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Abstract
We provide a rigorous workflow to quantify the effects of key sources of uncertainty associated with equivalent fracture 
aperture estimates w constrained through mud loss information acquired while drilling a well in a reservoir. A stochastic 
inverse modeling framework is employed to estimate the probability distribution of w. This choice is consistent with the 
quantity and quality of available data. The approach allows assessing the probability that values of w inferred from mud 
loss events exceed a given threshold. We rely on a streamlined analytical solution to model mud losses while drilling. We 
explicitly consider uncertainties associated with model parameters and forcing terms, including drilling fluid rheological 
properties and flow rates, pore fluid pressure, and dynamic drilling fluid pressure. A synthetic scenario is considered to pro-
vide a transparent reference setting against which our stochastic inverse modeling workflow can be appraised. The approach 
is then applied to a real-case scenario. The latter is associated with data monitored on a rig site. A direct comparison of the 
impact of data collected through two common techniques (respectively, relying on flow meter sensors or pump strokes) on 
the ensuing probability of w is provided. A detailed analysis of the uncertainty related to the level of data corruption is also 
performed, considering various levels of measurement errors. Results associated with the field setting suggest that the pro-
posed workflow yields probability distribution of w that are compatible with interpretations relying on traditional analyses 
of image logs. Results stemming from direct and indirect flow data display similar shapes. This suggests the viability of the 
probabilistic inversion methodology to assist quasi-real-time identification of equivalent fracture apertures on the basis of 
routinely acquired information during drilling.

Keywords Naturally fractured reservoir · Equivalent fracture aperture · Stochastic inverse modeling · Uncertainty 
quantification · Drilling mud data

Introduction

Naturally fractured reservoirs (NFRs) host key hydrocar-
bon reserves and resources. Recent studies revealed that at 
least 40% of oil and gas reserves can be linked to NFRs 
(Zimmerman 2018). These are typically characterized by 
highly heterogeneous geological structures. Recovery fac-
tors associated with these types of reservoirs are often very 
low. This is mainly a consequence of the inherent complex-
ity of these systems which in turn hampers accurate system 

characterization. Rapid production decline and early gas or 
water breakthrough are quite frequent under field conditions. 
Discriminating between the contribution to production due 
to the rock matrix or the fractured system component is 
markedly challenging. In this context, it is recognized that 
fracture distributions across NFRs play a significant role on 
flow rates, permeability anisotropy assessment, and hydro-
carbon recovery (Nelson 1985). Characterizing the remark-
able heterogeneity of these systems requires detailed reser-
voir studies and high-quality information. Seismic data and 
studies from analogues are widely used in large-scale field 
settings (Biber et al. 2018; Takam Takougang et al. 2019). 
Various types of data acquired while drilling are nowadays 
available at reservoir and borehole scales. These include, 
e.g., wireline logs, image logs (Maeso et al. 2015; Patria 
et al. 2017), core data (Lai et al. 2017), drilling parame-
ters (Xia et al. 2015) and production data. These real- (and 
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quasi-real-)time information can be employed to infer frac-
ture distributions along the borehole and their equivalent 
aperture. Data on drilling fluid flow are usually available in 
real-time, mainly due to safety reasons (e.g., for early kick 
detection). These data play a critical role to aid monitoring 
drilling performances. Differences between flow in and out 
of the drilling mud circuit can assist identification of fluid 
influx into the well and/or mud losses events (Al-Muraikhi 
et al. 2013).

A vast majority of wells are nowadays equipped with 
technologies for accurate and real-time monitoring of flow 
in and out. As mentioned above, these data can also embed 
valuable information conducive to detection of the pres-
ence of fractures and their equivalent aperture. Examples of 
the use of these types of data in this context are offered by, 
e.g., Majidi et al. (2008) or Lichun et al. (2014). Analyti-
cal formulations to assess the equivalent fracture aperture 
and to describe the mud flow advancement within a fracture 
encountered while drilling are proposed by Sawaryn (2001) 
and Sarkar et al. (2004). A typically non-Newtonian incom-
pressible drilling fluid is considered in a variety of (numeri-
cal and analytical) studies (Lavrov 2014; Xia et al. 2015; 
Salehi et al. 2016; Razavi et al. 2017; Afolabi 2018; Fakoya 
and Ahmed 2018). Consistent with the work of Canbolat 
and Parlaktuna (2019), Albattat and Hoteit (2019) introduce 
an analytical model that can be employed to circumvent the 
assumption of uniform fracture aperture employed in several 
studies.

The key objective of this study is to provide a method-
ology conducive to quasi-real-time estimates of equivalent 
fracture apertures. In this context, the ensuing estimates 
of equivalent fracture aperture correspond to a parallel 
plate system whose hydraulic behavior is equivalent to 
the one observed through monitored fluid loss rates. Thus, 
the concept can imbue the effect of a single fracture or of 
a network of (possibly micro-)fractures whose presence 
is imprinted onto the pattern of the observed fluid losses 
(e.g., Verga et al. 2000; Russian et al. 2019). The analysis 
workflow relies on the real-time information associated 
with temporal histories of drilling mud losses and on the 
use of a simple analytical formulation. Mud is modeled as 
a yield power law fluid (Majidi et al. 2010). Fractures are 
treated as horizontal planes, perpendicular to the well-
bore, within which radial flow conditions take place. Since 
the parameters associated with the employed interpretive 
model are typically affected by uncertainty (see Russian 
et al. 2019), model calibration is addressed in a stochastic 
inverse modeling framework. As opposed to a determinis-
tic approach which is conducive to a unique solution, a sto-
chastic framework enables us to obtain multiple possible 
solutions to characterize the considered model and its out-
puts of interest under uncertainty. Thus, model parameters 
are characterized in terms of their (posterior) probability 

distribution, as constrained through available data. In this 
framework, we focus on the probabilistic assessment of 
equivalent fracture aperture upon leveraging on routinely 
monitored mud loss events. These are then used to con-
strain model calibration and uncertainty quantification. 
Two commonly used measuring techniques are here con-
sidered. We also provide an appraisal of the impact of the 
associated measurement uncertainty on the quality of the 
stochastic inversion results.

The study is structured as follows. Section 2 illustrates 
the employed methodological workflow, including the 
illustration of the considered analytical model, and the 
adopted stochastic inverse modeling approach. Section 3 
is devoted to the quantitative assessment of our opera-
tional framework through a controlled synthetic scenario. 
An application to a comprehensive dataset acquired while 
drilling a well across a layered reservoir is illustrated in 
Sect. 4.

Methodology

Here, we present an overview of the methodological work-
flow underpinning the study. We also illustrate the key 
theoretical elements associated with the analytical model 
considered. We refer to the works of Majidi et al. (2010) and 
Russian et al. (2019) for the complete set of details. Applica-
tion and ensuing results are then illustrated in Sects. 3 and 4.

Analytical model

Mud losses monitored while drilling are characterized upon 
resting on the semi-analytical model introduced by Majidi 
et al. (2010). The model considers radial flow taking place 
between two parallel circular disks, mimicking the smooth 
walls of a fracture of infinite extent. Advancement of mud 
flow in the system is described through the momentum equa-
tion (see Russian et al. 2019 and references therein). The 
shear stress tensor is defined upon characterizing the mud 
as a Herschel-Bulkley fluid. The Herschel-Bulkley model 
can be considered as a generalized model to describe a non-
Newtonian fluid. The temporal evolution of mud fluid vol-
ume losses, V(t), is evaluated as

where w is the width of the equivalent fracture aperture 
(conceptualized as described in Sect. 1), rf  denotes the mud 
front advancement in the system, and rw is the well radius. 
Following Majidi et al. (2010) and Russian et al. (2019), rf  
is evaluated through integration of

(1)V(t) = �w

(

r2
f
(t) − r2

w

)

,
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here n is an index characterizing the fluid behavior, �Y is the 
fluid yield stress, k is the fluid consistency index, and Δp 
corresponds to overpressure, i.e., the difference between the 
dynamic mud pressure and the formation fluid pressure at 
the well and at the mud front.

The key assumptions underpinning this model are here 
briefly recounted for completeness. These include the fol-
lowing: (1) laminar radial flow is considered to take place, 
where viscous forces dominate over inertial forces, and the 
transverse and vertical velocity components are neglected; 
(2) variations of radial velocity are much stronger across 
the fracture thickness than along the radial direction; (3) a 
constant pressure drop Δp drives the drilling fluid invading 
the system; (4) a quasi-steady-state approximation is invoked 
in Equation (2); (5) mud is incompressible and the formation 
fluid is ideal. It is also noted that Equation (2) also rests on 
several assumptions about fracture roughness, as described 
in Zimmerman et al. (1991).

Stochastic inverse modeling

A key objective of this study is to provide quasi-real-time 
estimates of equivalent fracture aperture conditional on 
available data acquired while drilling. We rely on the semi-
analytical model illustrated in Sect. 2.1 and frame it into a 
proper stochastic model calibration context. We recall that a 
deterministic approach yields a unique model parameter set 
through minimization of a desired objective/cost function. 
Otherwise, a stochastic approach leads to the characteriza-
tion of the (posterior) probability distribution associated 
with each model parameter, as constrained through avail-
able data. Resting on a stochastic calibration framework is 
fully consistent with the inherent uncertainty associated with 
model parameter estimates conditional on a limited amount 
of data.

The nparam = 5 uncertain model parameters which are 
subject to stochastic inverse analysis are w, �Y∕k , Δp∕k , n 
and rw . Each parameter is characterized by a uniform prior 
probability density function. This enables one to assign 
equal weight to each of the parameter values across their 
corresponding support (see also Russian et al. 2019 and ref-
erence therein).

Observations constraining model calibration comprise 
data associated with temporal evolution of mud volume 
losses from the well. Available information is collected 
in vector V∗

k
= [V∗

k
(t1),V

∗
k
(t2),… ,V∗

k
(tNk

)] , whose entries 
correspond to the Nk observations of mud volume losses at 

(2)

drf

dt
=

wn

2(2n+1)
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−
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(

2n+1

n+1

)

(

rf − rw
)

)
1

n
(

w

2
(1 − n)

)
1

n

rf

(

r1−n
f
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w

)
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n

,

times ti ( i = 1, ...,Nk ) within a given fracture k. Considering 
a set of data associated with Nfrac mud losses events, we 
ground stochastic model calibration on the evaluation of the 
objective/cost function

Here, Vk(ti, pj) is the vector collecting the values of mud vol-
ume loss for fracture k at time ti evaluated through Equation 
(1) whose input parameters are collected in vector pj . Mini-
mization of cost function (3) is achieved through the particle 
swarm optimization (PSO; see Eberhart and Kennedy 1995) 
technique. The latter is structured according to a series of 
steps which are briefly summarized in the following. At the 
initial step of the inversion, i.e., at step s = s0 , a number 
Np of points pj(s0) (with j = 1,… ,Np ) termed particles is 
randomly sampled across the considered nparam-dimensional 
parameter space together with a random displacement vector 
vj(s0) . The latter is drawn from a uniform distribution within 
the unit support [0, 1]. Particle displacements are then evalu-
ated during subsequent evolutionary steps of the algorithm 
to update particle locations. While an optimal value for Np 
depends on the scenario considered, Np is typically com-
prised within the range 20–50  (Rahmat-Samii and Michiels-
sen 1999). Displacement of each selected point across the 
parameter space is governed by

Evaluation of objective function (3) is performed at parti-
cle locations, each corresponding to parameter combination 
pj(s + 1).

Two reference points within the parameter space, i.e., 
pbest,j and gbest , respectively, represent the location of maxi-
mum fitness (minimum distance to data; pbest,j ) discovered 
by particle j and the location associated with the best fitness 
ever discovered by all particles ( gbest ) are evaluated at each 
step s of the procedure. Note that, while pbest is evaluated 
at each step of the inversion for each particle j, gbest is the 
same for the entire particle set. Consistent with Eberhart 
and Kennedy (1995), updating of a particle displacement 
is performed upon considering vj(s + 1) as a function of 
pj(s + 1) , vj(s) , gbest , and pbest,j according to

where U is a random number uniformly distributed within 
the unit support; c1 and c2 are constant coefficients, here set 
as c1 = c2 = 1.495 (Rahmat-Samii and Michielssen 1999); 
and � is a step-dependent variable evaluated according 
to Lagarias et al. (1998). In this application, we consider 
convergence to be achieved (in terms of minimization of 

(3)J(�j) =

Nfrac
�

k=1

�

�

�

�

∑Nk

i=1
(V∗

k
(ti) − Vk(ti, pj))

2

Nk

.

(4)pj(s + 1) = pj(s) + vj(s).

(5)
vj(s + 1) = �vj(s) + c1U(pbest,j − pj(s + 1)) + c2U(gbest − pj(s + 1)),
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Equation (3)) when (i) a minimum value of the objective 
function is attained or (ii) after the completion of 1000 
iterations of the PSO algorithm. While the latter criterion 
does not ensure convergence to a global minimum, such a 
number of iterations are considered as a good compromise 
between accuracy and computational cost (see also Russian 
et al. 2019). Repeating this procedure for a variety of random 
initial parameter combinations and measurement errors (i.e., 
random perturbation of the entries of V∗

k
 ) allows exploring 

the parameter and solution spaces. This yields Ncalib sets 
of model parameters satisfying the imposed convergence 
criteria. These are then analyzed through their empirical 
frequency distributions. As such, these results correspond 
to a frequentist analysis of a collection of model param-
eter estimates. The mud flow values employed within the 
inverse modeling framework can be obtained through a 
variety of approaches. These include, e.g., pump stroke 
counters, Coriolis flow meters, or electromagnetic flow 
meters (Singhal et al. 2019). In our application setting, the 
mud flow entering the mud circuit is measured through (1) 
electromagnetic flow meters and (2) pump strokes counters. 
Hereinafter, data related to electromagnetic flow meters are 
referred to as direct measurements and those coming from 
pump strokes counter as indirect measurement, respectively. 
Uncertainty associated with observed data is expected to be 
a function of the employed technique and the corresponding 
accuracy. We set our stochastic model calibration within the 
illustrated context and analyze the impact of both measure-
ment approaches. Differences between the parameter dis-
tributions stemming from the resulting data sets are quan-
titatively assessed through the Kullback-Leibler divergence 
(KLD; Kullback and Leibler 1951). The latter is a global 
metric enabling one to quantify the extent at which a prob-
ability distribution differs from a second one. It is applied 
in a variety of fields, including, e.g., fluid mechanics, neu-
roscience, and machine learning (Bishop 2006). We denote 
the probability distribution of model parameters obtained 
through inverse modeling relying on direct measurements 
as Pdirect . Otherwise, Pindirect represents its counterpart based 
on pump strokes counters. Considering the case of discrete 
probability distributions defined on the same support X, the 
KLD is then defined as

As such, the quantity DKL(Pdirect ∥ Pindirect) is always posi-
tive and corresponds to the amount of information lost when 
Pindirect is used to approximate Pdirect.

Synthetic case

This section is devoted to illustrate how the approach and 
techniques introduced in Sect. 2 can be applied in the context 
of a synthetic scenario. This yields transparent comparative 
analyses to assess the quality of the estimated probability 
distributions of model parameters conditional on available 
data. The support across which uncertain parameters can 
range and the reference values are based on literature infor-
mation and modeler experience. The aim is to obtain a real-
istic dataset that can be considered as a simplified descrip-
tion of a real field case. Consistent with this aim, the values 
of mud volume losses are evaluated from the semi-analytical 
model illustrated in Sect. 2.1. These results are then per-
turbed by applying a random measurement error, to mimic 
uncertainty associated with observations.

Uncertain model parameters

As discussed in Sect. 2.2, values of mud front advancement 
and related mud volume losses resulting from the semi-ana-
lytical model of Sect. 2.1 depend on a set of five uncertain 
model parameters, i.e., w, �Y∕k , Δp∕k , n, and rw . Table 1 
lists the range of variability considered for each parameter, 
together with the values employed to obtain the reference 
synthetic dataset. As seen in Sect. 2.2, in the absence of prior 
information each model parameter is described by a uniform 
probability density across the corresponding support.

Stochastic model calibration

In this section we present and discuss the results obtained 
through the application of the stochastic inverse modeling 
technique described in Sect. 2.2 to the synthetic dataset. 
As stated above, we rely on the semi-analytical model of 

(6)

DKL(Pdirect ∥ Pindirect) =
∑

x∈X

= Pdirect(x) log

(

Pdirect(x)

Pindirect(x)

)

.

Table 1  Uncertain model 
parameters, corresponding 
reference value employed in the 
synthetic scenario and support 
(range of variability) considered 
in the analyses

Model Parameter Description Reference value Range of variability
w [ �m] Equivalent fracture aperture 4 × 102 7 × 101 − 9 × 103

�Y∕k [s−n] Yield stress divided by consistency index 7.44 3.42 − 11.38

n [/] Flow behavior index 0.76 0.66 − 0.86

Δp∕k [106 s −n] Overpressure divided by consistency index 12.01 8.81 − 21.88

rw [m] Wellbore radius 0.15 0.15 − 0.15
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Sect. 2.1 to mimic data sampling at a uniform time step 
Δt = 1 s within a 60-second temporal window. The ensuing 
(reference) values of mud volume loss are corrupted with 
a measurement error. The latter is randomly sampled from 
a uniform distribution. This choice is consistent with the 
approach employed to quantify (prior) model parameter 
uncertainty and enables to give equal weight to all values 
comprised within the support of data uncertainty. We obtain 
a collection of Ncalib = 200 realizations of perturbed obser-
vations. The reference value at each time step is obtained 
through the semi-analytical formulation considered and 
corresponds to the mean value of the above-mentioned 
uniform distribution. The impact of the magnitude of the 
measurement error on model calibration results is probed 
by considering various values of the coefficient of variation 
(CV) of the distribution. We note that considering a Gauss-
ian distribution for measurement errors (with the same mean 
and CV as their uniform counterparts) does not influence 
significantly the range of results of model inversion (details 
not shown). Figure 1 depicts the empirical frequency distri-
butions of the values of w obtained through stochastic model 
inversion for scenarios characterized by 5% ≤ CV ≤ 30% . As 
stated above, each sample distribution in Fig. 1 is based on 
200 inversions. The reference value employed for the analy-
ses (green dashed lines) is here juxtaposed for completeness. 
These results are then complemented in Fig. 2. The latter 
provides a depiction of the way characteristic quantiles of 
the distributions of w depend on CV. The shaded area in the 

figure corresponds to values of w comprised between the 
5th and the 95th percentile of the distribution. The median 
(red solid line), the lowest, and largest bounds (dashed blue 
lines) of the reference range of variability of w (see Table 1) 
are also depicted for ease of interpretation. These results 
show that, despite some minor differences in the overall 
shape of the empirical distributions resulting from stochas-
tic model calibration, their associated maximum a posteriori 
(MAP) constitutes a generally good approximation for the 

Fig. 1  Empirical distribu-
tions of relative frequencies of 
equivalent fracture aperture w 
for CV = (a) 5%, (b) 10%, (c) 
15%, (d) 20%, (e) 25%, (f) 30%. 
Green dashed lines represent 
parameter reference values 
employed in the analyses

Fig. 2  Median value of the equivalent fracture apertures (red solid 
curve) versus the value of CV considered for the stochastic inverse 
model calibration. The shaded area denotes values of w comprised 
between the 5th and the 95th percentile of the distribution; the blue 
dashed lines represent the lowest and largest bounds of the reference 
range of variability of w (see Table 1)
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reference value. This is noted independent of the strength 
of the measurement error considered, as expressed through 
the values adopted for CV. These results imbue us with 
confidence about the suitability of the considered stochastic 
inverse modeling technique to yield reliable posterior distri-
butions of w in the presence of perturbed mud volume loss 
information. Corresponding results associated with model 
parameters �Y∕k , n, and Δp∕k are included in Appendix 6, 
for completeness.

The inverse modeling results can be employed to assess 
the uncertainty associated with the desired model output 
conditional on the available observations. This is a key ele-
ment to support risk analyses. First, we evaluate the analyti-
cal model of Sect. 2.1 upon relying on the Ncalib = 200 com-
binations of parameter values obtained through stochastic 
calibration procedure. We then compare the ensuing mud 
volume loss distributions against the corresponding refer-
ence value evaluated at times which are not employed for 

model inversion. This provides a perspective about model 
prediction assessment. As an example, Figs. 3 and 4 depict 
the distributions of cumulative mud loss volumes associ-
ated with six selected observation times. These range from 
10.5 to 60.5 seconds and from 70 to 120 seconds, respec-
tively, corresponding to CV = 5% and 30%. Reference val-
ues are denoted with vertical green dashed lines. The effect 
of the level of uncertainty associated with the value of CV 
is clearly visible in Figs. 3 and 4. One can evidence (a) an 
increased uncertainty linked to the modeled state variable 
and (b) differing values of the probability of exceeding 
given threshold values. Otherwise, it is noted that the most 
frequent values of both distributions are well in agreement 
with the corresponding reference value. Since the calibration 
dataset is associated with a temporal window that covers 
the first 60 s, the uncertainty linked to V is increasing with 
time, as expected. Nevertheless, our result suggests that the 
calibrated solutions are characterized by distributions that 

Fig. 3  Relative frequency 
distributions of mud volume 
loss evaluated through the 
analytical model relying on 
the Ncalib = 200 combinations 
of parameters obtained via 
stochastic calibration. Results 
are related to CV= 5% (orange) 
and 30% (purple) and corre-
spond to times, t, which are not 
considered for model inversion. 
Green dashed lines denote refer-
ence values

Fig. 4  Relative frequency 
distributions of mud volume 
loss evaluated through the 
analytical model relying on the 
Ncalib = 200 combinations of 
parameters obtained via sto-
chastic calibration. Results are 
related to CV= 5% (orange) and 
30% (purple) and correspond to 
times, t, extending beyond the 
temporal window within which 
calibration data are collected. 
Green dashed lines denote refer-
ence values
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are compatible with the corresponding reference values also 
in the context of model prediction analysis.

Field case scenario

In this section we showcase the application of our workflow 
through a set of available data associated with a real field 
case scenario. The drilling mud circuit is a typical closed 
system that is comprised by two parts. These are termed in 
(extending from the surface into the well) and out (encom-
passing the portion conveying the mud fluid from the well 
back to surface), respectively. Consistent with the objectives 
of our study, we rest on flow-out and flow-in data, hereafter 
termed Qo and Qi , respectively. These are monitored while 
drilling a single well in a sequence of shale and sandstone 
within a layered reservoir. These data are key to enable frac-
ture characterization while drilling. A variation in the differ-
ence between them, i.e., ΔQ = Qo − Qi , represents the sig-
nature of an event. This is potentially due to the occurrence 
of a fracture or of a set of fractures (e.g., Majidi et al. 2011; 
Al-Adwani et al 2012; Russian et al. 2019). We consider the 
relative impact of relying with direct (i.e., corresponding 
to electromagnetic flow meters data) or indirect (i.e., cor-
responding to pump strokes counters) flow-in observations.

Mud loss dataset

Mud volume losses can take place when (a) the pressure of 
the drilling fluid exceeds that of the formation fluid (Vavik 
et al. 2016), and (b) there is a flow pathway (Osisanya 2002). 
The latter can be related, e.g., to the occurrence of an open 
natural fracture or to a network of (micro-)fractures. In this 
study, we analyze mud loss events associated with six events. 
These are hereinafter terms 1–6 (the numbering corresponds 

to increasing depths along the borehole). As stated in Sect. 1, 
we rely on the concept of equivalent aperture to represent the 
impact of a single fracture (or of a network of fractures) on 
the observed fluid losses.

Observations of flow-out and flow-in deriving from elec-
tromagnetic flowmeters (hereafter denoted as Qo and Qis , 
respectively) have been collected at a uniform time step 
Δt = 5 seconds. Flow-in data derived from pump strokes 
are acquired at the same time scale as their flowmeter-based 
counterparts. In the case of pump strokes data, flow-in (here-
after denoted as Qip ) can be evaluated as

where N is the number of pumps installed at the rig site, 
SPTn is the number of strokes per unit time of the n-th pump, 
Δvn is the volume of drilling fluid displaced per stroke, and 
�n denotes pump efficiency. We denote mud losses associated 
with flow-in measurements derived from pump strokes and 
flow meter sensors as ΔQp = Qo − Qip and ΔQs = Qo − Qis , 
respectively.

Figure 5 depicts the temporal evolution of the six cumu-
lative mud volume loss ( V∗ ) histories considered. Figure 5a 
and Fig. 5b is based on electromagnetic flow-in data ΔQs and 
pump strokes counters ΔQp , respectively. Values of V∗ are 
assessed by integrating across time the monitored mud flow 
rate loss |ΔQ| . Events in Fig. 5 are depicted upon rescaling 
time with respect to the first detection time associated with 
each of them. Identification of the initial mud volume loss 
is based on observations of ΔQ prior to start evidencing a 
significant increase. These typically tend to oscillate around 
a constant mean (before yielding a sharp increase of values 
of V∗ ), consistent with the advancement of the drilling.

(7)Qip =

N
∑

n=1

SPTnΔvn�n,

Fig. 5  Temporal evolution of mud volume losses for the six events considered in the field scale scenario. Values associated with direct and indi-
rect measurements of flow are indicated with (a) crosses and (b) dots, respectively
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Information about mud rheology, overpressure at the 
borehole, and geometric attributes of wellbore and frac-
tures have been acquired for each selected event, as detailed 
in the following. Rheological parameters �Y , n, and k (see 
Sect. 2.1) have been estimated through viscometer analysis, 
i.e.,

where �i is the shear stress obtained from a coaxial cylin-
der viscometer operating at i rotations per minute (RP et al. 
2006; Rehm et al. 2013). Overpressure ( Δp ) is monitored 
along the wellbore while drilling. Its values are assessed on 
the basis of the drilling mud equivalent circulating density 
(ECD) and pore pressure at depths corresponding to frac-
tures. The well radius ( rw ) is assessed through caliper log. 
Interpretation of electric image logs yields independent esti-
mates of fracture apertures w. The image log tools WBI HRP 
have been reported to perform properly in the depth interval 
here considered (i.e., from 3979 m and 4078 m). According 
to the technical report related to downhole analyses, the tool 
provided a high-quality response.

Table 2 lists the main elements associated with our analy-
sis. These include the event identifier and the number of mud 
loss volumes associated with sampled ΔQ . These samples 
are attributed to a reference depth, also listed in Table 2. 
We note that identification along the borehole of the precise 
location at which mud loss takes place is inherently chal-
lenging. Thus, we consider the set of fracture aperture values 
obtained via microscanner data and comprised within a ver-
tical interval of width ± 0.5 m centered around the location 
at which mud loss data are ascribed. The extent of this verti-
cal interval can be deemed compatible with the observations 
that (a) our analysis is based on the concept of equivalent 
fracture aperture and (b) there can be a certain degree of 
uncertainty related to the acquisition of driller depth data. 
Image log analysis leads to detecting approximately 6–7 
fractures for each event within such a range of depths. We 
then include in Table 2 the lower and upper bounds of the 

(8)

�Y = 2�3 − �6, n = 3.3219 log10
�600 − �Y

�300 − �Y

, k =
�300 − �Y

511n
,

detected aperture values. These will then be employed to 
assess the quality of the stochastic inversion (see Sect. 4.2). 
Values of the other quantities of interest estimated with the 
techniques illustrated above are also included in Table 2. 
As these values are affected by uncertainty due to measure-
ment and interpretive errors, the stochastic inverse modeling 
framework is employed to provide probability distribution 
of these quantities conditional on the available information. 
To this end, we consider model parameters to vary across 
the supports whose bounds are listed in Table 1.

We note that each of the events considered in this field 
case is characterized by a limited amount of data. These 
typically range between four and six observations. On the 
other hand, there are four uncertain model parameters, i.e., 
w, �Y∕k , n, and Δp∕k for each event (we assume that rw is 
known, as caliper log consistently renders the same value of 
wellbore radius along the overall depth encompassing all six 
events). This yields a total of 24 parameters to be estimated. 
In this context, inverse modeling considering each event 
separately could not lead to reliable results.

We circumvent this difficulty by noting that the six 
events are comprised within a depth of less than 100 ms 
(see Table 2). One can then consider mud rheological param-
eters to be constant for all fractures across this depth range. 
This significantly reduces the number of uncertain model 
parameters. With this assumption, we then consider all of the 
mud volume loss data of the six events as a unique dataset to 
be employed in batch in the context of the stochastic calibra-
tion process. Model parameters subject to stochastic inverse 
analysis then correspond to the equivalent fracture aperture 
wi (index i = 1,… , 6 denoting each of the events), the over-
pressure Δpi∕k , and the rheological parameters �Y∕k and n. 
This yields a total of 14 model parameters. Table 3 lists the 
parameters considered for the stochastic calibration process 
based on the analytical model formulated in Sect. 2.1.

As stated in Sect. 2.2, we compare the results stemming 
from stochastic inverse modeling upon relying on two types 
of delta flow data. These correspond to ΔQp and ΔQs associ-
ated with flow-in measurements based on pump strokes and 
flow meter sensors, respectively.

Table 2  Events considered in the field scale analysis. The corre-
sponding reference depth to which mud volume loss is ascribed, the 
number of available mud volume loss data, the reference value w, and 
minimum and maximum values (w int) of the set of fracture aperture 

values comprised within a vertical interval of width ± 0.5 m centered 
around the reference depth and evaluated through image log interpre-
tations are shown. Values of the other quantities of interest estimated 
with the various standard techniques illustrated are also listed

Event Ref. Depth [m] N. Data w [ �m] w int [ �m] �Y∕k [s
−n] n [/] Δp∕k [106 s −n] rw [m]

1 3979 4 650 88–1200 7.00 0.71 11.99 0.15
2 3995 4 460 233–924 7.23 0.78 15.60 0.15
3 4014 4 160 160–278 7.23 0.78 16.14 0.15
4 4022 4 190 75–670 10.83 0.80 15.60 0.15
5 4025 6 400 63–516 6.38 0.75 10.98 0.15
6 4078 4 440 236–753 5.97 0.76 15.92 0.15
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Since a precise quantification of data uncertainty is not 
available, we follow the procedure implemented in Sect. 3.2. 
Thus, we perturb observed values of ΔQp and ΔQs with a 
zero-mean random error characterized by a uniform distribu-
tion and a given coefficient of variation (CV). We explore 
the impact of the latter by performing inverse modeling for 
several scenarios. Each of these corresponds to a given value 
of CV, which is taken to range between 5% and 30%.

Probability distribution of equivalent fracture 
apertures

In this section we illustrate the results obtained from the 
stochastic inverse modeling approach by focusing on the 
probability distributions of fracture apertures. These are 
evaluated upon conditioning on either direct or indirect mud 
volume loss data. We then juxtapose independent informa-
tion stemming from the microscanner analysis (see Sect. 4.1 
and Table 2) to these probability distributions. The complete 
set of distributions including the remaining model param-
eters is offered in Appendix 6.

We rest on a collection of Ncalib = 200 inversions corre-
sponding to randomized datasets and obtained through mini-
mization of the objective function provided by Equation (3) 
via the PSO algorithm. The total computational cost required 
to obtain the resulting (conditional) empirical multivariate 
distributions of parameter estimates involves considering ≈ 
10 million realizations of the semi-analytical model. This 
corresponds to slightly less than 24 h with an Intel ® CoreTM 
i7–6900K CPU@3.20GHz.

As a first example of the results, Fig. 6 depicts the empiri-
cal distributions of values of w associated with each of the 

events and corresponding to observations of ΔQs and ΔQp 
perturbed with CV=5%. The value of fracture aperture stem-
ming from the interpretation of the microscanner analysis 
data associated with the depth at which the mud loss event is 
first detected is also depicted (green solid line, correspond-
ing to the reference depth listed in Table 2). As stated in 
Sect. 4.1, we recall that it is very difficult to identify the 
precise location along the borehole at which mud loss takes 
place due to the presence of a fracture (or a network of frac-
tures). Thus, we consider the set of fracture aperture values 
associated with a vertical interval of width ± 0.5 m centered 
around the location at which mud loss data are ascribed (see 
Table 2). We further note that our inverse modeling approach 
is characterized by a probabilistic nature. As such, stochastic 
inverse modeling results should be compared against sample 
(probability) distributions obtained from field observations 
associated with a considered depth interval. In our cases, 
image log analysis leads to detecting approximately 6–7 
fractures for each event within such a range of depths. Since 
these are not conducive to reliable distributions, we limit 
ourselves to include in Fig. 6 the lower and upper bounds of 
the resulting aperture values (vertical blue dotted lines) as 
an additional element to assist the appraisal of the quality of 
the stochastic inversion.

Our results show that equivalent fracture aperture distri-
butions obtained through inverse modeling are mostly com-
prised within the intervals identified through the image log 
interpretations with only a few exceptions. These typically 
correspond to the tails of the distributions. Distributions 
obtained by relying on ΔQs or ΔQp information display simi-
lar shapes. These results imbue us with confidence about the 
ability of the considered methodological workflow to con-
strain the identification of equivalent apertures on the basis 
of information routinely acquired while drilling. We empha-
size that our results are obtained in a quasi-real-time mode 
and provide a full uncertainty quantification, as constrained 
through available information. As such, the approach pro-
vides a considerable advantage as compared against com-
monly employed methods of analysis based on, e.g., image 
logs. These requires a time-consuming postprocessing and 
do not take full advantage of the variety and richness of 
data available. We complete the analysis with the assessment 
of the influence of potential measurement errors associated 
with both methods considered for mud loss evaluation.

Figure 7 depicts the values of the Kullback-Leibler diver-
gence DKL(Pdirect ∥ Pindirect) (see Equation (6), Sect. 2.2) 
evaluated considering the empirical distributions of w 
related to each event and assessed on the basis of direct and 
indirect mud flow observations. Results are depicted as a 
function of the values of CV associated with the available 
information, as described in Sect. 4.1.These results show 
that the value of KLD is always very small. This suggests 
that stochastic inversions relying on perturbed data of direct 

Table 3  Parameters considered for the stochastic calibration process 
of the field scale setting considered, together with their corresponding 
support

Variable Event Support
w1 1 7 × 101 − 9 × 103 [ �m]
w2 2 7 × 101 − 9 × 103 [ �m]
w3 3 7 × 101 − 9 × 103 [ �m]
w4 4 7 × 101 − 9 × 103 [ �m]
w5 5 7 × 101 − 9 × 103 [ �m]
w6 6 7 × 101 − 9 × 103 [ �m]
�Y∕k 1–2–3–4-5–6 3.42 − 11.38 [s−n]
n 1–2–3–4-5–6 0.66 − 0.86

Δp1∕k 1 8.81 − 21.88 [106 s −n]
Δp2∕k 2 8.81 − 21.88 [106 s −n]
Δp3∕k 3 8.81 − 21.88 [106 s −n]
Δp4∕k 4 8.81 − 21.88 [106 s −n]
Δp5∕k 5 8.81 − 21.88 [106 s −n]
Δp6∕k 6 8.81 − 21.88 [106 s −n]
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and indirect measurements lead to similar (posterior) prob-
ability distributions of w.

Uncertainty propagation from input parameters to model 
output, i.e., mud loss volume, is then investigated upon 
leveraging on stochastic inverse modeling results. As an 

example, Fig. 8 depicts results corresponding to event # 3 
(see Table 2). These correspond to the 200 stochastic model 
inversions associated with noisy data related to CV=30%. 
Figure 8a and 8b depicts results based on electromagnetic 
flow meter data and pump strokes information, respectively. 
In general, propagation of uncertainty from model parameter 
distributions yields temporal histories of mud losses which 
are consistent with those that can be observed through direct 
observations. At the same time, our results show that errors 
associated with pump strokes data tend to be conducive to 
mud volume loss values which are more spread around the 
unperturbed values (red dots) than their counterparts based 
on electromagnetic flow meter observations. Results of simi-
lar quality are obtained for all of the other events, as illus-
trated in Appendix 6.

Conclusions

The key objective of this study is the characterization 
of equivalent fracture apertures on the basis of available 
mud loss information of the kind which is acquired in 

Fig. 6  Empirical distributions of equivalent fracture aperture related 
to event (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6 obtained through 
stochastic inverse modeling based on direct (red) and indirect (blue) 
mud volume loss observations perturbed considering CV=5%. Values 
of fracture aperture based on image log interpretations at the depth 

at which mud loss data are ascribed (green solid lines; Table 2) and 
lower and upper bounds of fracture apertures (blue dashed lines) 
detected within a vertical width ± 0.5 m centered around this refer-
ence depth are also depicted

Fig. 7  Kullback-Leibler divergence (KLD; Equation (6)) associated 
with the empirical distributions obtained through model inversions 
conditional on pump strokes and flow meter sensor data, as a function 
of the coefficient of variation (CV) employed to quantify measure-
ment uncertainty
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(quasi)-real-time while drilling a well in a natural for-
mation. Our operational workflow relies on a stochastic 
inverse modeling framework. This yields a probabilis-
tic assessment of w on the basis of a simple analytical 
model. Our analyses consider a scenario where (a) typi-
cally monitored mud loss events are available, and (b) sto-
chastic model inversion is constrained through flow data 
stemming from direct and indirect information. The latter 
are represented by flow meter sensors and pump stroke 
analyses, respectively. We also perform a detailed study 
of the uncertainty related to corrupted data and the way 
this impacts the probabilistic assessment of equivalent 
fracture apertures. The work leads to the following key 
conclusions. 

1. We rest on a straightforward analytical model to 
describe, in quasi-real-time and under uncertain con-
ditions, the probability distribution of w in a sequence 
of sandstones and shales layers. We start by testing 
our technique on a streamlined synthetic scenario and 
quantifying the effect of uncertainty associated with 
measurement errors on the probability distribution of 
w. The maximum a posteriori (MAP) of these distri-
butions favorably compares against the reference value 
employed in the setting considered for low to high levels 
of data corruption.

2. Results associated with a natural setting rely on lim-
ited amount of data monitored while drilling a single 
well through a reservoir mainly formed by a sequence 

of shale and sandstone layers. They demonstrate that the 
proposed procedure yields distribution of w which are 
compatible with interpretations based on the analysis of 
image logs. The quality of our results suggests that our 
approach is efficient and provides a detailed probabilistic 
characterization and uncertainty quantification of w con-
strained by available flow data within a quasi-real-time 
perspective.

3. We end by noting that we had the possibility to assess 
our stochastic modeling framework in a given geologi-
cal setting, i.e., a reservoir characterized by alternation 
of shale and sandstone. These results can constitute a 
valuable basis to showcase the methodology in other set-
ting including, e.g., carbonate reservoirs. We envision to 
tackle this aspect in future works, as soon as information 
of sufficient quality and quantity is openly available.

Appendix: Complete set of stochastic inverse 
modeling results

Figure  9 depicts the empirical distributions of model 
parameters �Y∕k , n, and Δp∕k obtained through the 
inverse modeling approach related to the synthetic case 
(see Sect. 3) for scenarios characterized by diverse coef-
ficient of variations (i.e., CV=5% and 30%, respectively) 
quantifying the strength of measurement errors consid-
ered. These results are complemented by a depiction of 

Fig. 8  Temporal evolution of mud volume losses associated with 
event # 3 (i.e., V3 ) rendered through the 200 stochastic model inver-
sions grounded on noisy data characterized by CV=30%. The collec-

tion of model inversion solutions based on (a) ΔQs and (b) ΔQp is 
depicted together with the unperturbed dataset (red circles)
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Fig. 9  Empirical distributions of uncertain model parameters (a)-
(b) �Y∕k , (d)-(e) n, (g)-(h) Δp∕k for (a)-(d)-(g) CV=5%, (b)-(e)-(h) 
CV=30% together with reference values employed (green dashed 
lines; Table 1). Selected quantiles versus the value of CV considered 
are depicted for (c) �Y∕k , (f) n, (i) Δp∕k . Median values are denoted 

through red solid curves, the yellow shaded area denoting values of 
uncertain parameters comprised between the 5th and the 95th percen-
tile of the distribution; the blue dashed lines represent the lowest and 
largest bounds of the reference range of model parameter variability 
(see Table 1)



Journal of Petroleum Exploration and Production Technology 

1 3

Fig. 10  Empirical distributions of parameter (a) �Y∕k , (b) n, (c) Δp1∕k , (d) Δp2∕k , (e) Δp3∕k , (f) Δp4∕k , (g) Δp5∕k , and (h) Δp6∕k obtained 
through stochastic inverse modeling based on direct (red) and indirect (blue) mud volume loss observations perturbed with CV =5%
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the way selected quantiles of these distributions vary with 
CV. It can be noted that conclusions similar to those drawn 
from Figs. 1 and 2 hold for all uncertain model parameters.

Figure 10 depicts the empirical distributions of uncer-
tain model parameters for each of the events considered 
in the field scale scenario (see Table 3) and associated 
with observations of ΔQs and ΔQp perturbed with CV=5%. 

Distributions related to ΔQs (red) and ΔQp (blue) informa-
tion display compatible shapes, similar to what is observed 
in Fig. 6.

Figure 11 depicts results related to events 1–2–4–5–6 
(see Table 2) associated with observations of ΔQs and ΔQp 
which are randomized considering CV=30%. The tem-
poral evolution of mud volume losses of the six events 

Fig. 11  Temporal evolution of mud loss volumes associated with 
event (a)-(f) 1, (b)-(g) 2, (c)-(h) 4, (d )-(i) 5, and (e)-(l) 6 rendered 
through the 200 stochastic model inversions associated with noisy 

data related to CV = 30%. Model inversion solutions based on (a)-
(b)-(c)-(d)-(e) ΔQs and (f)-(g)-(h)-(i)-(l) ΔQp are depicted together 
with the unperturbed dataset (red circles)
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(see Fig. 8 for event 3) considered for the field scale sce-
nario and obtained through the results of the 200 stochas-
tic model inversions is compatible with those observed 
through direct and indirect observations of flow-in data.
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