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I. Introduction
In a real-life scenario, a spacecraft will not follow the prescribed nominal path. As a matter of fact, uncertainty

in the dynamic model (e.g., gravitational parameters or radiation pressure noisy profiles) can lead to relevant drifts

during ballistic arcs, while errors in command actuation (i.e., thrust magnitude and pointing angles error) can inject the

spacecraft on unwanted trajectories [1]. Moreover, the spacecraft state cannot be known exactly, since it is inferred only

from indirect measurements subjected to noise.

Some trajectory correction maneuvers (TCMs) are planned along the transfer to compensate for the trajectory drift

and allow the spacecraft to reach the target. These tailored impulses are quantified through dedicated guidance laws.

These techniques can be subdivided into two main groups: 1) Closed-loop control, if control impulses are given to

track the reference guidance, or 2) Closed-loop guidance, if control impulses are given to update the whole spacecraft

trajectory to satisfy the mission objectives. Moreover, the control thrust can be provided either when a certain quantity

(e.g., the state knowledge) exceeds a threshold or at some prescribed epochs, provided by the on-ground flight dynamics

team, and the impulse vector can be computed to control the full state or just some components. The choice of the most

suitable method is based essentially on the mission profile, spacecraft characteristics, and the general scenario.

For deep space missions, closed-loop control methods are considered suitable techniques due to their robustness,

easy implementation, and fast computational times. Among them, differential guidance [2, 3] is a commonly used

method. It aims to cancel out position and velocity deviations with respect to the nominal trajectory at some future given

time, using a single burn at the present time. Model predictive control is another popular choice for tracking a reference

trajectory [4]. Recently, the increasing demand for autonomy in guidance and control lead to novel techniques able to be

implemented on-board, such as machine learning [5] and sequential convex programming [6]. These two techniques
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were successfully applied to planetary [7] and asteroid [8] descent and landing. Special methods were designed to cope

with Lagrange Points Orbits (LPOs) [9], trying to target a future state of the LPOs using an LQR-like approach [10] or

trying to control the unstable directions [11, 12]. In the case of close-proximity operations around asteroids, control

methods exploiting an application of generalized Zero-Effort-Miss/Zero-Effort-Velocity feedback guidance algorithm

[13], using sliding control [14] or adapting intercept missile guidance to the space scenario [15] were devised.

In some mission scenarios, it can be a key element to meet targets along the trajectory, rather than catching up

to a prescribed state at each correction maneuver epoch. In these cases, algorithms whose aim is to compensate for

state deviations can unreasonably increase navigation costs. A notable example can be mission profiles with several

back-to-back fly-bys, where hitting a precise close approach altitude is paramount, or in the case of close proximity

operations about minor bodies, where achieving scientific objectives can be more stringent than reaching exact way-point

passages. For this kind of trajectories, a guidance law able to fulfill prescribed engineering or scientific requirements

by giving control impulses at some given times can be beneficial. For this reason, a novel concept, labeled target

guidance (TG), has been devised in this note. This technique uses some impulses to compensate for the deviations

from both engineering and scientific prescribed targets, instead of tracking the nominal state or recomputing the whole

trajectory downstream. The goal of this note is to model the target guidance with mathematical means, to provide a

method to estimate the required control impulses, and to assess its performances both in stochastic cost and errors on the

targets in a relevant scenario. For this last point, the Europa science phase of the spacecraft JUICE is selected as the

application case. It is characterized by several back-to-back fly-bys, separated by just a few days, and having some strict

requirements on close-approach altitudes and latitudes for both scientific and engineering reasons.

The note is structured as follows. An overview of the problem at controlling a spacecraft is given in Section II. The

target guidance method is introduced in Section III and the test case scenario is presented in Section V. A performance

assessment for the target guidance is shown in Section V together with a comparison against the differential guidance.

II. The Spacecraft Control Problem
During a spacecraft journey, on-ground flight dynamics (FD) teams have the duty to 1) estimate the spacecraft’s

real state from indirect measurements (i.e., perform the navigation), and, from that, 2) compute the impulse to control

the spacecraft trajectory. Usually, for interplanetary missions, flight dynamics tasks are performed following a weekly

pattern in order to ease the work organization and simplify the ground stations’ schedule. The flight dynamics team

routine can be modeled into three phases (Fig. 1):

1) orbit determination (OD) phase, where measurements, e.g., range and range-rate, are collected and prepared to

be fed into an estimation filter [16]. This phase ends at the cut-off time, that is the time-tag of the final navigation

data to be used in the filter.;

2) cut-off phase, in which the spacecraft state is estimated and the control impulse is computed. At the end of this
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phase, the control impulse is uploaded to the spacecraft, then performed at the expected epoch;

3) ballistic phase, where the spacecraft follows an unobserved, uncontrolled trajectory.

tOD

tCO

tm

OD phase Cut-off phase

Δv

Fig. 1 Flight dynamics team routine timeline with the ballistic phase indicated with a dotted line and the
measurement times as dots.

It is important to note that the last measurement is taken at 𝑡𝐶𝑂, that is hours, or even days, before the application of

the control maneuver. This cut-off time is needed by the on-ground team to perform FD duties, validate the results, and

prepare and send telecommands to the spacecraft. Moreover, the TCMs are computed considering the estimated state at

𝑡𝑚, that is the output of the OD process, since the real state cannot be known exactly from the ground.

Remark 1. The spacecraft control problem can be summarized as: Starting from the estimated trajectory data, collected

from time 𝑡𝑂𝐷 up to time 𝑡𝐶𝑂, find the control impulses Δv to be given at the prescribed time 𝑡𝑚 to allow the spacecraft

to reach the desired targets.

III. Mathematical Formulation
For illustration purposes, a spacecraft flying a trajectory having a single required target at a given time 𝑡𝑇 is considered.

The spacecraft performs 𝑀 trajectory correction maneuvers at some prescribed times {𝑡1, . . . , 𝑡𝑘 , . . . 𝑡𝑀 } ∈ [𝑡0, 𝑡𝑇 ] (Fig.

2). At the initial time 𝑡0, the nominal state is indicated with x∗0, while the real state is x0.

Assuming that the time interval between navigation maneuvers is relatively short and, thus, the real trajectory does

not significantly drift from the nominal one, first-order (linear) approximation can be used to relate the initial and final

deviations. Hence, the pre-maneuver state (indicated with a superscript -) at the first trajectory correction maneuver

time 𝑡1 can be computed as

x−
1 = x∗1 +Φ (𝑡0, 𝑡1) 𝛿x0 (1)

where indexes correlate to TCM epochs, Φ (𝑡0, 𝑡1) is the state transition matrix (STM) from 𝑡0 to 𝑡1, i.e., Φ = 𝜕x∗1/𝜕x∗0,

and 𝛿x0 is the state deviation at the initial time 𝑡0. Its value can be defined as

𝛿x0 = x0 − x∗0 (2)

In a real-life situation, x0 is conveniently substituted by its estimated value.
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Fig. 2 Target Guidance concept, with the nominal path as a black line and the real trajectory as an orange line.

After applying the correction maneuver, the post-maneuver real state, marked with a superscript +, reads

x+1 = x∗1 +Φ (𝑡0, 𝑡1) 𝛿x0 +


0

Δ𝑣1

︸                      ︷︷                      ︸
𝛿x1

(3)

with 𝛿x1 indicating the post-maneuver deviation with respect to the nominal state at 𝑡1. If this deviation is propagated

forward to the second correction epoch 𝑡2, the state is

x−
2 = x∗2 +Φ (𝑡1, 𝑡2) 𝛿x1 = x∗2 +Φ (𝑡1, 𝑡2)

©­­­«Φ (𝑡0, 𝑡1) 𝛿x0 +


0

Δ𝑣1


ª®®®¬ = x∗2 +Φ (𝑡0, 𝑡2) 𝛿x0 +Φ (𝑡1, 𝑡2)


0

Δ𝑣1

 (4)

where the composition property for the STM, i.e., Φ (𝑡1, 𝑡2)Φ (𝑡0, 𝑡1) = Φ (𝑡0, 𝑡2), has been exploited. This procedure

can be applied recursively up to a generic TCM time 𝑡𝑘 , leading to

x+𝑘 = x∗𝑘 +Φ𝑘
0𝛿x0 +

𝑘∑︁
𝑖=1

Φ𝑘
𝑖 𝐼𝑣Δ𝑣𝑖︸                      ︷︷                      ︸

𝛿x𝑘

(5)

where 𝛿x𝑘 is the post-maneuver deviation, Φ 𝑗

𝑗−1 = Φ(𝑡 𝑗−1, 𝑡 𝑗 ) and 𝐼𝑣 = [03, 𝐼3]𝑇 is a (6 × 3)-dimensional block matrix,

able to extract the 3-by-3 bottom-right part of the STM. Under this framework, the target state (at time 𝑡𝑇 ) can be written
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as

x𝑇 = x∗𝑇 +Φ(𝑡𝑘 , 𝑡𝑇 )𝛿x𝑀︸           ︷︷           ︸
𝛿x𝑇

(6)

where 𝛿x𝑀 is the post-maneuver state deviation with respect to nominal trajectory at 𝑡𝑀 (i.e., the last TCM time before

the target), computed through Eq. (5).

The target function 𝑓 is defined as the function that must be zero at time 𝑡𝑡 to fulfill the mission objective. For

example, if the target is a desired latitude ℓ𝛿 with respect to the central body at the close approach, the target function

should be defined as 𝑓 (x𝑇 ) = ℓ(𝑡𝑇 ) − ℓ𝛿 . The first-order expansion of 𝑓 is

𝑓 (x𝑇 ) ≃��
��*0

𝑓
(
x∗𝑇

)
+ d 𝑓

dx

�����
x∗
𝑇

𝛿x𝑇 = 0 (7)

since 𝑓
(
x∗
𝑇

)
is zero by definition. Substituting Eq. (5) in Eq. (6), and in turn in Eq. (7),

𝑓 (x𝑇 ) ≃
d 𝑓
dx

�����
x∗
𝑇

Φ𝑇
𝑀

(
Φ𝑀

0 𝛿x0 +
𝑀∑︁
𝑖=1

Φ𝑀
𝑖 𝐼𝑣Δ𝑣𝑖

)
=

d 𝑓
dx

�����
x∗
𝑇

Φ𝑇
0 𝛿x0 +

d 𝑓
dx

�����
x∗
𝑇

𝑀∑︁
𝑖=1

Φ𝑇
𝑖 𝐼𝑣Δ𝑣𝑖 = 0 (8)

Assuming that 𝑓 is known and it is at least a C1-class function, i.e., a differentiable function whose first derivative is

continuous, Eq. (8) can be written in compact form as

𝐴0𝛿x0 + 𝐴𝚫𝒗 = 0 (9)

where 𝐴0 =
𝜕 𝑓

𝜕x

���
x∗
𝑇

Φ𝑇
0 and 𝐴 =

𝜕 𝑓

𝜕x

���
x∗
𝑇

∑𝑀
𝑖=1 Φ

𝑖
𝑇
𝐼𝑣 , and

𝚫𝒗 =



Δ𝑣1

Δ𝑣2

...

Δ𝑣𝑀


The algorithm can be modified for a multi-dimensional target function. In this case, matrices 𝐴0 and 𝐴 should be

modified accordingly, that is

𝐴0 =
d 𝑓𝑖
dx∗0

=



d 𝑓1
dx∗0
...

d 𝑓𝑁
dx∗0


∈ R𝑁×6 (10)
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while 𝐴 is

𝐴 =
d 𝑓𝑖

dΔ𝑣𝑘
=



d 𝑓1
dΔ𝑣1

03 . . . 03

d 𝑓2
dΔ𝑣1

d 𝑓2
dΔ𝑣2

. . . 03

...
...

. . .
...

d 𝑓𝑁
dΔ𝑣1

d 𝑓𝑁
dΔ𝑣2

. . .
d 𝑓𝑁

dΔ𝑣𝑀


∈ R𝑁×(3𝑀 ) (11)

where 𝑁 is the number of target functions, while 𝑀 the number of control maneuvers. Zeros in Eq. (11) are related to

the fact that impulses future in time cannot modify the trajectory in the past.

Moreover, a target-trigger function 𝑔 is introduced. It is an equality constraint that shall be null whenever the target

condition specified in the function 𝑓 is reached. Thus, it checks that the target is happening at the right moment. For

example, considering as target a desired latitude 𝜆𝛿 at the close approach, the target trigger function will be the close

approach condition, i.e., 𝑔 = (r · v) = 0. Considering a linear expansion,

𝑔 (x𝑇 ) ≃����*0
𝑔

(
x∗𝑇

)
+ d𝑔

dx

�����
x∗
𝑇

𝛿x𝑇 = 0 (12)

Repeating mathematical steps of Eqs. (8)–(9), assuming 𝑔 is a known C1-class function, Eq. (12) is simplified as

𝐺0𝛿x0 + 𝐺𝚫𝒗 = 0 (13)

An optimization problem is set in order to minimize the sum of the stochastic cost, i.e., the sum of all the control

maneuvers, while satisfying the targeting constraints given by Eqs. (9) and (13).

Remark 2. The target guidance problem consists of finding Δ𝑣𝑘 , 𝑘 = {1, . . . , 𝑀}, such that

𝐽 =

𝑀∑︁
𝑘=1

1
2
∥Δ𝑣𝑘 ∥2 =

1
2
𝚫𝒗𝑇𝚫𝒗 (14)

is minimized, subjected to 
𝐴

𝐺

︸︷︷︸
𝐵

𝚫𝒗 = −


𝐴0

𝐺0

︸︷︷︸
𝐵0

𝛿x0 (15)

Applying the Lagrange theory [17], the Lagrange function associated to the optimization problem is

L =
1
2
𝚫𝒗𝑇𝚫𝒗 + 𝝀𝑇 (𝐵𝚫𝒗 + 𝐵0𝛿x0) (16)
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where 𝝀 is the Lagrange multipliers vector. In this case, the necessary condition for the optimization problem are


𝜕L
𝜕𝚫𝒗

= 𝚫𝒗 + 𝐵𝑇𝝀 = 0

𝜕L
𝜕𝝀

= 𝐵𝚫𝒗 + 𝐵0𝛿x0 = 0
(17)

The two conditions in Eq. (17) can be written in a more elegant compact form


𝐼3𝑀 𝐵𝑇

𝐵 02𝑁



𝚫𝒗

𝝀

 = −


03𝑀

𝐵0𝛿x0

 (18)

where 𝐼3𝑀 is the 3𝑀-dimensional identity matrix and 02𝑁 the (2N × 2N) null matrix. Applying the explicit inverse

formula for a 2 × 2 Hermitian block triangular matrix [18], it is possible to write


𝚫𝒗

𝝀

 = −


𝐼3𝑀 𝐵𝑇

𝐵 02𝑁


−1 

03𝑀

𝐵0𝛿x0

 = −


𝐼3𝑀 − 𝐵𝑇

(
𝐵𝐵𝑇

)−1
𝐵 𝐵𝑇

(
𝐵𝐵𝑇

)−1(
𝐵𝐵𝑇

)−1
𝐵 −

(
𝐵𝐵𝑇

)−1




03𝑀

𝐵0𝛿x0

 (19)

Taking the first row of Eq. (19), the optimal impulses can be expressed as

𝚫𝒗 = −𝐵𝑇
(
𝐵𝐵𝑇

)−1
𝐵0𝛿x0 = −𝐵†𝐵0𝛿x0 (20)

where 𝐵† is the Moore–Penrose pseudo-inverse matrix of 𝐵 [19].

Note that this system is well-posed only if 3𝑀 ≥ 2𝑁; hence, at least 2 trajectory correction maneuvers are needed to

match 3 scalar targets. This method can be applied in a receding horizon approach, meaning that, 𝛿x0, 𝐵, and 𝐵0 are

updated at some prescribed times, a new value for the whole vector 𝚫𝒗 is computed, but only the first Δ𝑣𝑘 is applied in

practice, while the others are recomputed again in the subsequent legs. Moreover, it is important to notice that the

algorithm computes TCMs able to control all target states downstream. This characteristic is of paramount importance

whenever several targets close in time are selected.

In the formulation presented in this section, the target times are considered to be fixed. This choice allows to have a

fixed plan for the scientific payloads. However, it is expected that the performances would improve if target times are left

free to vary. In this case, the decision variable vector will be extended with a 𝑁-dimensional vector 𝛿𝑡𝑇 , representing

the difference of the optimized target times from the nominal ones, while Eqs. (7) and (12) will be modified considering

also the expansion of 𝑓 and 𝑔 with respect the target time 𝑡𝑇 .
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IV. Test case scenario
In order to assess the performances of the target guidance, a test in a relevant scenario has been performed. The

European Space Agency (ESA) mission Jupiter Icy Moon Explorer (JUICE) [20], planning to perform a tour of the

Jovian system, is considered. JUICE is an interplanetary mission, developed by ESA, having the aim to study three of

the Galilean Jupiter moons, namely Ganymede, Callisto, and Europa. At the time this work has been performed, the

spacecraft is planned to be launched in 2022 and it will reach Jupiter in 2029. A tour of the Jovian moons is foreseen,

having the twofold aim to change the spacecraft trajectory by reducing its energy and then increasing the inclination by

exploiting several Callisto fly-bys, and to perform scientific observation during the close approaches. The tour ends in

2032 when the spacecraft is inserted on a elliptic orbit about Ganymede.

In this work, the focus is placed on the Europa scientific phase [21]. It consists of two close approaches with Europa,

preceded by a close encounter with Ganymede and followed by a fly-by of Callisto. Between the first and the second

Europa swing-by, a deterministic maneuver, tagged as EU1, is performed in order to prepare the spacecraft for the

second encounter about Europa. This leg is summarized in Table 1. The label used for the fly-bys is nXm, where n is a

total progressive number, X the initial of the moon name, and m a progressive number referred to the only moon X.

Table 1 Europa scientific phase summary.

Label Epoch C/A altitude [km] 𝑣∞ [km/s] C/A long. [deg] C/A lat. [deg] 𝚫𝒗 [m/s]
Start 01 SEP 2030 – – – – –
5G5 03 SEP 2030 1282 6.5 273 -3 –
6E1 17 SEP 2030 403 3.7 188 -47 –
EU1 19 SEP 2030 – – – – 19.452
7E2 01 OCT 2030 403 3.7 179 47 –
8C1 13 OCT 2030 412 5 108 0 –
End 15 OCT 2030 – – – – –
Total 45 d 19.452

Spacecraft dynamics are integrated in a Jupiter-centered inertial reference frame, considering the gravitational forces

given by the Sun, Jupiter and the four Galilean moons. The first zonal term of Jupiter non-spherical gravity model is

also taken into account. Table 2 summarizes the parameters used in the dynamical model. The state of the moons with

respect to Jupiter are retrieved from the IMCCE ephemeris file [22].

Gaussian uncertainties related both to navigation and command errors are considered. Navigation errors are taken

into account as state deviations at the end of the OD phase. A smaller error is considered in the spacecraft–Earth

radial direction, while higher errors are considered in the track and cross-track directions, since navigation rely mainly

on range and range-rate measurements with Earth facilities. Uncertainty in modulus and direction associated to the

deterministic maneuver is put in the loop in order to increase the model reliability. The initial dispersion (i.e., the

deviation of the real trajectory from the nominal) is modeled as a Gaussian random variable, centered at the nominal

8



Table 2 Parameters for the JUICE dynamical model.

Body Parameter Value
Jupiter 𝜇 126 686 534 km3/s2

𝐽2 0.014735
Europa 𝜇 3202.73 km3/s2

Ganymede 𝜇 9887.83 km3/s2

Callisto 𝜇 7179.29 km3/s2

Io 𝜇 5959.92 km3/s2

state. In conclusion, 57 uncertainties affect Europa phase for JUICE. Table 3 contains the uncertainty characteristics.

Table 3 Standard deviation of JUICE uncertainty. 𝑟0 and 𝑣0 indicates the initial state, Δ𝑣 and 𝛿 are the
maneuver magnitude and direction. 𝑟 , 𝑡 and 𝑐 stay for radial, track and cross-track measurement errors.

𝜎𝑟0 [km] 𝜎𝑣0 [m/s] 𝜎Δ𝑣 [%] 𝜎𝛿 [deg]
5 0.01 1 0.5

𝜎𝑟 [km] 𝜎𝑡 ,𝑐 [km] 𝜎𝑣𝑟 [mm/s] 𝜎𝑣𝑡,𝑐 [mm/s]
1 4 1 4

FD tasks are expected to follow a weekly schedule to ease the on-ground team organization. However, in order to

minimize the possible trajectory errors related to incorrect fly-bys, an OD session is placed three days before each close

approach, and another OD session is scheduled to happen 5 days after each fly-bys in order to correct as soon as possible

the state deviations related to imprecise swing-bys. A cut-off time of 2 days before each TCM is enforced. All these

hypotheses are reported in Table 4. From these navigation assumptions, a timeline can be inferred and it is reported in

Fig. 3.

Table 4 JUICE navigation assumptions during Europa phase.

Parameter Value
Last TCM before C/A 3 days

First OD after C/A 5 days
Cut-off time 2 days
Duty-cycle 7 days

V. Results
The analysis presented in the remainder of this section has been conducted by using the Generic Orbit Determination

and Optimisation Tool (GODOT)∗ [23], a software under development by Mission Analysis and Flight Dynamics

Sections at ESOC. GODOT is planned to be used for mission analysis at ESA as well as for operations of space probes.
∗https://godot.io.esa.int/docs/ (Last retrieved on January 31, 2022)
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Fig. 3 Juice timeline in the Europa phase with the fly-bys times as dashed lines.

For the target guidance, it is firstly necessary to define the targets to be satisfied along the trajectory. Having several

back-to-back fly-bys, it is of paramount importance to precisely target the close approach altitudes in order to have the

post-fly-by states as close as possible to the their nominal value. Moreover, a target on the close approach latitude is

inserted during the first Europa gravity assist, in order to fulfill the scientific need to observe in detail some surface

features (namely, Thera Macula and Thrace Macula) to evaluate the presence of biosignatures. Following these

consideration, the target functions 𝑓 and the target trigger functions 𝑔, implemented in the target guidance algorithm,

can be stated and are listed in Table 5. Once the functions associated to the desired targets are built, the matrices 𝐵 and

𝐵0 (Eq. (20)) are evaluated thought GODOT automatic differentiation routine.

Table 5 Target guidance functions for JUICE scenario, with subscripts correlating to Jupiter’s moons, and ℓ a
map computing the latitude given the position.

Label Target function ( 𝑓 ) Target trigger function (𝑔)
5G5 C/A altitude ∥r (𝑡5𝐺5) − r𝐺 ∥ − 1282 km = 0 (r (𝑡5𝐺5) − r𝐺) · (v (𝑡5𝐺5) − v𝐺) = 0
6E1 C/A altitude ∥r (𝑡6𝐸1) − r𝐸 ∥ − 403 km = 0 (r (𝑡6𝐸1) − r𝐸) · (v (𝑡6𝐸1) − v𝐸) = 0
6E1 C/A latitude ℓ (r (𝑡6𝐸1)) − (−47 deg) = 0
6E2 C/A altitude ∥r (𝑡6𝐸2) − r𝐸 ∥ − 403 km = 0 (r (𝑡6𝐸2) − r𝐸) · (v (𝑡6𝐸2) − v𝐸) = 0
7C1 C/A altitude ∥r (𝑡7𝐶1) − r𝐶 ∥ − 412 km = 0 (r (𝑡7𝐶1) − r𝐶 ) · (v (𝑡7𝐶1) − v𝐶 ) = 0

A Monte Carlo simulation with 𝑁 = 1000 samples was set up to perform the target guidance assessment. The

number of samples was selected to have a (a-posteriori) 95% confidence level for the stochastic costs lower than 1 cm/s.

Stochastic cost results are presented in Figs. 4 and 5. They show that the 95% percentile, a common measure for the

stochastic costs, is about 0.5 m/s. Figs. 6 and 7 shows, as an example, the distribution of two targets error, namely the

latitude at the first Europa encounter and the altitude at the second Europa fly-by. As expected, the error distributions

resemble a Gaussian probability distribution function. In both cases, the mean is close to zero, while the variance is

within the 0.5% level of the nominal value. A condensed summary of all the stochastic results related to the target

guidance can be found in Tables 6 and 7.

In order to properly assess the performances of the target guidance, a similar Monte Carlo analysis is performed

exploiting the differential guidance as control law and then results are compared. Differential guidance [3] is a well
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Fig. 4 Probability distribution function for the stochastic costs using target guidance, with a reconstruction
using the gamma distribution.
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Fig. 5 Cumulative distribution function for the stochastic costs using target guidance.

established technique for deep-space closed-loop control. In this case, the control impulse is computed as

Δv𝑘 = −
(
Φ𝑇

𝑟𝑣Φ𝑟𝑣 + 𝑞Φ𝑇
𝑣𝑣Φ𝑣𝑣

)−1 (
Φ𝑇

𝑟𝑣Φ𝑟𝑟 + 𝑞Φ𝑇
𝑣𝑣Φ𝑣𝑟

)
𝛿r𝑘 − 𝛿v𝑘 (21)

where Φ𝑟𝑟 , Φ𝑟𝑣 , Φ𝑣𝑟 , and Φ𝑣𝑣 are the 3-by-3 blocks of Φ(𝑡𝑘 , 𝑡𝑘+1), i.e., the STM associated to the nominal trajectory

between two consecutive TCM times, and 𝑞 is a parameter used either to adjust dimensions or the change the guidance

algorithm behavior, favoring position deviation at the expense of velocity deviation and vice versa. Considering OD
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Fig. 6 Distribution error for the close-approach latitude at 6E1.
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Fig. 7 Distribution error for the close-approach altitude at 7E2.

in the loop, 𝛿r and 𝛿v are the deviations with respect to the estimated trajectory. Differential guidance has already

been tested for the trajectory control of JUICE and it has shown good results in terms both of costs and constraints,

comparable with the ones of a full re-optimization of the trajectory [24]. Results for the stochastic costs are reported in

Fig. 8 and 9. In this case, the 95% quantile is about 0.57 m/s, that is more than the 10% more expensive with respect to

the target guidance. A recap for the stochastic cost comparison is given in Table 6. Targets errors are summarized in

Table 6 together with a comparison with target guidance results. Although the error on the targets, measured as the

central 95%-interval of the probability distribution, is always within the 2% of the nominal value, target guidance is able
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to give lower errors and to reduce them up to a 5%.
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Fig. 8 Probability distribution function for the stochastic costs using differential guidance, with a reconstruction
using the gamma distribution.
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Fig. 9 Cumulative distribution function for the stochastic costs using differential guidance.

Table 6 Stochastic cost statistics summary.

Guidance algorithm 𝜇(Δ𝑣) [m/s] 𝜎(Δ𝑣) [m/s] 95-th percentile [m/s]
Target guidance 0.22129 0.14191 0.50234
Differential guidance 0.25520 0.15661 0.57134
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Table 7 Summary for the target error statistics, where white background is used for target guidance results and
gray background for differential guidance.

Target Nominal value 𝜇 𝜎 [2.5-th, 97.5-th] percentile
-0.24385 km 5.76054 km [-13.205, 12.724] km

5G5 C/A altitude 1282 km
-0.25408 km 5.81081 km [-13.328, 12.825] km
0.11525 km 1.44232 km [-3.1300, 3.3605] km

6E1 C/A altitude 403 km
0.17838 km 1.51060 km [-3.2210, 3.5772] km
0.00352 deg 0.02132 deg [-0.0444, 0.0515] deg

6E1 C/A latitude -47 deg
0.00240 deg 0.05614 deg [-0.1239, 0.1287] deg
0.45965 km 2.06526 km [-4.1872, 5.1065] km

7E2 C/A altitude 403 km
0.62363 km 2.13067 km [-4.1704, 5.4176] km
0.01422 km 1.88542 km [-4.2280, 4.2564] km

8C1 C/A altitude 412 km
-0.00495 km 1.90203 km [-4.2845, 4.2746] km

VI. Conclusions
In this work, a novel closed-loop control algorithm, labeled target guidance, is devised. Its approach is based on the

definition of some targets that should be satisfied along the spacecraft trajectory, rather than catching the nominal full

state. Even though, the construction of the control matrices can require an additional effort, target guidance is able to

reduce the stochastic costs of more than a 10% with respect to the differential guidance, while keeping the errors on the

prescribed targets within a 2% of the nominal value. Its use when hitting intermediate targets is more important than

tracking the reference state can be beneficial and can bring to significant reduction in the stochastic cost.
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