
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-–9 June 2022, Oslo, Norway

ATTENUATION AND LOCALIZATION OF WAVES IN
TAUT CABLES WITH A DISCRETE ARRAY OF SCATTER

ELEMENTS

MARCO MOSCATELLI1,2, CLAUDIA COMI1 AND JEAN-JACQUES
MARIGO2

1 Department of Civil and Environmental Engineering
Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milan, Italy
e-mail: marco.moscatelli@polimi.it, claudia.comi@polimi.it

2 Laboratoire de Mécanique des Solides
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Abstract. This work analyzes structural waves that propagate freely along taut cables, char-
acterized by a discrete array of scatter elements. The outcomes underline the role played by the
periodic distribution of such elements, whose presence alters the response of the system when
subjected to propagating waves. Namely, when the domain is perfectly periodic, band gaps
are found in the spectrum of the problem. It is also shown that the introduction of a defect
of periodicity can lead to the appearance of eigenvalues inside band gaps, corresponding to a
motion localized around the defect.

1 INTRODUCTION

In the recent years, it has been shown that the mechanical behavior of periodic domains
assembled by repeating a specifically designed unit cell can offer peculiar dynamic properties,
among which the presence of band gaps in the spectrum of the problem, i.e. intervals of frequen-
cies corresponding to attenuated waves. This behavior was initially studied in solid mechanics
by reinterpreting some concepts typical of solid state physics. When the periodicity is of the
same order of magnitude of the wavelength of interest, a Bragg scattering phenomenon can lead
to the formation of band gaps [1, 2]. To activate band gaps in the subwavelength regime, unit
cells with local resonances have been proposed [3, 4].

This ability to forbid the propagation of waves is generally employed for the design of efficient
wave shields [5, 6]. Systems of this type are also studied for a variety of new phenomena, such
as lensing [7, 8] and cloaking [9, 10]. In order to emphasize their peculiar dynamic properties,
materials whose behavior is governed by the periodic microstructure are generally collected
under the name of metamaterials (or metastructures).

When a defect of periodicity is introduced, the system response varies, as a displacement
field well-localized around such defect can take place for some specific frequencies belonging to a
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band gap of the underlying periodic structure [11, 12, 13]. Mathematically, this can be explained
by looking at the spectrum of the problem. When dealing with perfectly periodic media, the
spectrum would only be composed of its essential part. By introducing a compact defect, the
essential spectrum is not altered and thus its band gap structure remains unchanged [14]. This
also means that, if a particular band gap is considered, the spectrum for the defective system
in that band gap can consist at most of the discrete part. The localized displacement field is
thus an eigenmode of the problem, generally known as “defect mode”. As this eigenmode is
an harmonic vibration at a frequency belonging to a band gap, the corresponding displacement
field must decay exponentially away from the defect. This justifies the localized response.

In this work, we aim to study the attenuating and localizing phenomena in a taut cable with
scatter elements distributed along it. The structural model here investigated is made up of
a cable, with a discrete and periodic set of scatter elements, subjected to an external tension
which maintains an almost horizontal equilibrium configuration. The system can be of interest
as a starting point towards a reinterpretation in terms of metamaterials of the problem of wave
propagation in cables typically used in civil engineering applications, such as: suspension bridges,
cableways and overhead lines with stockbridge dampers and marker balls. Here we treat the
problem by deriving an equivalent mass for the continuous system, that determines the form of
the solutions.

The rest of the paper is organized as follows. In section 2, the model under consideration
is presented and the associated motion problem is described. In section 3, we highlight the
attenuating properties by studying the behavior of the frequency dependent equivalent mass.
In section 4, we study how the dynamics of the perfectly periodic system changes as a defect is
introduced, leading to a localization phenomenon. Some conclusions are then given in the final
section.

2 DESCRIPTION OF THE PROBLEM

Let us consider a 1D perfectly flexible cable of mass per unit of length ρ, in tension between
two fixed ends positioned at distance L under the applied force H. Let us assume that the cable
is made up of a linear elastic material of constant Young’s modulus E. By neglecting the effect
of gravity, the static equilibrium configuration can be approximated to be straight, i.e. with zero
curvature. This assumption is valid either when the cable is parallel to the gravity field or when
the applied tension H is much larger than the total weight of cable. For the sake of simplicity,
we fix the equilibrium configuration to be along the horizontal direction. A particle at point
s0 of the undeformed (natural) configuration is moved to point s of the statically deformed
configuration. Specifically, s is related to s0 by s = s0 +

∫ s0
0 εeq(s0) ds0, where εeq denotes the

static axial strain. Calling Neq(s0) the axial force along the cable, from equilibrium one has

N ′
eq(s0) = 0 −→ Neq(s0) = H and εeq(s0) = H/EA ∀s0,

where EA is the axial stiffness of the cable with undeformed area A and where we use (•)′ for
a spatial derivative.
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Figure 1: Cable in tension under an axial force H between two fixed ends, with a periodic distribution
of generic scatter elements. Direction e3 is out-of-plane.

2.1 Addition of the scatter elements

Let us now add a discrete set of n scatter elements, periodically attached along the preten-
sioned cable at distance d. In particular, these elements can be: masses directly attached to
the cable, masses hanging by means of elastic springs and spring constraints (c.f. figure 1). Let
us call P the set containing the positions s = si of the i-th scatter element. We aim to study
elastic waves propagating along the pretensioned taut cable with a discrete set of generic scatter
elements (c.f. figure 1). Specifically, we are here considering the propagation of waves that have
not reached the boundaries yet. By calling x(s0, t) the position at time t of a particle originally
at position s0, we have

x(s0, t) = (s(s0) + u1(s0, t))e1 + u2(s0, t)e2 + u3(s0, t)e3,

where ej , with j = {1, 2, 3}, denote the unit vectors along the system of reference depicted in
figure 1 (direction e3 is out-of-plane) and uj are the displacement components.

Updating the static equilibrium configuration to be the new reference configuration and using
˙(•) for a time derivative, the equations of motion at a point s where a scatter element is not
present can be written as:

ρü1(s, t) = α

[
EAε(s, t)

1 + ε(s, t)
(1 + u′1(s, t))

]′
ρü2(s, t) = α

[
EAε(s, t)

1 + ε(s, t)
u′2(s, t)

]′
ρü3(s, t) = α

[
EAε(s, t)

1 + ε(s, t)
u′3(s, t)

]′
(1)

where α := 1 + εeq and ε(s, t) is the dynamic axial strain given by

ε(s, t) = ||x′(s, t)|| − 1 = α
√
(1 + u′1(s, t))

2 + u′2(s, t)
2 + u′3(s, t)

2 − 1.
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By assuming uj , with j = {1, 2, 3}, (and their derivatives) as infinitesimal at least of order
one and by neglecting non-linear terms in relations (1), one obtains the classical (uncoupled)
equations governing the linear dynamics of taut cables, such that

ü1(s, t)− c2l u
′′
1(s, t) = 0

ü2(s, t)− c2tu
′′
2(s, t) = 0

ü3(s, t)− c2tu
′′
3(s, t) = 0

∀s \ s ∈ P, (2)

with

c2l =
EAα2

ρ
and c2t =

Neqα

ρ

being respectively the speeds of longitudinal and transverse waves.
We are interested in the propagation of transverse harmonic waves with polarization along

direction e2. Accordingly, one can write

u2(s, t) = Lû2(s) exp {iωt}, (3)

where i denotes the imaginary unit.
The second of equations (2) can thus be rewritten in dimensionless form as follows

û′′2(ŝ) + (n+ 1)2Ω2û2(ŝ) = 0, ∀ŝ ∈
(
i− 1

n+ 1
,

i

n+ 1

)
, 1 ≤ i ≤ n+ 1 (4)

where ŝ = s/L and Ω = ωd/ct are respectively dimensionless coordinate and frequency.

2.2 The equivalent governing equation

The above equation (4) can be integrated within each interval i, obtaining

û2(ŝ) = û2(i−1) cos (Ω(n+ 1)ŝ− i+ 1) +
û2(i) − û2(i−1) cosΩ

sinΩ
sinΩ((n+ 1)ŝ− i+ 1), (5)

where û2(i), with 1 < i < n, denote the non-dimensional amplitude of the vertical displacement
defined as in (3) of the cable points si where the i-th scatter element is present. Therefore,
solutions to the original problem can be found by imposing the jump conditions at each of these
positions si. These conditions read

[[EAεequ
′
2]](si, t) = F (si, t) (6)

where [[(•)]] = (•)+ − (•)−, with (•)+ (resp. (•)−) denoting the right (resp. left) limit of (•) at
s, and F is given by the following relations for the three cases considered in figure 1

F (si, t) =


m1ü2(si, t) masses directly attached

m1ü2(si, t)− k(vi(t)− u2(si, t)) masses directly attached and hanging

ku2(si, t) elastic constraint
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with m1 being the mass scatter element directly attached to the cable and k the stiffness of the
elastic springs. The quantity vi(t) in the second expression denotes the vertical displacement of
the i-th hanging mass m2 and can be derived from the following relation

m2v̈i(t) = −k(vi(t)− u2(si, t)). (7)

Note that the first and third relations for F (si, t) can be retrieved from the second one by
considering, respectively, an infinite stiffness (in this case the mass m1 would be substituted by
m1 +m2 in the first relation) and an infinite hanging mass m2, with mass m1 equal to zero.

Let us assume small harmonic time variations for the displacement of masses m2, such that
vi(t) = Lv̂i exp {iωt}. Using this in equation (7), from relations (5) and (6) one finds an equiva-
lent equation governing the motion of points si ∈ P, such that

∆iû2 + µ(Ω)û2(i) = 0, with ∆iû2 = û2(i+1) + û2(i−1) − 2û2(i) for 1 ≤ i ≤ n. (8)

In the above equation (8), µ(Ω) can be interpreted as a frequency-dependent equivalent mass
for the cable and it is defined as follows for the three configurations

µ(Ω) =



2(1− cos(Ω)) + Θ1Ωsin(Ω) masses directly attached

2(1− cos(Ω)) +

(
Θ1 +

k̂Θ2

k̂ −Θ2Ω2

)
Ωsin(Ω) masses directly attached and hanging

2(1− cos(Ω))− k̂
sin(Ω)

Ω
elastic constraint

(9)
with

Θ1 =
m1

ρd
, Θ2 =

m2

ρd
, k̂ =

kd

Neq
.

By solving equation (8), using relation (5), the solution of the wave propagation problem can
finally be found.

3 WAVE ATTENUATION PHENOMENON

Let us here study problem (8). The solutions depend on the behavior of the frequency varying
equivalent mass µ(Ω), defined by relations (9) and represented in figure 2 for a specific set of
parameters.

One has that:

� For 0 ≤ µ(Ω) ≤ 4, the general solution reads:

û2(i) = a1 exp {−iK∗i}+ a2 exp {iK∗i} with K∗ ∈ [0, π] (10)

and corresponds to a superposition of a right- and left-propagating waves;

� For µ(Ω) < 0, the general solution reads:

û2(i) = a1 exp {−K∗i}+ a2 exp {K∗i}. (11)
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Figure 2: Equivalent mass µ(Ω) vs dimensionless frequency Ω for the case of masses directly attached
(continuous), hanging masses (dotted) and spring constraints (dashed). The following parameters have

been used: Θ1 = Θ2 = 1.1842 and k̂ = 4.7368. For the case with hanging masses, Θ1 was fixed to zero.

� For µ(Ω) > 4, the general solution reads:

û2(i) = a1(−1)i exp {−K∗i}+ a2(−1)i exp {K∗i}. (12)

Note that, for the last two cases, the solutions correspond to a superposition of attenuated
waves.

The term K∗ represents a wave number normalized with respect to the distance d between two
neighboring scatter elements and can be obtained from

1− µ(Ω)

2
=


cosK∗ for 0 ≤ µ(Ω) ≤ 4

coshK∗ for µ(Ω) < 0

− coshK∗ for µ(Ω) > 4

. (13)

We thus have found that the problem can be characterized by the presence of intervals of
frequencies corresponding to attenuated waves, i.e. by band gaps in its spectrum. Specifically,
they can be visualized in figure 2 any time µ is either < 0 or > 4. Note that these intervals
differ for the three typologies of scatter elements under consideration.

4 DEFECT OF PERIODICITY AND WAVE LOCALIZATION

As we stated in the introduction to this work, a defect of periodicity in the system can result
in a displacement field well-localized around such defect. To show this, we will limit ourselves
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to the case when masses are directly attached to the cable. Specifically, we generate a defect
by modifying the central mass of the system. We here again neglect the presence of boundary
conditions, by taking them to be far away from the defect. We thus hypothetically consider a
system of infinite dimensions. This assumption is valid for the case when the displacement is
strongly localized around the defect, rapidly decaying away from it, so that it is approximately
null at the two ends of the cable.

HH u2
s

s

i=0i=-1 i=1
Figure 3: Periodic array of massesm1 attached to the pre-tensioned cable with a central defect generated
by a modified mass M .

Let us analyze the system depicted in figure 3, where we called M the modified central mass.
For convenience, the index i can now take any number in Z and is 0 for the central mass.

Let us denote as δm1 the perturbation of the mass M with respect to mass m1, such that

M = m1 + δm1,

where δm1 ∈ R.
Jump conditions (6) can now be rewritten as

[[EAεequ
′
2]](si, t) = mü2(si, t), (14)

where

m =

{
m1 ∀i ∈ Z \ 0
M i = 0

.

Using again relation (5) together with jump conditions (14), one obtains the following equivalent
equation:

∆iû2 + µ(Ω)û2(i) = −δµ(Ω)û2(0)δi0 for i ∈ Z, (15)

where δij is the Kronecker’s delta and

δµ(Ω) :=
δm1

ρd
ΩsinΩ

is an additional term coming from the perturbation δm1 of the central mass. Note that (15)
coincides with (8) for i ̸= 0.

4.1 Characterization of the defective motion

To localize the response of the system around the central defect, the displacement field must
decay moving away from it. This behavior can thus be activated only at those frequencies
belonging to a band gap of the periodic system. In particular, from the results in section 3,
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we have this condition whenever the equivalent mass µ(Ω) is either < 0 or > 4. Therefore, by
choosing a frequency Ω belonging to a band gap, the motion of the scatter masses corresponding
to a localized response can be obtained either from relation (11) (for µ < 0) or from relation
(12) (for µ > 4), by making use of relation (13) to find K∗.

Specifically, by imposing the continuity of the displacement at i = 0, we obtain

û2(i) =

{
A exp {−K∗ |i|} for µ(Ω) < 0

A(−1)i exp {−K∗ |i|} for µ(Ω) > 4
∀i ∈ Z, (16)

where A is a constant of integration. Note that, in both cases, the response of the system is
localized at the central mass and exponentially decays away from it.

Up to now, the mass M that would generate a localized motion (16) at the specific frequency
Ω is still unknown. To fix it, we can make use of the following method. First, let us consider
the equation

∆iû2 + µ(Ω)û2(i) = −δi0 for i ∈ Z, (17)

corresponding to the case when the central mass M is not modified from m1, but instead
subjected to an harmonic unitary force at frequency Ω belonging to a band gap of the periodic
system and pointing downwards. A solution û2(i) to problem (17) can be obtained by using the
general solutions (16). Specifically, one finds:

û2(i) =


−1

−2 exp {−K∗} − 2 + µ(Ω)
(−1)i exp {−K∗ |i|} for µ(Ω) > 4

−1

2 exp {−K∗} − 2 + µ(Ω)
exp {−K∗ |i|} for µ(Ω) < 0

∀i ∈ Z. (18)

Let us then compute the spatial Discrete Fourier Transform (DFT) of equation (17), such
that

FG(û2(i)) =
−1

2(cosK− 1) + µ(Ω)
, for K ∈ (0, π), (19)

where we use FG(û2(i)) to denote the DFT of the Green’s function that is solution of problem
(17). As Ω belongs to a band gap, imposing a unit force at the central mass M with an harmonic
variation Ω generates a localized motion whose DFT is given by relation (19).

Let us now consider the case with a modified mass M and no external forces. From problem
(15), the DFT F (û2(i)) of its solution can now be found by multiplying relation (19) by the term
δµ(Ω)û2(0), to obtain

F (û2(i)) =
−δµ(Ω)û2(0)

2(cosK− 1) + µ(Ω)
for K ∈ (0, π).

The DFT F (û2(i)) is equal to FG(û2(i)) if the following condition is respected

δµ(Ω)û2(0) = 1 −→ δm1 =
1

û2(0)

ρd

ΩsinΩ
. (20)

Accordingly, also the motion resulting from the case with the modified mass will be equal to the
motion from the case with the external force.
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We have thus found that, by using the fixed frequency Ω, the perturbation δm1 generating
the localized displacement field previously computed from relation (16) can be obtained from
relation (20). For this, we need to compute the displacement û2(0) that, according to the imposed
equality between F (û2(i)) and FG(û2(i)), can be found by solving problem (17) and thus by
using relations (18) with i = 0. In particular, the mass m1 can be in principle either reduced or
increased depending on the chosen frequency Ω. Nevertheless, in the following subsection, we
show that for the system under study a defect mode can appear only by decreasing the central
mass.

4.2 Considerations regarding the perturbed mass and example

We aim here to make some considerations on the sign of the perturbation δm1 of the central
mass. Let us rewrite condition (20) as follows:

ρd

δm1
= û2(0)ΩsinΩ︸ ︷︷ ︸

⋆

,

with û2(0) obtained from one between relations (18). By studying the behavior of the equivalent
mass µ(Ω), given by the first of relations (9), one can obtain the sign of term ⋆:{

µ(Ω) > 4 −→ ⋆ > 0

µ(Ω) < 0 −→ ⋆ < 0
.

Accordingly, the sign of the perturbation δm1 of the central mass will depend on the sign of the
displacement û2(0). Let us thus study the two cases separately.

When µ(Ω) > 4, using the third of relations (13), û2(0) becomes

û2(0) =
−1

2

√(
1− µ(Ω)

2

)2

− 1

< 0 ∀Ω such that µ(Ω) > 4.

This means that δm1 must be necessarily < 0 to get a defect mode when µ(Ω) > 4.
When µ(Ω) < 0, using the second of relations (13), û2(0) becomes

û2(0) =
1

2

√(
1− µ(Ω)

2

)2

− 1

> 0 ∀Ω such that µ(Ω) < 0.

This means that δm1 must be necessarily < 0 to get a defect mode when µ(Ω) < 0.
These results can be illustrated by an example case. For this, let us use the parameters given

in table 1. We first consider a fixed frequency Ω1 = 1.8 within the first band gap of the system
with masses directly attached to the cable (c.f. figure 2). At this frequency, µ(Ω1) > 4. Using
relation (20), with Ω = Ω1, we find δm1 = −2.688×10−4 kg, corresponding to M = 0.912×10−4

kg. We then consider a fixed frequency Ω2 = 4.8 within the second band gap for the same system.
At this frequency, µ(Ω2) < 0. From relation (20), with Ω = Ω1, we find δm1 = −3.487 × 10−4
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Table 1: Parameters used for the example case.

m1 [kg] ρ [kg/m] d [m] H [N] N

3.6× 10−4 1.52× 10−3 0.2 10 21

Figure 4: Localized motion computed using Ω = Ω1 (left panel) and Ω = Ω2 (right panel). Masses are
denoted with black dots.

kg, corresponding to M = 0.113×10−4 kg. Note that, in both cases, the modified mass must be
lighter than mass m1. Note also that no conditions on δm1 have been given; accordingly, only
those cases for which |δm1| < m1 can be considered.

The resulting localized defect modes are reported in figure 4 for Ω1 (left panel) and Ω2 (right
panel).

5 CONCLUSIONS

The dynamics of straight cables with a periodic array of scatter elements has been analyzed.
We have shown that the problem can be studied by looking at the behavior of an equivalent
frequency-dependent mass. In particular, we have found that the spectrum of the operator
governing the problem is characterized by the presence of band gaps. We have then shown for the
case when the scatter elements are masses directly attached to the cable, that the introduction
of a defect by the modification of the central mass of the system can lead to the activation of
localized displacement fields at frequencies belonging to a band gap of the problem written for
the periodic system. This particular behavior is typical of the so-called metamaterials. For the
system considered in this work, it has been possible to derive an analytic expression giving the
relation between the frequency of the harmonic localized motion of the scatter elements and the
modification of the defective mass.
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