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Predictive ratio CUSUM (PRC): A Bayesian approach in online change point
detection of short runs

Konstantinos Bourazasa , Frederic Sobasb, and Panagiotis Tsiamyrtzisc

aDepartment of Statistics, Athens University of Economics and Business, Athens, Greece; bMultisite Hemostasis Laboratory,
Hospices Civils de Lyon, Lyon, France; cDepartment of Mechanical Engineering, Politecnico di Milano, Milan, Italy

ABSTRACT
The online quality monitoring of a process with low volume data is a very challenging task
and the attention is most often placed in detecting when some of the underline (unknown)
process parameter(s) experience a persistent shift. Self-starting methods, both in the fre-
quentist and the Bayesian domain aim to offer a solution. Adopting the latter perspective,
we propose a general closed-form Bayesian scheme, where the testing procedure is built on
a memory-based control chart that relies on the cumulative ratios of sequentially updated
predictive distributions. The theoretic framework can accommodate any likelihood from the
regular exponential family and the use of conjugate analysis allows closed form modeling.
Power priors will offer the axiomatic framework to incorporate into the model different
sources of information, when available. A simulation study evaluates the performance
against competitors and examines aspects of prior sensitivity. Technical details and algo-
rithms are provided as supplementary material.

KEYWORDS
control chart; phase I
analysis; regular exponential
family; self-starting;
statistical process control
and monitoring

1. Introduction

In the area of Statistical Process Control/Monitoring
(SPC/M) the main aim is to detect when an ongoing
process (industrial or not), deteriorates from its In
Control (IC) state, where only common cause variation
is present, to the Out Of Control (OOC) state, where
special (assignable) cause of variation, exogenous to the
process, arrives (Deming 1986). Typically, the OOC
state reflects changes on the underline unknown pro-
cess (model) parameters, which are either transient or
persistent. A plethora of methods exist in the literature
with Shewhart-type control charts (originated from
Shewhart 1926) specializing in detecting large transient
shifts, while CUSUM (Page 1954) and EWMA (Roberts
1959) being two of the most effective in identifying
small/medium persistent shifts.

The parametric control chart construction requires
knowing the underline mechanism, i.e. distribution
and parameter(s), which in standard SPC/M is done
via a phase I estimation step. Precisely, once the pro-
cess starts to operate and assuming that it runs under

the IC state, we reserve and analyze offline a sample
of initial data, aiming to derive reliable estimates of
the distribution and its unknown parameters, which
we will use in calibrating the control chart. The length
of phase I is a trade off between the statistician’s need
to have accurate estimates (i.e. the larger the sample
the better) and the management’s necessity to end
phase I and start the online monitoring as soon as
possible (i.e. minimize sample size). Once the control
chart is ready, we initiate phase II, where online mon-
itoring of the incoming observations (typically arriv-
ing sequentially) is performed. During phase II, data
are examined of whether they conform against the
standards established during the phase I exercise.
Thus, phase I plays a crucial role, as phase II perform-
ance will heavily depend on a successful phase I cali-
bration analysis. Since phase I estimation requires the
process to be stable, under the IC distribution,
undetected violations (like parameter(s) shifts), will
contaminate the estimation and misplace the control
limits, risking the phase II performance.
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More limitations of phase I/II set-up have been
reported in the literature. In certain applications, like
in medical laboratory’s quality monitoring, we need to
have online inference from the start of the process,
prohibiting any phase I offline training. In addition,
in short production runs, the low volume of data will
not permit the employment of a phase I exercise.
These needs gave rise to self-starting methods, which
do not require the presence of any initial estimate of
the process parameter(s) and the calibration is per-
formed simultaneously with the testing from the early
start of the process (see Jones-Farmer et al. 2014 for a
nice overview of methods used with short runs). The
self-starting CUSUM (denoted as SSC from now on)
of Hawkins and Olwell (1998) and self-starting
EWMA of Qiu (2014) are two of the most popular
change point methods. From a non-parametric point
of view, frequentist self-starting methods have also
been suggested, like the recursive segmentation and
permutation (RS/P) of Capizzi and Masarotto (2013).

The most typical representative of the Bayesian
approach in the area is the online change point model
by Shiryaev (1963), based on the posterior probability
that a change point has already occurred. Furthermore,
Roberts (1966) provided a robust modification of
Shiryaev’s procedure. However, these models are not
self-starting, as both pre and post-change parameters
are assumed to be known. Regarding the self-starting
methods, West (1986) and West and Harrison (1986)
suggested the Cumulative Bayes’ Factors (denoted as
CBF from now on), providing a general scheme for
detecting persistent parameter shifts, based on the pos-
terior predictive distribution. Ali (2020) applied the lat-
ter methodology to time-between-events monitoring.
For short production runs, Woodward and Naylor
(1993) used a Bayesian framework to model Normal
data, while Tsiamyrtzis and Hawkins (2005, 2010,
2019) using a mixture of distributions, suggested
Bayesian change point models for Normal and Poisson
data. Recently, Bourazas, Kiagias, and Tsiamyrtzis
(2022) provided a self-starting method named
Predictive Control Chart (PCC), which makes use of
the predictive distribution in identifying large transient
parameter shifts (i.e. outliers), in an online fashion.
However, PCC is not a memory-based chart (i.e. it
does not accumulate evidence over time) and as such it
is not suitable for detecting small/medium persistent
parameter shifts that we typically consider in change
point problems, treated in the present manuscript.

Synopsizing, the focus in this work is on detecting
small/medium persistent parameter shifts in short hori-
zon data. We propose a memory-based self-starting

Bayesian scheme, which will provide an enhanced
Bayesian analogue of SSC, clearly differentiated from
the existing CBF proposal. Namely, we will introduce
the Predictive Ratio CUSUM (PRC) methodology,
which will be general enough to host any (discrete or
continuous) univariate distribution, that is a member of
the regular exponential family. Being in the Bayesian
arena, PRC will employ a power prior to allow the con-
tribution of IC historical data (if available) and utilize
any subjective (informative) prior information, but we
will also provide the option to have a non-informative
initial prior in absence of prior knowledge. The cumu-
lative ratio test of competing predictive distributions
(i.e. the core idea in PRC), can be used with any distri-
bution, but it will be presented only within the regular
exponential family, where conjugate priors will guaran-
tee a closed-form mechanism that will be straightfor-
ward to apply in practice. The PRC framework can be
generalized using any pair of likelihood-prior, where
the predictive will not be necessarily available in closed
form. In such cases, we can sample from the predictive
distribution using numerical methods, like Markov
Chain Monte Carlo (MCMC) or Sequential Monte
Carlo (SMC), running the proposed PRC framework
numerically.

In Section 2, we derive PRC using the general class
of power priors and provide the recursive formulas for
several univariate discrete and continuous distributions
that belong to the regular exponential family and are
most often used in SPC/M. Section 3 sets the elements
of PRC based decision making. A detailed simulation
study for detecting persistent parameter shifts in
Normal, Poisson and Binomial data is presented in
Section 4, where we evaluate the PRC performance
against the frequentist SSC and the Bayesian CBF com-
petitors, and we additionally examine issues regarding
prior sensitivity. Section 5 will conclude this work.
Technical details and algorithms are provided in appen-
dices, which form the supplementary material.

2. Predictive Ratio CUSUM (PRC)

In SPC/M, several memory-based self-starting meth-
ods exist. They perform calibration (i.e. estimate the
assumed distribution’s parameters) and testing simul-
taneously, upon the arrival of every new data point.
The aim (just as in any other memory-based control
chart) is in detecting as soon as possible the presence
of a persistent (small/medium) shift on the parameter
of interest. It is well known though, that self-starting
methods face a big challenge: undetected parameter
shifts will be absorbed, contaminating the calibration
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step and as a result degrading the chart’s testing per-
formance. Thus, the self-starting methods have typic-
ally a small window of opportunity to react in a
persistent parameter shift, especially at the start of
the process.

In the present work, we propose a Bayesian
CUSUM type chart, named Predictive Ratio CUSUM
(PRC). This self-starting methodology will utilize the
concept of prior information, adopting a subjective
prior when such information exists, or a non-inform-
ative prior otherwise, to derive the posterior predictive
distribution of a future observable. Regarding the con-
jugate prior setting and derivation of the posterior
predictive that will represent the IC state, the standard
Bayesian framework is applied, just like in Bernardo
and Smith (2000). The predictive distribution will be
used in constructing a CUSUM-type statistic, like
West’s (1986) CBF, with a notably different philoso-
phy though. Specifically, the modeling structure will
be different, with PRC examining parameter-targeted
alternative hypotheses as OOC scenarios, much like it
is done in the frequentist-based traditional CUSUM in
SPC/M, as opposed to the diffused West’s CBF (neu-
tral) alternatives that are suitable for detecting scale
shifts only. Furthermore, PRC will be formulated for
various discrete and continuous distributions that are
members of the regular exponential family, providing
a closed-form mechanism (i.e. easy to be used in prac-
tice), capable to examine a variety of standard OOC
scenarios considered in SPC/M.

For a process under study, we obtain sequentially
a random sample of the univariate data Xn ¼
ðx1, :::, xnÞ: We assume that the likelihood is a mem-
ber of the k-parameter regular exponential family
(denoted from this point on as k-PREF) where follow-
ing Bernardo and Smith (2000) can be written as:

f ðXnjhÞ ¼
Yn
j¼1

gðxjÞ
" #

cðhÞ½ �n exp
Xk
i¼1

giðhÞ
Xn
j¼1

hiðxjÞ
8<
:

9=
;,

[1]

where gðxjÞ � 0, h1ðxjÞ, :::, hkðxjÞ are real-valued func-
tions of the observation xj that do not depend on h,
while cðhÞ � 0 and g1ðhÞ, :::, gkðhÞ are real-valued func-
tions of the unknown parameter(s) h, named natural
parameter(s). The k-PREF hosts most of the widely
used distributions in the field of SPC/M, like Normal,
Poisson and Binomial. The choice of the likelihood for
a problem under study involves some knowledge about
the actual process. In certain cases, especially for the
discrete random variables, the choice comes with the
design. For example, if we collect binary data, like

conforming/non-conforming, we use a Bernoulli/
Binomial, while for count data (e.g. number of defects)
we adopt a Poisson, or Negative Binomial if we suspect
overdispersion. For continuous random variables
though, one needs to have in advance some informa-
tion (e.g. skewness, kurtosis, etc.) to select a likelihood.
One can start with the likelihood that seems most
appropriate and once a few data points become avail-
able, some goodness of fit test could examine the
assumed model. For a robust methodology, the likeli-
hood misselection will have a small impact, mitigating
a practitioner’s concern when choosing it.

The prior distribution plays a fundamental role in
Bayesian statistics, as it represents (when available) the
prior, to the data collection, knowledge for h: In gen-
eral, a valuable prior distribution offers a head-start for
a Bayesian methodology compared to a frequentist
competitor, especially with low volumes of data. Our
recommendation is to use power priors (Ibrahim and
Chen 2000), which allow to build up the prior from dif-
ferent sources of information. Namely, we allow use of
historical data (not to be confused with phase I data in
SPC/M), if available, via the power term along with
expert’s opinion or any other kind of subjective know-
ledge or non-informative prior, via the initial prior
term. The form of a power prior is:

p hjY , a0, sð Þ / f Yjhð Þa0p0 hjsð Þ, [2]

where Y ¼ ðy1, :::, yn0Þ refers to historical data (under
the same distribution law f ð�jhÞ that the current data
obey), 0 � a0 � 1 is a scalar parameter determining
the contribution of historical data, p0ðhjsÞ is the initial
prior for the unknown parameter(s) and s ¼
ðs0, s1, :::, skÞ is the ðkþ 1Þ-dimensional vector of the
initial prior hyperparameters. More information
regarding power priors or the management of a total
prior ignorance can be found in Ibrahim and Chen
(2000) and Gelman et al. (2006), while for their appli-
cation in the Bayesian SPC/M framework refer to
Bourazas, Kiagias, and Tsiamyrtzis (2022). We suggest
to use a conjugate initial prior p0ðhjsÞ, which always
exists within the k-PREF and is also a member of the
k-PREF, leading to the posterior distribution of h,
being the same distribution as the initial prior p0ð�Þ:
Precisely, the posterior at time n will be given as:

p hjXn,Y ,a0, sð Þ ¼ KðsnÞ½ ��1 cðhÞ½ �sn, 0 exp
Xk
i¼1

giðhÞsn, i
( )

¼ p0 hjsnð Þ, [3]

where sn ¼ ðsn, 0, sn, 1, :::, sn,kÞ ¼ sþ a0thðYÞ þ tnðXnÞ is
the ðkþ 1Þ-dimensional vector of the posterior param-
eters, constituted by the initial prior hyperparameters,
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the historical and the current data. The vectors
thðYÞ ¼ ða0n0,a0

Pn0
l¼1 h1ðylÞ, :::,a0

Pn0
l¼1 hkðylÞÞ and

tnðXnÞ ¼ ðn,Pn
j¼1 h1ðxjÞ, :::,

Pn
j¼1 hkðxjÞÞ refer to the

sufficient statistics of the power prior and the likeli-
hood respectively. The normalizing constant, KðsnÞ
will be given by:

KðsnÞ ¼
ð
H

cðhÞ½ �sn, 0 exp
Xk
i¼1

giðhÞsn, i
( )

dh <1, [4]

where H is the parameter space (for discrete h, we
replace the integral sign by summation). For detailed
proof of the posterior derivation, see Bernardo and Smith
(2000) or Bourazas, Kiagias, and Tsiamyrtzis (2022).

It is of great importance to clarify that the null
state (IC) is not fixed, but sequentially updated, every
time a new data point arrives. Likewise, the alternative
(OOC) scenario cannot be fixed, but it should be con-
structed sequentially and designed suitably in order to
increase the detection power. West (1986) suggested
to derive a neutral alternative (OOC) hypothesis scen-
ario, by intervening to the most recent posterior
parameters, sn, in such a way that we reserve the
same location, but we inflate the variance getting a
more diffused (spread out) predictive distribution.
Despite the indisputable convenience of that choice,
there is significant room for improvement, at least
within the SPC/M methodological framework. In par-
ticular, the adoption of an alternative informative
scenario with shifted parameters, which simply yields
a benchmark of the OOC state, can greatly improve
detection power. Typically, the kind of persistent
shifts that we aim to detect (like a mean jump, a vari-
ance/rate inflation, etc.), can be predetermined and
arise from the nature of the process along with what
is considered process deterioration/improvement. This
is a well-known strategy in SPC/M, where charts can
be built with a specific OOC state in mind (like the
traditional CUSUM).

The posterior parameters sn, summarize all the
information regarding the unknown parameter(s) h at
time n, as they consist of the initial prior hyperpara-
meters s and the sufficient statistics of the current
data Xn and the (possibly available) historical data Y:
Our recommendation in PRC is to adopt informative
OOC scenarios (typically used in SPC/M), targeted to
the unknown parameter(s) h, resulting an interven-
tion to the most recent posterior distribution parame-
ters sn: In this manner, we propose an effective
Bayesian alternative of the SSC, aiming to put on the
map of Bayesian SPC/M, a new tool, capable in
detecting more efficiently, persistent parameter shifts.

The choice of the unknown parameter shifts, will
be expressed in a way that preserves conjugacy, allow-
ing closed form solutions, while reflecting our per-
spective for the OOC state. For most of the cases,
where the posterior distribution (or the posterior mar-
ginal, if h is multivariate) is a member of a location
or scale family, we will consider shifts that represent
location or scale transformation of the unknown par-
ameter respectively. This will guarantee that we
remain in the same distribution with updated parame-
ters s0n, derived as simple location or scale transfor-
mations of the IC state posterior parameters sn:

Namely, within the class of distributions examined,
there are five possible (marginal) posteriors: Normal,
Student (t), Gamma, Inverse Gamma and Beta. The
first two are location-family distributions and are met
when the parameter of interest is the mean of the pro-
cess (h). Thus, in this case the OOC state will be rep-
resented by an additive component to h, that is:
h0 ¼ hþ k � d, where k 2 R represents the magnitude
of the shift and d is the reference unit. For the
Gamma and Inverse Gamma posteriors, which are
members of the scale-family, the introduced shift on
the unknown parameter of interest h, will be of multi-
plicative form, i.e. h0 ¼ k � h, where k> 0 represents
the magnitude of inflation if k> 1 or compression
when 0 < k < 1: The Beta posterior (resulting in
Binomial and Negative Binomial likelihood settings) is
the only distribution, which is neither location nor
scale family. Thus, for Beta our proposal will be to
introduce the OOC shift, not on h but on the
expected posterior odds, i.e. EhjX h=ð1� hÞ½ �: Table 1
reports the IC and OOC states of the unknown
parameter(s) h, along with the relevant interpretation,
for various likelihood choices from the k-PREF that
are commonly used in SPC/M.

As it was mentioned earlier, PRC will be based on
the predictive distribution of the next unseen data.
For any likelihood in the k-PREF, (1), with a conju-
gate prior (2), we will obtain a posterior (3) in the
same family as the prior. Furthermore, the predictive
distribution for a single future observable will be
available in closed form:

f Xnþ1jXnð Þ ¼
ð
H

f Xnþ1jhð Þp0 hjsnð Þdh

¼ K sn þ tf ðXnþ1Þ
� �

K snð Þ gðXnþ1Þ [5]

where tf ðXnþ1Þ ¼ ð1, h1ðXnþ1Þ, :::, hkðXnþ1ÞÞ is the suf-
ficient statistic vector of the future observable Xnþ1,
while gð�Þ and Kð�Þ are defined in (1) and (4)
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�â

n
,x

nþ
1Þ

Be
ta
(a
,b

)
k
<
1:

ð1
�
kÞ1

00
%

de
cr
ea
se

in
ex
pe
ct
ed

od
ds

of
h
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â n

q
N
ðh

1,
h2 2
Þ

h 1
þ
k
�ĥ
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respectively. In (5), if we replace the current posterior
distribution, p0ðhjsnÞ, with the OOC posterior,
p0ðhjs0nÞ, corresponding to the shifted parameter
scenario, we will derive the shifted (OOC) predictive
distribution:

f 0 Xnþ1jXnð Þ ¼
ð
H

f Xnþ1jhð Þp0 hjs0n
� �

dh

¼ K s0n þ tf ðXnþ1Þ
� �

K s0nð Þ gðXnþ1Þ [6]

Thus, we have two competing states of the predict-
ive distribution, with the currently available predictive
(5) representing the IC state (i.e. no parameter shift)
and its variant (6) corresponding to the OOC scen-
ario, i.e. where the unknown parameter has been
shifted. As a new data point xnþ1 arrives we need to
weigh the two competing predictives using an appro-
priate function. The proposed PRC is based on the
sequential comparison (via their ratio) between the
current predictive distribution f ðXnþ1jXnÞ, which
includes all the relevant information from the process
up to the current time, and the corresponding shifted
predictive, f 0ðXnþ1jXnÞ, representing the OOC shifted
parameter scenario. The ratio of the shifted predictive
over the current predictive for Xnþ1 will be:

Lnþ1 ¼ f 0 Xnþ1jXnð Þ
f Xnþ1jXnð Þ ¼

K s0nþtf ðXnþ1Þð Þ
K s0nð Þ gðXnþ1Þ

K snþtf ðXnþ1Þð Þ
K snð Þ gðXnþ1Þ

¼ K s0n þ tf ðXnþ1Þ
� � � K snð Þ

K sn þ tf ðXnþ1Þ
� � � K s0nð Þ , [7]

The rationale behind the (powerful) predictive likeli-
hood ratio, Lnþ1, is to measure which of the two states
of the predictive i.e. the IC from (5) or OOC from (6),
is primarily supported by the current data point (xnþ1).

In general, the predictive distribution becomes avail-
able after the first observation, except when we have
Normal/Lognormal likelihood with both parameters
unknown and total prior ignorance (i.e. no historical
data, so a0 ¼ 0 and we use the non-informative refer-
ence prior by Bernardo [1979] and Berger et al. [2009]
as initial prior), where the predictive requires two
observations to become proper. PRC will build up evi-
dence by monitoring the log-ratio of predictive den-
sities, logðLnþ1Þ, using a CUSUM. Precisely, starting
with S1 ¼ 0 (or S1 ¼ S2 ¼ 0, when we have two
unknown parameters and total prior ignorance), the
one sided PRC statistic at time nþ 1 will be:

Snþ1 ¼ maxf0, Sn þ log Lnþ1ð Þg or

Snþ1 ¼ minf0, Sn � log Lnþ1ð Þg [8]

when we are interested in detecting upward or down-
ward shifts respectively. Controlling Snþ1 is performed
in the same spirit as in traditional CUSUM, where an
alarm is raised when the cumulative statistic exceeds
an appropriately selected threshold value (also known
as decision making interval). Thus, the suggested con-
trol chart, will plot Snþ1 versus the order of the data,
having a horizontal line at height h to denote the pre-
determined decision threshold, which will reflect the
chart’s false alarm tolerance. An alarm will be ringed,
each time the statistic Snþ1 will plot beyond h.

From a Bayesian perspective, a Bayes Factor com-
pares the evidence of two specific hypotheses (mod-
els), via the ratio of their corresponding marginal
likelihoods. Thus, as the predictive distribution is cal-
culated by marginalizing the unknown parameter(s),
then the ratio in (7) is simply the predictive Bayes
Factor at time nþ 1, comparing the OOC model,
M1: f 0ðXnþ1jXnÞ, against the IC model, M0:
f ðXnþ1jXnÞ, i.e. Lnþ1 ¼ Bnþ1

10 : For Bnþ1
10 we adopted

the notation of Kass and Raftery (1995), where the
superscript refers to the time, while the subscript
refers to the pair of competing model tested (M1 ver-
sus M0), i.e. the OOC predictive model (M1) in the
numerator over the IC predictive model (M0) in the
denominator. Then, the statistic Snþ1 can be written
as:

Snþ1 ¼ max 0, Sn þ log Bnþ1
10

� �� � ¼ max 0,
Xn
i¼j

log Biþ1
10

� �( )
or

Snþ1 ¼ min 0, Sn � log Bnþ1
10

� �� � ¼ min 0,
Xn
i¼j

� log Biþ1
10

� �( )

[9]

for the upward or downward shifts respectively, where
j ð1 � j � nÞ is the last time for which the monitor-
ing statistic was equal to zero (i.e. Sj ¼ 0 and 8l > j
we have jSlj > 0). In other words, Snþ1 represents the
most recent cumulative logarithmic Bayes Factor evi-
dence, a quantity that is known in the Bayesian deci-
sion theory framework to provide a summary of
evidence for the alternative (OOC) M1 against the
(IC) null M0 model.

The designed OOC parameter shifts, along with the
exact formula of the logðLnþ1Þ statistic used in PRC,
can be found in Table 1, for various likelihood choices
(of discrete and continuous univariate data) that
belong to the k-PREF and are commonly used in
SPC/M. To unify notation, we denote by Dn ¼
ðY ,XnÞ ¼ ðy1, :::, yn0, x1, :::, xnÞ the vector of historical
and current data, w ¼ ða0, :::, a0, 1, :::, 1Þ the vector of
weights corresponding to each element dj of Dn and
we call ND ¼ n0 þ n the length of the data vector Dn:
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Technical details regarding the derivation of all these
PRC models are available in Appendix A
(Supplementary material). Synopsizing the PRC
scheme, we provide its flowchart in Figure 1, while in
Appendix B (Supplementary material) we present it in
an algorithmic form.

3. PRC inference

The control chart associated with PRC has the famil-
iar form of a CUSUM, where the monitoring statistic
Snþ1 (from either (8) or (9)) is plotted versus time
with a horizontal decision limit h, that acts as an
upper/lower control limit in detecting upward/

downward shifts. Issues regarding the design of PRC,
like the derivation of h based on false alarm tolerance,
along with robustness properties and its illustration in
real data applications are covered in Bourazas, Sobas,
and Tsiamyrtzis (2023). The area between the hori-
zontal axis and h is considered the IC region, so when
Snþ1 plots beyond the control limit h, then we raise
an alarm and our suggestion is to stop the process
and examine for an assignable cause, triggering a
potential corrective action. From a root cause analysis
point of view, a CUSUM alarm will indicate not only
that the IC state has been rejected, but it will also
offer an estimate of the time where the OOC state
was initiated, which is simply the first observation

Figure 1. PRC flowchart 1. A parallelogram corresponds to an input/output information, a decision is represented by a rhombus
and a rectangle denotes an operation after a decision making. In addition, the rounded rectangles indicate the beginning and end
of the process.
★For the likelihoods with two unknown parameters and total prior ignorance (i.e. initial reference prior and a0 ¼ 0 in the power
prior) we need n¼ 3 to initiate PRC, while for all other cases, PRC starts right after x1 becomes available.

8 K. BOURAZAS, F. SOBAS, AND P. TSIAMYRTZIS

https://doi.org/10.1080/00224065.2022.2161434
https://doi.org/10.1080/00224065.2022.2161434


right after the latest time for which we had Snþ1 ¼ 0:
Once we correct the problem, then PRC is suggested
to be reinitiated, using all past IC recordings as his-
torical data in the power prior.

If we will not react to an alarm, then due to the
dynamic update of PRC, OOC data will be involved
in the learning process, affecting what is considered
IC state. As a result, the monitoring statistic will start
moving back to the IC region. This is a well known
issue for the self-starting methods, reported in the lit-
erature as “window of opportunity” for a control chart
to alarm, before the running statistic stops to alarm
(in contrast to the fixed parameter CUSUM, where
there is no updating and so an alarm will tend to per-
sist). Thus, it is strongly recommended to act upon a
PRC alarm.

PRC’s monitoring can be considered a sequential
hypothesis testing procedure regarding the unknown
parameter. Furthermore, within the Bayesian decision
theory framework, one can derive the point/interval
estimate of the unknown parameter(s). Precisely,
when the process is under the IC state, the posterior
distribution of the unknown parameter(s) can be used
to derive a Bayes point estimate (like the posterior
mean under squared error loss) or the Highest
Posterior Density (HPD) credible set. Such inference
is also available via the predictive distribution when
forecasting might be of interest.

4. Comparative study and sensitivity analysis

PRC is a general self-starting mechanism, aiming to
detect small/medium persistent parameter shifts, for
any likelihood that is a member of the k-PREF. In
this section, we will evaluate its performance and
compare it against two of the most prominent com-
petitors: the Cumulative Bayes’ Factors (CBF) of West
(1986) and the frequentist alternative, Self-Starting
CUSUM (SSC) of Hawkins and Olwell (1998). The
comparison will involve data from Normal, Poisson or
Binomial, i.e. the most studied distributions in SPC/M.
The goal will be to detect as soon as possible, step
changes for the mean or inflation for the standard
deviation in Normal data (when both parameters are
unknown), rate increases in Poisson and increases in
the odds of the success probability in Binomial data
(all cases refer to typical process deterioration in
SPC/M).

All competing methods, are aligned to have identi-
cal false alarm rate, while they are designed appropri-
ately to detect the OOC scenario under study.
Specifically, we tune the parameter k in PRC, the

reference value of SSC, and the discount factor of
CBF, to reflect on the size of the shift that we aim to
detect. For the SSC with discrete distributions (i.e.
Poisson and Binomial) we follow the suggestion (in
chapter 7) of Hawkins and Olwell (1998), where the
normal scores obtained based on the proposal of
Quessenberry (1995a; 1995b) are winsorized by replac-
ing, whenever necessary, the undefined U�1ð1Þ
by U�1ð0:995Þ:

To derive the decision limit of each method, we
simulate 100,000 IC sequences of size N¼ 50 observa-
tions from Nðh1 ¼ 0, h22 ¼ 1Þ (that will be used for
both the mean and the variance charts), Pðh3 ¼ 1Þ
and Binð40, h4 ¼ 0:025Þ: In SPC/M we typically use
Poisson or Binomial to model count or proportion of
defects respectively and so small parameter values are
more realistic. Furthermore, the Bayesian PRC and
CBF methods require to define a prior distribution
and so within this simulation we will take the oppor-
tunity to perform a sensitivity analysis, examining the
effect of the presence/absence of prior information
(reflecting the subjective/non-informative point of
view). Therefore, for each scenario, we will compare
the SSC against two versions for each of PRC and
CBF (with/without prior knowledge). The initial pri-
ors p0ð�jsÞ, considered are:

� Normal: reference (non-informative) prior
p0ðh1, h22Þ / 1=h22 � NIGð0, 0, � 1=2, 0Þ or the
moderately informative NIGð0, 4, 2, 1:5Þ:

� Poisson: reference (non-informative) prior
p0ðh3Þ / 1=

ffiffiffiffiffi
h3

p � Gð1=2, 0Þ or the moderately
informative G(4, 4).

� Binomial: reference (non-informative) prior
p0ðh4Þ / 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4ð1� h4Þ

p � Betað1=2, 1=2Þ or the
moderately informative Beta(4, 156).

We should note that in the Normal and Poisson
cases, the non-informative priors are improper and
for notational convenience are presented as limiting
cases of the proper NIG and Gamma distributions
respectively.

The OOC scenarios that will evaluate the detection
power of the competing methods, come from the
100,000 IC sequences of length N¼ 50, where small or
medium persistent parameter shifts (i.e. step changes)
are introduced at one of the locations x ¼
f11, 26 or 41g: In other words, we have three scen-
arios for the unique change point location x: either at
the start, or in the middle, or near the end of the
sample. For each location we will consider two shift
sizes, which will be:
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� Normal (mean): mean step change of size
f1h2 or 1:5h2g ¼ 1 or 1:5f g, i.e. after the change
point x, the OOC data come from N(1, 1)
or Nð1:5, 1Þ:

� Normal (standard deviation): sd inflation of size
f50% or 100%g, i.e. after the change point x, the
OOC data come from Nð0, 1:52Þ or Nð0, 22Þ:

� Poisson (rate): parameter increase of size
f50% or 100%g, i.e. after the change point x, the
OOC data come from Pð1:5Þ or P(2).

� Binomial (probability of success): an increase of
size f50% or 100%g for the odds of success, i.e.
after the change point x, OOC data come from
Binð40, 0:037Þ or Binð40, 0:049Þ:

Next, we provide the performance metrics used to
evaluate the competing charts. First, we align all
methods to have 5% Family Wise Error Rate (FWER)
when we have IC data of length 50, i.e. FWERðNÞ ¼
PðT � Njx > NÞ ¼ 0:05, where T denotes the stop-
ping time, x is the time of the step change and
N¼ 50 (length of the data in this study). Regarding
OOC detection, the main goal of self-starting methods
(especially in short runs), is to be able to ring an
alarm before they absorb a change and also minimize
the delay in ringing the alarm. The former will be
assessed in the same spirit with Fris�en (1992) using
the Probability of Successful Detection (PSD), where
PSDðxÞ ¼ Pðx � T � NÞ and the bigger PSDðxÞ, the
better. For the latter, we estimate the delay of an
alarm similar to Kenett and Pollak (2012), using the
truncated Conditional Expected Delay, which is
tCEDðxÞ ¼ EðT � xþ 1jx � T � NÞ and it is the
average delay of the stopping time, given that this
stopping time was after the change point occurrence
and before the end of the sample (i.e. point of trunca-
tion) and the smaller the delay the better the
performance.

The simulation results are summarized graphically
in Figure 2 (and analytically in Table S1 of Appendix
C, Supplementary material). Overall, the PRC outper-
forms both competing methods in all scenarios of
jump sizes and change point locations, as it has stead-
ily better performance in the detection ability and bet-
ter or similar performance on the delay in signaling
an alarm.

Initially, for the detection performance within each
method, we observe (as it was expected) that the big-
ger the size of the shift, the higher the detection
power. Regarding the effect of the location x, we
observe that in all cases the best performance appears
when the change point is at the middle of the

sequence (x¼ 26). The lower performance in the start
(x¼ 11), is related to the fact that the learning pro-
cess is not as mature as in the middle of the sequence.
For the change near the end (x¼ 41) despite the fact
that the learning has been significantly improved the
performance decreases as there is not sufficiently long
time to build up the evidence and ring an alarm
(there exist only 50� xþ 1 ¼ 10 observations until
we reach the end of the data sequence).

Comparing across methods via PSDðxÞ, we
observe that the PRC achieves higher detection per-
centage than SSC for all distributions, shifts and loca-
tions. The PRC’s outperformance against SSC is valid
irrespectively of whether we have an informative or
not prior distribution and their difference is greater at
x¼ 11 (the earlier the shift the bigger the difference).
The SSC’s significantly lower performance versus PRC
(even when a reference prior is in use) in the discrete
distributions can be attributed to the fact that SSC is
using an approximation to normality algorithm that
in discrete data can be poor. The CBF, with one
exception, is having the lowest performance of all
competing methods. This is the price that CBF pays
for aiming to be general and not specifying a target
OOC distribution (it simply diffuses the predictive
distribution keeping the same location). The exception
is when we study shifts in the standard deviation of
the normal data, where the CBF becomes informative,
since the alternative (OOC) scenario involves the
same location and inflated variance. Thus, for this
specific scenario, CBF coincides with PRC providing
identical performance and in a way indicating that
CBF is a method focusing in scale shifts.

Regarding tCEDðxÞ, we observe that PRC is indif-
ferent from SSC in Normal data (and better from
CBF in normal mean PRC), while for the discrete dis-
tributions we have PRC to have comparable perform-
ance with CBF and a lot better (i.e. smaller delay)
when compared to the SSC.

Finally, the prior sensitivity indicates that even
moderately informative prior information enhances
the performance of PRC (and CBF). This is more
intense at the early stages of the process (x¼ 11),
when the volume of the data is very low.

5. Conclusions

In this work a Bayesian change point model, PRC, is
suggested for scenarios where we aim to detect in an
online fashion, persistent parameter shifts of small/
medium size in short production runs. The methodo-
logical framework is given in a general form providing
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a platform able to accommodate any univariate data
generating distribution that belongs to the regular
exponential family. Furthermore, the use of power pri-
ors allows to incorporate possibly available historical
data along with subjective initial prior information (or a
non-informative initial prior when we lack prior know-
ledge), boosting the performance at the early stages.

PRC is an enhanced Bayesian version of the fre-
quentist SSC. In addition, PRC utilizes the fact that

the alternative (competing) models (OOC in the SPC/
M framework) are known, providing a method that
improves significantly the CBF approach, whose mod-
eling structure works only in scale parameter shifts. A
detailed simulation, evaluating the detection (both in
power and alarm delay) of persistent shifts, shows that
PRC outperforms SSC even when a non-informative
prior is used and it is also more powerful from CBF,
except the special case where we look for shifts in the

Figure 2. The FWER(k) at each time point k ¼ 2, 3, :::, 50, the probability of successful detection, PSDðxÞ and the truncated con-
ditional expected delay, tCEDðxÞ for shifts at locations x ¼ f11, 26, 41g, of SSC, CBF and PRC, under a reference (CBFr, PRCr) or a
moderately informative (CBFmi, PRCmi) prior. The results refer to Normal data with step changes for the mean of size f1h2, 1:5h2g,
Normal data with inflated standard deviation of size f50%, 100%g, Poisson data with rate increase of size f50%, 100%g and
Binomial data with increase for the odds of size f50%, 100%g:
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variance of a location scale family distribution, where
CBF coincides with PRC.

The PRC methodology was developed as a self
starting quality monitoring scheme, within the SPC/M
area and as such it can be used in a variety of disci-
plines, industrial or not (like medical laboratories,
economic, geological etc.). Overall, it is a tool focusing
in online detection of persistent parameter shifts,
especially when only low volume of data is available
(short runs or online phase I data analysis). Apart
from the change point detection aspect of PRC (i.e.
alarm a shift and provide an estimate of when this
shift was originated), thanks to the Bayesian frame-
work, at each time we can have a point/interval esti-
mate of the unknown parameter, which will be
sequentially updated. Finally, the detailed description
of the methodology in closed form allows its straight-
forward implementation in either short or long
sequences of data.
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