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Early detection of variants 
of concern via funnel plots 
of regional reproduction numbers
Simone Milanesi  1, Francesca Rosset  2, Marta Colaneri 3, Giulia Giordano  4, 
Kenneth Pesenti 5, Franco Blanchini 2, Paolo Bolzern 6, Patrizio Colaneri 6,7, Paolo Sacchi 3, 
Giuseppe De Nicolao  3,8* & Raffaele Bruno 3,9

Early detection of the emergence of a new variant of concern (VoC) is essential to develop strategies 
that contain epidemic outbreaks. For example, knowing in which region a VoC starts spreading 
enables prompt actions to circumscribe the geographical area where the new variant can spread, 
by containing it locally. This paper presents ‘funnel plots’ as a statistical process control method 
that, unlike tools whose purpose is to identify rises of the reproduction number ( R

t
 ), detects when 

a regional R
t
 departs from the national average and thus represents an anomaly. The name of the 

method refers to the funnel-like shape of the scatter plot that the data take on. Control limits with 
prescribed false alarm rate are derived from the observation that regional R

t
 ’s are normally distributed 

with variance inversely proportional to the number of infectious cases. The method is validated on 
public COVID-19 data demonstrating its efficacy in the early detection of SARS-CoV-2 variants in India, 
South Africa, England, and Italy, as well as of a malfunctioning episode of the diagnostic infrastructure 
in England, during which the Immensa lab in Wolverhampton gave 43,000 incorrect negative tests 
relative to South West and West Midlands territories.

All viruses, including SARS-CoV-2, evolve over time. Mutations happen frequently and, in most cases, have 
little to no impact on the viral function. However, a group of mutations with similar genetic lineage, denoted by 
public health organizations as Variants of Concern (VoC), have gained global attention because of their faster 
spread and evidence for higher transmissibility and possibly higher virulence1.

Surveillance aimed at the early detection of a new VoC is fundamental. The World Health Organization 
(WHO) and its international networks of experts closely monitor SARS-CoV-2 variants2, but a surveillance 
system at a national and sub-national level is crucial to identify the emergence of new variants with the potential 
to spread worldwide, as well as the spread of already detected variants. Local authorities are thereby currently 
encouraged to strengthen surveillance and sequencing capacities, to early detect unusual epidemiological events. 
However, several countries still have limited capacity, despite the enormous efforts to facilitate the access to exist-
ing international networks3 and the implementation of low-cost whole genome sequencing (WGS) methods4.

As happened with SARS-CoV outbreaks5, new SARS-CoV-2 variants with unforeseen mutations continue 
to emerge6–8, also with the potential risk of immune evasion9,10. The Omicron variant (B.1.1.529 lineage), which 
contains over 30 mutations in the spike protein, including the same mutations of pre-existing VoC, will definitely 
not be the last, and possibly not the most challenging we will ever face11. The important task of designing early 
warning systems requires a panoplia of tools, ranging from genome sequencing, epidemiological surveillance, 
and machine learning applied to spike protein mutations12,13.

To support monitoring based on epidemiological data, we propose a statistically based methodology that is 
easy to apply and enables the early detection of anomalous events, consequently triggering further inquiries. 
With respect to massive genomic sequencing, statistical methods based on epidemiological data are faster and 
reduce costs and needed resources; of course, they do not replace sequencing, but integrate it and may defer the 

OPEN

1Department of Mathematics, University of Pavia, Pavia, Italy. 2Department of Mathematics, Computer Science 
and Physics, University of Udine, Udine, Italy. 3Division of Infectious Diseases I, Fondazione IRCCS Policlinico San 
Matteo, Pavia, Italy. 4Department of Industrial Engineering, University of Trento, Trento, Italy. 5Department of 
Surgical Medical and Health Sciences, University of Trieste, Trieste, Italy. 6Department of Electronics, Information 
and Bioengineering, Politecnico di Milano, Milan, Italy. 7Institute of Electronics, Information Engineering and 
Telecommunication (IEIIT), Italian National Research Council (CNR), Turin, Italy. 8Department of Electrical, 
Computer and Biomedical Engineering, University of Pavia, Pavia, Italy. 9Department of Clinical, Surgical, 
Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy. *email: giuseppe.denicolao@unipv.it

http://orcid.org/0000-0002-6314-1965
http://orcid.org/0000-0002-1202-2712
http://orcid.org/0000-0002-8600-1738
http://orcid.org/0000-0002-3712-9911
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-27116-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1052  | https://doi.org/10.1038/s41598-022-27116-8

www.nature.com/scientificreports/

genomic sequencing methods to a more targeted and purpose-driven framework, to effectively detect potential 
VoCs and prevent their spread.

The keystone of our approach is the use of statistical quality control to monitor the homogeneity of the time-
varying estimated reproduction numbers of the disease in different regions of a country (or, more in general, in 
different geographical areas).

The novelty of the approach consists in statistically comparing the reproduction numbers of different regions 
in order to detect if some territories behave as outliers. As a key feature of the proposed methodology, a rigor-
ous statistical threshold is derived, which accounts for the different sample sizes, i.e., the number of infectious 
cases in a region. In the general context of healthcare monitoring, this sample size issue had come under the 
spotlight in the early 2000, in a series of works14–16. An example was the detection of abnormal mortality rates in 
cardiac surgery wards14: through the characterization of the baseline variability, one could build control charts 
with statistical limits which, if exceeded, suggested the existence of an abnormal cause explaining the anoma-
lous mortality. When the key performance indicators were affected by the sample size, it was shown that their 
monitoring could rely on so-called funnel plots17,18.

In the case of epidemics, anomalies can be detected by a comparative monitoring of the regional effective 
reproduction number, Rt , whose variance depends on the number of new infected subjects in the given region. 
Closely related to Rt is the so-called basic reproduction number R0 (i.e. Rt at the beginning of the epidemic out-
break) whose expression is obtained from mathematical models. For the analytical and numerical computation 
of R0 for general structured population models, see19–21.

A large regional Rt may have a special cause, such as the emergence of a new VoC, or may just be the effect of 
statistical fluctuations due to sampling noise. In this work, to monitor the onset of statistical anomalies in regional 
Rt’s, we derive suitable funnel plots whose control limits can reveal abnormal trends, while keeping false alarms 
under control. We validate our proposed methodology using publicly available epidemiological data from Italy, 
England, India and South Africa: we show that the crossing of control limits promptly reveals the emergence of 
new more transmissible variants or the malfunctioning of the diagnostic infrastructure.

In conclusion, we notice that the utility of funnel plots is not limited only to epidemiological setting, but have 
also meaningful clinical implications. Indeed, several papers22,23 show that VOCs have a reduced sensitivity to 
both antiviral drugs and monoclonal antibodies. The capacity to detect VOCs earlier means the possibility to 
improve the appropriateness of early therapies and to reduce hospitalizations and deaths.

Results
We apply the funnel plot methodology to five case studies, corresponding to different stages of the COVID-19 
pandemic, chosen because of their relevance to the spread of VoC’s or to flaws of the diagnostic infrastructure. 
Two case studies refer to England (initial spread of the Omicron variant in December 2021 and large failure of a 
diagnostic lab in September 2021), and the other three to Italy (initial spread of the Omicron variant in Decem-
ber 2021), India (first emergence of the Delta variant in February 2021), and South Africa (first emergence of 
the Omicron variant in November 2021). In addition, the nine English regions are monitored over a 18-month 
period from December 2020 to June 2022.

In all cases, we focus on four key dates. The first date corresponds to a situation of statistical homogeneity: 
when variants are uniformly spread in the country and contact rates do not vary much across regions, differences 
between estimated Rt ’s are exclusively due to natural variability and the regional Rt ’s are expected to lie within 
the funnel, centered around the national Rt (see Methods). The second and the third dates refer to the disruption 
of the natural variability: when a new VoC starts spreading, at first it colonizes in particular a few territories, 
whose behavior becomes abnormal with respect to the national one. This is highlighted by the fact that the cor-
responding Rt ’s first cross the funnel limits and then clearly move outside the limits. The last date corresponds 
to a new homogeneity, typically established around a higher Rt : the VoC is now uniformly spread in the country, 
thus restoring the condition of natural variability. Finally, to have a snapshot of the whole period under study, 
the standardized Rt ’s with ± 3.09 sigma are plotted on a Bonferroni control chart, which is a standard univariate 
control chart whose control limits are adjusted according to the Bonferroni correction (see Methods for details). 
Due to its statistical background, the scope of the new control method is not restricted to VoC monitoring, but 
can detect other kinds of anomalies, such as those related to testing availability or malfunctioning buffer factories: 
we discuss an example of such an anomaly in our Immensa case study.

Hereafter, the infectious cases at day t are the total number of individuals that are infected and infectious at 
day t, while the new cases at day t are the number of subjects who become infectious at that time.

Spread of the Omicron variant in Italy.  We first apply the funnel plot methodology to the Italian 
regional data in the period from 4 December to 3 January 2022, based on epidemiological indicators released 
daily by the Civil Protection Department, which provides 21 regional time series (for 19 regions and the 2 
autonomous provinces of Trento and Bolzano). The Delta variant was dominant in Italy until December 2021, 
when the Omicron variant started to spread across the country.

The results are summarized in Fig. 1. In the Panels a-d, the estimates of Italian regional Rt ’s are plotted against 
the infectious cases on four selected dates. On 7 December 2021 (see panel a), differences between estimated 
Rt ’s were due to natural variability alone and the 21 points lay within the funnel limits. On 22 December 2021, 
Lombardia (dark red) crossed the alarm limit (see panel b) and on 24 December 2021 (see panel c) it was 
definitely outside the upper alarm limit. In fact, as confirmed by a retrospective survey by the Italian National 
Institute of Health published on 31 December 202124, Lombardia was the first Italian region to be colonized by 
the Omicron variant. As other regions became increasingly colonized by the Omicron variant, their Rt ’s rose as 
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well and, by 2 January 2022, Lombardia was absorbed again within a funnel, now with a higher mean than in 
early December (see panel d).

We can monitor the trend by plotting the standardized Rt ’s on a Bonferroni control chart with ± 3.09 sigma 
limits (see panel e), where the arrival of the Omicron variant in Lombardia in mid-December is clearly detectable.

Statistical monitoring of England for a year and a half.  Figure 2 displays the Bonferroni control 
chart of normalized Rt ’s of the nine English regions during 18 months, from the end of November 2020 to the 
beginning of June 2022. Under natural variability conditions, irrespective of the current national Rt , all the nor-

Figure 1.   Monitoring regional reproduction numbers (Rt’s): funnel plots and control chart. Panels a-d show the 
Italian regional Rt’s (colour-coded circles, see Supplementary {1} for the legend), plotted against the infectious 
cases at four selected times. When the epidemic evolution is homogenous across regions, differences between 
Rt’s are exclusively due to natural statistical variability and the circles are expected to lie inside the black alarm 
limits in 99.8% of the cases. The alarm limits have the shape of a funnel because the variance of the estimated 
Rt is inversely proportional to the number of infectious cases. The central dashed line represents the average 
Rt. A circle is out of statistical control if it lies outside the black funnel. Out-of-control circles might therefore 
reveal anomalies that disrupt the homogeneity between regions. In (a–d), the majority of the points, lying in 
the funnel, are essentially indistinguishable and therefore not even named. On 22 December 2021, Lombardia 
(dark red) crossed the alarm limit and on 24 December 2021 it was completely outside the upper alarm limit. 
As confirmed by a survey by the Italian National Institute of Health, Lombardia was the first Italian region to be 
colonized by the Omicron variant. As the other regions were colonized too, the distribution of their Rt’s moved 
upward and, on 2 January 2022, Lombardia was again inside the funnel. The trend can be monitored by plotting 
the standardized Rt’s on a Bonferroni control chart with ±3.09 (e), where the introduction of the Omicron 
variant in Lombardia in mid-December is clearly visible.
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malized curves are expected to lie within the limits. Points outside the limits highlight a disruption of the statisti-
cal homogeneity across regions, which should be investigated to unveil the root cause of the anomaly. Figure 2 
reports seven major events, labelled from A to G, along with plausible conjectured explanations: the emergence 
or the arrival of the VoCs (Alpha25,26, Delta27, Omicron28,29 and Omicron sub-variants11), the malfunction of 
swab factories (further analyzed in Fig.  4)30,31, some incidents of violation of lockdown restrictions32–34, and 
changes in the testing policies35.

Emergence of the Delta variant in India.  We applied our methodology to epidemic data from India in 
the period 13 February–5 March 2021, when the Delta variant emerged and started spreading from the state of 
Maharashtra. Panels a-d of Fig. 3 show funnel plots at four selected times, where colour-coded circles represent 
the Rt ’s of the 36 Indian states. While on February 13 all circles fell within the funnel, on February 16 the state 
of Maharashtra (dark red) crossed the alert threshold (in correspondence with the initial spread of the Delta 
variant), further departing from the mean on February 22. Lastly, on 4 March 2021, the Rt ’s of all regions but 
Kerala (orange) shaped a new funnel with a higher mean, which again incorporated Maharashtra. The peculiar 
dropping of Kerala’s Rt below the lower alert threshold, despite the very high number of infectious cases, might 
be explained by the co-circulation of Alpha and Delta variants during the same period, resulting in a lower Rt 
than in the areas predominantly hit by the Delta variant.

In the Bonferroni control chart (see panel e), the rise of the Delta variant in Maharashtra is clearly visible 
since mid-February 2021. One month later, on March 17, it was disclosed that a 10-lab research consortium had 
alerted the Union Health Ministry about a new variant spreading in Maharashtra37, leading to a press release 
on the new VoC a week later38. This case study suggests that the use of statistical control methods would have 
enabled an earlier detection of the variant.

Emergence of the Omicron variant in South Africa.  From 7 November to 4 December 2021, the Omi-
cron variant colonized South Africa, starting with the province of Gauteng. Panels f-i of Fig. 3 show four funnel 
plots, where colour-coded circles represent the Rt ’s of the South African provinces. Until the very beginning of 
November 2021, the Delta variant was prevalent and the differences in Rt across provinces merely resulted from 
natural fluctuations (see panel f). By mid-November the Gauteng province crossed the upper alert threshold 
(see panel g) and then further diverged (see panel h). This is precisely the timing when the Omicron variant was 
first identified, as declared by the WHO39, and became a threat40. By 3 December 2021, Gauteng was reabsorbed 
within the funnel, now with a much higher mean, following the spread of Omicron in the other provinces and 
the consequent rise of their Rt ’s (see panel i). The Bonferroni control chart with ± 3.09 sigma limits (panel j) 
clearly shows the out-of-control trajectory of the Gauteng province (red).

Spread of the Omicron variant in England.  From 4 December 2021 to 1 January 2022, the Omicron 
variant massively spread in England. Panels k-n of Fig.  3 show four funnel plots, with colour-coded circles 
corresponding to the Rt ’s of the English regions . On December 4, all the regions were within the alarm limits 
(panel k). By 10 December 2021, the London region had crossed the funnel limits (panel l), further diverging 
from the upper limit on 15 December (panel m). This suggests that Omicron was more prevalent in London 
than in the rest of England and indeed, on 13 December 2021, 20% of the cases in England and over 44% of the 
cases in London were attributed to Omicron28. As the other regions were colonized, the distribution of their Rt ’s 
moved upward and, on 23 December 2021, the London region was again inside the funnel (panel n). An earlier 
detection would have been allowed by the Bonferroni control chart, where London first crossed the alarm limit 
in early December (panel o).

Immensa scandal in England.  Our last case study concerns England in the period from 27 August to 25 
September 2021. Panels a-d of Fig. 4 display four funnel plots in selected dates, with colour-coded circles cor-
responding to the Rt ’s of the English regions. On 5 September 2021, all English regions were within the funnel 
(panel a). By 9 September 2021, the South West (red) had crossed the lower alarm limit (panel b) and remained 
below the lower limit for about two weeks (panel e). The timing of this swing coincides with the period during 
which the Immensa lab in Wolverhampton gave some 43,000 incorrect negative tests relative to South West and 
West Midlands territories30,31. While the suspension of lab operations came in mid-October, the Bonferroni 
control chart indicated an out-of-control condition already in early September and would have allowed a much 
earlier detection of the anomaly.

Trajectory plots and funnel movies.  A better understanding of the time evolution of regional Rt ’s is 
achieved when complementing funnel plots with the time dimension. This can be done in two ways. The first 
approach is to display the trajectories of the regional Rt’s: an example relative to South Africa is provided in 
Fig. 5. Alternatively, the funnel plot can be animated, thus yielding a “funnel movie”, where both the trajectories 
and the shapes of the funnels are iteratively updated (see Supplementary {2} for the description and {3} for the 
movies). As observed in41, when Rt is plotted against the number of infective subjects, the trajectories exhibit a 
peculiar clock-wise spiral-shaped pattern. An analogous behavior was observed also in [42, Fig. 2], where trajec-
tories were plotted in the plane of infected cases against “cooperators”, a variable connected with Rt.

Monitoring regional R
t
’s.  In addition to the Bonferroni control charts, a further monitoring and visuali-

zation tool is obtained by plotting the regional Rt ’s along with the national Rt and with control limits defining 
the in-control band for the specific region. A distinct plot is needed for each region, because the width of the 
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in-control band depends on the number of the infectious subjects in that region. Hence, differently from the 
Bonferroni control chart previously introduced, as many plots are needed as the number of regions. As an advan-
tage, this visualization provides a direct display of the regional Rt and may therefore be easier to understand. 
Examples of these plots for Italy, England, India and South Africa are given in the Supplementary {1}.

Discussion
We proposed funnel plots and the associated Bonferroni control chart as a valuable framework for the early 
detection of a new emerging or imported VoC and showed their effectiveness in six real-life scenarios based on 
epidemic data from Italy, India, South Africa and England. These case studies demonstrate that the proposed 
methodology, besides being direct and inexpensive, allows the early detection of anomalies due to different root 
causes, ranging from the emergence of a new VoC, and its colonization of a country, to flaws in the diagnostic 
system, such as the Immensa COVID-19 testing scandal in England. Once the method identifies anomalous 
patterns, further inquiries are needed to assess their causes.

Funnel plots provide an innovative and statistically rigorous tool for monitoring the statistical homogeneity 
of the distribution of regional Rt’s. Our method can be seen as an extension to epidemiology of the funnel charts 
advocated by Spiegelhalter in the assessment and comparison of institutional performances in the healthcare 
sector17. Before then, funnel plots were mainly known as a standard tool for investigating biases in meta-analysis 
studies. As such, they have also been employed in the context of COVID-19 meta-analyses, see e.g.,43.

Prompt identification of a VoC before its large-scale spread, leading to impactful public health implications, 
is a key goal in the control of the SARS-CoV-2 pandemic and in preventing and controlling future pandemics. 
However, as the relentless and flashy worldwide dissemination of the Omicron variant has largely proven, some 
doubts remain about the most effective way to achieve this goal. Although some rRT-PCR–based algorithms 
and/or NAAT-based screening assays have been proposed for the early identification of VoCs44,45 and might be 
implemented in routine laboratories46, Whole Genome Sequencing, or at least the complete or partial sequencing 
of the spike (S) protein-gene, remains the only tool to both effectively identify the different variants and follow 
the evolution of SARS-CoV-247,48. However, WGS is time consuming, expensive, and needs dedicated structures 
and personnel with technical expertise to be timely implemented. Furthermore, it is challenging to be applied 
on low viral loads samples49.

Exactly in this breach, the potential support of surveillance based on funnel plots and Bonferroni charts 
might accelerate the detection of a new VoC, without requiring, at least initially, the backup of a specialized 
microbiology laboratory. The value of WGS is undisputed, but, in a setting with limited resources, easy and inex-
pensive data-driven statistical methodologies for surveillance may support more targeted and focused genomic 
sequencing. Therefore, besides being extremely useful where sequencing is lacking due to scarce resources, the 
funnel plot framework is also precious to inform and suggest where sequencing efforts should be concentrated. 
It also allows the detection of anomalies that cannot be revealed by sequencing, such as failures of the testing 
infrastructure, as shown by the Immensa case study.

The statistical underpinning of the methodology takes into account the natural variability of the phenomenon, 
thus preventing false alarms even in the presence of noisy data, e.g., due to late registration of new cases. While 
polished data may be available with weeks of delay, funnel plots can work in real-time using the latest data, a 
crucial feature to allow an early detection of anomalies and hence prompt interventions. For instance, the Italian 
funnel plots of the first case study were fed by daily published unprocessed data.

Other authors have proposed the application of statistical process control methods for monitoring the evolu-
tion of the COVID-19 pandemic. For instance50, proposed hybrid control charts to detect the start and end of 
exponential growth in reported deaths within a geographic area. An interesting use of hybrid control charts was 
investigated in51, keeping under control exponential and non-exponential growth and decline of cases, disag-
gregated at the regional and subregional level, to inform local mitigation and containment strategies. Conversely, 
our approach leverages the characterization of the collective distribution of regional Rt’s: we do not monitor each 
region individually, but rather surveil the homogeneity of the distribution.

In view of its nature, the proposed method reveals the loss of statistical stability, but cannot of course unravel 
its cause. Consistently with established quality control practices, it should be used to trigger an inspection. 
Therefore, the funnel plot is not a VoC-detector, but an anomaly detector: early detection enables focused 

Figure 3.   Funnel plots help detect anomalies: spread of the Delta variant in India and of the Omicron variant 
in South Africa and England. India: (a–d) display the funnel plots at four selected times, with colour-coded 
circles corresponding to the Rt’s of the Indian states. On 13 February 2021, all points are within the funnel, but 
on 16 February 2021, when the Delta variant starts spreading, there is an out-of-control point corresponding to 
Maharashtra (dark red), which on 22 February 2021 is further apart from the mean. Finally, on 4 March 2021 
the Rt’s of all regions except Kerala (orange) converge to a new distribution characterized by a higher Rt. The 
trend can be monitored by plotting the standardized Rt’s on a Bonferroni control chart with ±3.09 sigma limits, 
see Panel e, where the rise of the Delta variant in Maharashtra is clearly visible. South Africa: (f–i) display the 
funnel plots at four selected times, with colour-coded circles corresponding to the Rt’s of the South African 
provinces. The rise of the Omicron variant in the Gauteng province (red) is well visible both in the funnel plots 
and in the Bonferroni control chart reported in (j). England: (k–n) display the funnel plots at four selected 
times, with colour-coded circles corresponding to the Rt’s of the English regions. The spread of Omicron in 
England started from the London region (green), whose Rt had already crossed the alarm limit on 10 December, 
when, as seen in Fig. 3E of29, the daily proportion of Omicron infections did not exceed 25%. As the other 
regions were colonized, the distribution of their Rt moved upward and, on 23 December, the London region was 
again inside the funnel, as also seen in the Bonferroni control chart reported in Panel (o).

▸
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inquiries aimed at discovering the cause of the anomaly. In funnel plots, a point lying outside the funnel limits 
is associated with high confidence to some anomaly of the effective reproduction number. This may be due to 
several special causes of variations, such as VoCs, outbreaks due to violations of containment measures, failures 
of the diagnostic infrastructure (such as the Immensa scandal). In the absence of special causes, all funnel plots 
in the paper are designed so that all points are inside the alarm limits in 99.8% of the cases (or, equivalently, so 
that the false alarm probability is 0.2%).
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Figure 4.   Funnel plots help detect anomalies: the incorrect negative tests of the Immensa lab in England. 
(a–d) display the funnel plots at four selected times, with colour-coded circles corresponding to the Rt’s of the 
England regions. On 5 September 2021, all circles were inside the funnel, but on 9 September 2021 there was an 
out-of-control point below the lower alarm limit corresponding to South West (red), which was further apart 
from the mean on 14 September 2021, when also West Midlands (brown) went below the lower limit. Finally, on 
20 September 2021 the Rt’s of all regions returned within the limits. The anomalous decrease of Rt in the South 
West corresponds to the period during which the Immensa lab (Wolverhampton) gave some 43,000 incorrect 
negative tests relative to South West and West Midlands. The whole trend can be monitored by plotting the 
standardized Rt’s on a Bonferroni control chart with  ± 3.09 sigma limits, (e). Lab operations were suspended in 
mid-October as a consequence of the malfunction, while the control chart indicated an out-of-control condition 
as early as late August.
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Methods
Data.  Data regarding new positive cases were obtained from publicly available sources: https://​github.​com/​
pcm-​dpc/​COVID-​19/​tree/​master/​dati-​regio​ni for Italian data, https://​data.​covid​19bha​rat.​org/ for Indian data, 
https://​media​hack.​co.​za/​datas​tories/​coron​avirus/​data/# for South African data, https://​coron​avirus.​data.​gov.​uk/​
detai​ls/​downl​oad for English data.

Following52, we assumed a discretized lognormal distribution for the serial interval, with parameters chosen 
in accordance with53. To correct systematic errors in the data, partly due to the weekly periodicity, partly due to 
delays and other reporting errors, all data were filtered using a double seven-day moving average.

Funnel plots and Bonferroni control charts.  In a funnel plot, a measured or estimated quantity is 
plotted against an interpretable measure of its precision. A funnel plot is composed of four elements17: (i) an 
indicator Y  that represents the quantity to be monitored, (ii) a reference value θ that specifies the expectation 
of the indicator, (iii) a precision parameter ρ that determines the accuracy with which the indicator is meas-
ured, (iv) the control limits ylower , yupper that specify the boundaries of the out-of-control region. An example 
of funnel plot can be seen in Fig. 1. The dot (ρi , yi) is associated with the i-th region, where ρi is the number of 
infectious cases in the region and yi is the region’s reproduction number Rt at a given time t  . The horizontal line 
Y = θ shows the national average Rt and the funnel-shaped pair of control limits ylower and yupper shows where 
we would expect the regions to lie if their Rt ’s were statistically indistinguishable from one another, see Panel d 
in Fig. 1.

In several circumstances, an exact or approximate normal distribution of the indicator Y  can be assumed

where g is a suitable function of θ17 such that Var[Y ] = g(θ)/ρ . Under this null hypothesis, with probability 1− α,

(1)Y |θ , ρ ∼ N
[
θ , g(θ)/ρ

]
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2
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Figure 5.   Moving funnels: the effect of the Omicron variant on the Rt distribution in South Africa. The figure 
displays the joint trajectories of infectious cases and Rt’s of the South African provinces from 4 November 
2021 to 3 December 2021, with colours getting darker over time. The x-axis scale is logarithmic to improve 
readability. The funnel plots of 4 November 2021 (grey) and 3 December 2021 (black) are plotted with their 
mean (dashed) and alarm limits (continuous). In the first date, before the spread of Omicron, the average Rt was 
below 1 and all points were inside the grey funnel plot. Then, Gauteng’s Rt (red) moved upwards, followed by 
the other provinces. Overall, Omicron caused an upward escape of the province where it first became dominant 
(Gauteng, red line), followed by a collective drift of the Rt’s of other provinces, until a new funnel, i.e., the 
black one, was established at a higher level. The trajectories go leftwards when Rt is less than one, because the 
infectious cases tend to decrease, while the trajectories go rightwards when Rt is greater than one. Therefore, the 
trajectories exhibit a characteristic clock-wise trend41. Supplementary {2} describes in detail how to obtain an 
animated representation of this phenomenon by iteratively updating the Rt’s and the funnels shape, leading to 
the “funnel movies” available in Supplementary {3}.

https://github.com/pcm-dpc/COVID-19/tree/master/dati-regioni
https://github.com/pcm-dpc/COVID-19/tree/master/dati-regioni
https://data.covid19bharat.org/
https://mediahack.co.za/datastories/coronavirus/data/
https://coronavirus.data.gov.uk/details/download
https://coronavirus.data.gov.uk/details/download
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where zα/2 is such that P
(
Z ≤ zα/2

)
= 1− α

2
 for a standard normal variable Z . For instance, zα/2 = 1.96 , when 

α = 5% , and zα/2 = 3.09 , when α = 0.2% . This means that, in 100(1− α)% of the cases, Y  is expected to lie 
within the lower and upper control limits defined as

By introducing the Z-score

we have that P(|zi| ≤ zα/2) = 1− α . In Statistical Process Control, the common practice is to select a false 
alarm probability as small as α = 0.2% , corresponding to zα/2 ≥ 3.09. A Z-score whose absolute value is greater 
than zα/2 is said to be out of (statistical) control and deemed worthy of study to identify a special cause of variation 
that explains its departure from the mean. Note that there is a 0.2% probability of reporting an out-of-control 
point when no special cause of variation is actually perturbing the process and the outlier arises by pure chance 
under common causes of variation.

When monitoring n units of analysis, e.g., the Rt of n regions within a country, due to the multiple comparison 
problem, the false positive rate could become unacceptably large. A simple way to address this problem is the 
Bonferroni correction that replaces α with α/n54.

When the indicators yi measure a frequency of occurrence, e.g., the mortality rates in heart surgery units, it 
is reasonable to assume a binomial model, with θ representing the probability of the event and ρi the number of 
surgeries in the i-th unit. For the binomial model, the variance of yi is θ(1− θ)/ρi so that, given θ , the variance of 
yi is completely specified. For a large enough ρ , the binomial converges to a normal random variable that follows 
distribution (1) with g(θ) = θ(1− θ) . An analogous case is when the products ρiyi are Poisson distributed with 
expectation ρiθ . If ρiθ is greater than 30, the indicators yi are then normally distributed as (1) with g(θ) = θ . 
Therefore, for both the ideal binomial and Poisson model, estimating the mean of yi suffices to specify both the 
centerline and the alarm limits of the funnel plot.

However, as discussed in18, if one lets the variance be specified by the mean, it very often happens that the 
fraction of units of analysis that lie outside the ideal alarm limits greatly exceeds the theoretical false positive rate. 
This phenomenon, well known in the statistical literature, goes under the name of overdispersion18. This can be 
dealt with by modifying (1) with the introduction of an overdispersion parameter φ to be estimated from data:

The control limits and the Z-scores are redefined accordingly as

When the indicators to be monitored are time series depending on a time index t  , i.e., yi = yi(t) , a distinct 
funnel plot can be drawn for each time instant. For the purpose of statistical monitoring, the relevant information 
can be summarized in a Bonferroni control chart where the trends of the Z-scores are plotted in time against 
Bonferroni limits, see for instance panel e in Fig. 1. Under (2), we have that zi ∼ N[0, 1] , so that, when the Z
-scores are plotted on a control chart with zero centerline and Bonferroni limits equal to ±zα/(2n) , the probability 
of one or more dots lying outside the limits is equal to α.

Distribution of regional Rt’s.  The reproduction number at time t  , named Rt , captures the number of 
secondary infections from a population including both susceptible and immune individuals. For its estimation, 
a range of model frameworks and estimation procedures have been proposed55. Herein we adopt the approach 
of Cori et al.56 that makes minimal assumptions about the mathematical model of the epidemic process. Cori’s 
formula uses the time series of the new cases and estimates of the distribution of the generation time, i.e., the 
time between infections.

According to56 the estimate R̂t of the instantaneous reproduction number Rt is obtained as

where It denotes the daily number of new infected cases and ws are the coefficients, adding up to one, of the 
infectivity profile, often approximated by the distribution of the serial interval. The denominator

ylower = θ − zα/2
√

g(θ)/ρ

yupper = θ + zα/2
√

g(θ)/ρ

zi =
yi − θ√
g(θ)/ρ

(2)Y |θ , ρ ∼ N
[
θ ,φg(θ)/ρ

]

ylower = θ − zα/2
√

φg(θ)/ρ
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√

φg(θ)/ρ

zi =
yi − θ√
φg(θ)/ρi

(3)R̂t =
It∑

t
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wsIt−s
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can be interpreted as the total infectiousness of individuals that are currently infected at time t  . In view of the 
typical models of the infectivity profile, e.g., lognormal or gamma density functions, �t is a smoothed version 
of the time series It of daily new cases. If seven-day moving averages are used to filter out weekly oscillations, It 
is already smooth, and the resulting �t is insensitive to the precise shape of the infectivity profile. This feature 
may prove helpful when a new VoC arises whose infectivity profile is unknown, or only approximately known.

To derive the distribution of R̂t , we only assume that disease transmission follows a Poisson distribution 
with mean Rt�t:

Typically, Rt� > 30 , so that a normal approximation can be used:

In view of (3), it follows that R̂t |Rt ,�t ∼ N[Rt ,Rt/�t ] . For the sake of interpretability, rather than using the 
notion of total infectiousness �t , it is more intuitive to refer to the total number of infectious individuals. To 
this aim, we introduce the parameter

i.e., the inverse of the mean serial interval, which, for the well-known SIR model, corresponds to the 
removal rate57. Then, ρt = �t/γ represents the number of individuals that are infectious at time t  . Letting 
θ = Rt , g(θ) = Rt/γ , it follows that

Comparing the above distribution with (1), it follows that, for any given t  , the scatter plot of R̂t against ρt is 
indeed a funnel plot. Also in this case, it is convenient to introduce an overdispersion parameter φ , so that, in 
accordance with (2), the final model becomes

A useful byproduct of introducing overdispersion is that φ takes into account the effect that possible errors or 
uncertainties in the estimated mean serial interval has on the variance of R̂t . Indeed, the variance of R̂t is inversely 
proportional to γ , but the effect of a wrong γ is automatically compensated when estimating φ from the data.

Parameter estimation.  Under (2), the estimated reproduction number R̂i
t of the i-th region can be written 

as

where Yi = R̂i
t , xi = ρi

t is the number of infectious individuals, and εi ∼ N
[
0, σ 2

]
 , i = 1, . . . , n , are mutually 

independent with σ 2
= φg(θ) . Letting vi = εi/

√
xi  , the model in matrix form becomes

where Y = [. . .Yi . . .]
′

 , � = [. . . 1 . . .]
′

 , v ∼ N
[
0, σ 2�

]
,  and

Then, the generalized least squares technique58 provides the minimum variance unbiased estimate and the 
estimated parameters are

where e = Y −�θ̂  is the vector of the residuals. Recalling that g(θ) = θ/γ , the overdispersion parameter φ is 
estimated as φ̂ = γ σ̂ 2/θ̂  . Data winsorization can be performed, as detailed in17, to reduce the effect of possibly 
spurious outliers.
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Estimates θ̂  and φ̂  are needed to compute the funnel at time t  , as well as the standardized residuals zi to be 
plotted in the Bonferroni control chart. The estimate φ̂  is computed from (6) using the set of R̂i

t that were in 
control at time t − 1 . The centerline θ̂  is obtained by projecting at time t  a weighted linear regression estimated 
from the set of R̂i

t that were in control at times t − 1, t − 2, and t − 3 . The weights are given by the numbers xi of 
infectious individuals at the same times. This procedure yields an estimate of the current θ that tracks the trends 
of the national Rt , but is still fairly robust thanks to the use of the last three data points. At the beginning (and 
in the rare cases when all units are out of control), the whole sets 

{
R̂i
t

}
,
{
ρi
t

}
 are fed to the estimator.
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Data availability
Data regarding new positive cases can be obtained from publicly available sources: https://​github.​com/​pcm-​dpc/​
COVID-​19/​tree/​master/​dati-​regio​ni for Italian data; https://​data.​covid​19bha​rat.​org/ for Indian data; https://​
media​hack.​co.​za/​datas​tories/​coron​avirus/​data/# for South African data; https://​coron​avirus.​data.​gov.​uk/​detai​
ls/​downl​oad for English data.
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