-TGF-β1-stimulated phosphorylation of Erk1/2 was not
involved, showing that both the canonical SMAD2/3 and non-canonical Erk 1/2 pathways
are responsible for IL-17-mediated TGF-β1-induced EMT [64]. These observations led to
compelling evidence that IL-17 is one of the principal factors inducing EMT in pathological
organ fibrosis in chronic inflammatory diseases. Research on the role of pro-inflammatory
cytokines in the activation of SMAD proteins during TGF- β1-dependent EMT in pSS is
reaching further interesting progress in recent times because experimental in vitro models
of pSS demonstrated that IL-6 can also trigger morphological phenotypical changes from
epithelial to mesenchymal phenotype, in a dose-dependent manner, in healthy SGEC. These
findings, which require further investigation, emphasize the hypothesis that dysregulated
expression of IL-6 may promote the EMT-dependent fibrosis, offering a more complete
understanding of the role that chronic inflammation characterizing pSS could play in the
induction of EMT-dependent fibrosis in SGs [18] (Figure 3).

7. Future Perspectives on Alternative Molecular Mechanisms Mediated by SMAD in SS
7.1. MicroRNAs and TGF-β/SMAD Signalling in SS

Recently, microRNAs (miRNAs) were demonstrated to be important regulators of
SMAD3-mediated TGF-β/SMAD signalling during fibrosis (Figure 4, Table 2).
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Table 2. MicroRNAs regulate TGF-β/SMAD signalling during fibrosis.

Anti-Fibrotic miRNAs [104–112]

miR-101 TGF-ßRI

miR-9-5p TGF-ßRII

miR-153 TGF-ßRII

miR-326 TGF-ß1, Smad3

miR-27b TGF-ß1, Smad2

miR-489 Smad3

miR-26a Smad4

miR-300 Smad4

miR-609 Smad4

Targeting these miRNAs has shown to effectively inhibit fibrosis in the heart, liver,
lung, and kidney diseases [104–106]. Fortunately, rapidly advancing progresses in this field
were made, and there is an increased interest in understanding the roles of SMADs sig-
nalling in SS; recent studies, in fact, have expanded our knowledge, creating an association
with the expression of microRNA and the pathological molecular pathways activated in SS.
Experiments performed on gene expression in SS CD14+ monocytes have provided impor-
tant findings for the role of pro-inflammatory genes in SS [107]. MiRNAs can negatively
modulate gene translation into protein and, interestingly, miRNA expression dysregulation
has been documented in a variety of autoimmune diseases, including SS [108–110]. How-
ever, the vast majority of published research evaluated miRNA expression in mixed cell
populations or tissues, and this may confound the further evaluation of specific miRNA-
mRNA target relationships. For the pathogenesis of SS there are interesting advances,
because a recent finding showed that SMAD4 gene expression undergoes repression in
a subpopulation of pSS patients by SS-associated miRNAs [111,112]. Since the SMAD4
protein acts as an essential common mediator for receptor-regulated SMADs to enter the
nucleus, the discovery showing that SMAD4 may be targeted by SS-associated miRNAs
suggests the activation of a regulating intranuclear gene transcription mechanisms [111]
(Figure 4). The progress in the understanding the mechanism for controlling the specificity
of miRNAs in SS was accelerated identifying impact of SS-associated miRNAs on TGF-β
signaling; in pSS CD14+ monocytes, the relative gene expression of SMAD2, SMAD3, in
addition to SMAD4 was evaluated. SMAD2 and SMAD3 gene expression levels are sig-
nificantly increased in pSS monocytes compared with healthy controls, although SMAD4
gene expression tended to be reduced [111]. Investigating the sequence analyses of miRNA
target sites, it was demonstrated that both SMAD2 and SMAD3 3′untranslated regions
contain multiple alternative polyadenylation sites upstream of predicted miRNA bind-
ing sites; this means that miRNA-directed inhibition of gene transcript levels could fail
in this case, while, on the other hand, a significant association for specific miR-300 and
miR-609 with reductions in SMAD4 gene expression in pSS patients’ monocytes was con-
firmed [111]. Obviously, the exact roles of most miRNAs and the underlying mechanisms
in pSS have not been yet clarified, requiring further investigation for successful translation
to clinical therapies.

7.2. SMAD7 Functions as Inhibitor of JAK/STAT Pathway in SS

The blockade of Janus kinase (JAK)/signal transducer and activator of transcription
(STAT) signalling may be considered of therapeutic applicability in pSS. It is well known
that the use of JAK inhibitors in pSS is promising because suppression of the JAK/STAT
pathway improves sicca manifestations [113,114]. Pringle et al. demonstrated, recently, that
SG precursor cells react to pro-inflammatory cytokines by proliferation and apparent cell
death, presumably by signalling through the JAK/STAT pathway, implying that inhibitors
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of JAK/STAT signalling may also interfere with the homeostasis of the SG epithelium [115].
The SG epithelium, including its progenitor cells, is characterized by the activation of
TGF/SMAD system as pathway salient to the function of SGEC population and to maintain
the SGEC homeostasis. It is well known that TGF-β signalling has been implicated in driv-
ing development, cellular proliferation, and differentiation [116,117] and recent findings
demonstrated that the expression of TGF-β family members is associated with differen-
tiation of SG progenitor cells into acinar cells [118]. Moustakas et al. demonstrated that
the activation of the JAK/STAT pathway determines an increase in the activity of SMAD7,
known as the ‘anti-SMADs’, so promoting SG precursor cells differentiation; theoretically,
blocking JAK/STAT pathway may prevent differentiation of precursor cells in SG acinar
cell and eventual saliva production [119]. Interestingly, SMAD7 activation also enables
STAT3 activation [120] and, based on these premises one can hazard that blockade of
JAK/STAT signalling could have a therapeutic purpose in pSS. In fact, the JAK/STAT path-
way is known to be activated by IFN-γ; TGF-β and IFN-γ have opposite effects on diverse
cellular functions [121]: TGF-β signals through the initial phosphorylation and activation
of the transcription factors SMADs 2 and 3 [42], whereas IFN-γ primarily activates STAT1
through the Jak1-mediated tyrosine phosphorylation [122]. Recent results indicate that
IFN-γ specifically inhibits an early step in the TGF-β-induced activation of SMAD3, using
as mediator SMAD7 that acts negatively regulating TGF-β signalling [121,123]. SMAD7
binds to the TFG-β-receptor complex, preventing its interaction with, and phosphorylation
of SMADs [124], so trans modulating the TGF-β/SMAD signalling by the IFN-γ/STAT
pathway. As supposed, IFN-γ, through the Jak1/Stat1 pathway, determines a rapid increase
of the SMAD7 expression, causing the inhibition of TGF-β-mediated SMAD3 phosphoryla-
tion and blocking the transmission of the TGF-β signalling to the nucleus (Figure 3) [115].
This mechanism may normally function to balance the activity of these two pathways to
regulate SGs physiological functioning, but, could represent a promising mechanism useful
for the development of new therapies for the SS disease.

7.3. Potential Correlation of BMP6 with SMADs Phosphorylation in SS

TGF-β cytokine family includes, among its members, BMP (Figure 1). BMP expression
is increased in minor SGs in SS patients; this overexpression is linked to a SGs hypofunction
and to an increased lymphocytic infiltration [125]; in addition, in BMP-6–expressing mice,
extensive changes in the ECM composition were observed, that could be related to the
fibrosis detected in pSS SGs [126]. Confirming these observations, the overexpression of
BMP6 in the SGs of genetic modified C57BL/6 mice results in a SS-like phenotype [126],
although the underlying mechanism is not clear. Xu et al. assumed that BMP6 could
indirectly determine immune cell infiltration of SGs through the impairment of mesenchy-
mal stem cell function [127]. Other studies suggested that BMP6-induced SG dysfunction
was rather associated with an altered glandular cell water permeability or ECM protein
modulation [125,126,128]. One of the mechanisms investigated to evaluate the alteration of
cell permeability in SGs was based on the study of the expression of aquaporin 5 (AQP5); in
this case BMP-6 could act interfering with AQP5 post-translational modification necessary
for function, but this hypothesis will require further study [129]. With regards to the role
of BMP6 in the activation of TGF-β signalling cascade, recently, using mouse models of
SS, it was demonstrated that the inhibition of BMP6 signalling reduced phosphorylation
of regulatory SMAD1/5/8 in the SGs leading to a recovery of SG function and to a de-
crease in inflammatory factors, confirming the role of BMP6 as TGF-β1 antagonist [125].
But, on the other hand, there are experimental evidences that an increased expression of
pro-inflammatory cytokines in SS patients could be correlated to BMP-6 signalling, and
eventually to the activation of TGF-β1/SMADs signalling cascade [93]; therefore, more
work will be required in the future to confirm the possibility that TGF-β/SMADs cascade
in SS could be modulated by BMP-6 expression.
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8. Conclusions

Clearly, important aspects of the cell biology of the SMAD pathway are yet to be un-
derstood and the current advances in research into the TGF-β/SMAD signalling pathway
could improve our understanding of the molecular mechanisms of chronic inflammatory
autoimmune diseases. Here we summarized studies describing the association of deregula-
tion of TGF-β/SMADs signalling with SS. Compared to other human diseases, the current
knowledge of how TGF-β pathways lead to various autoimmune abnormalities is limited
and causal links between altered function of SMADs and SS have not been generated.
Over the last decade, several studies have explored the efficacy and safety of biologic
agents in SS and after the failure of tumour necrosis factor-α inhibitors, there has been
a considerable and concerted effort to develop drugs that target different components
of the canonical TGF-β signalling pathway. Numerous relevant preclinical studies have
individuated intracellular targets for SG fibrosis within the canonical SMAD pathway but
have not yet reached clinical trial. Indeed, several TGF-β pathways targeting therapeutic
candidates have been developed or are under investigation, yet the majority have not
achieved satisfying clinical results. We hope that this article will provide a basis for future
research aimed at providing more mechanistic insights into immunological abnormali-
ties stemming from deregulated TGF-β/SMADs signalling; taking a network-wide view
on TGF-β/SMADs signal transduction could be essential for the future development of
targeted therapies for SS.
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