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Identification and characterization 
of learning weakness from drawing 
analysis at the pre‑literacy stage
Linda Greta Dui 1*, Eugenio Lomurno 1, Francesca Lunardini 2, Cristiano Termine 3, 
Alessandro Campi 1, Matteo Matteucci 1 & Simona Ferrante 1

Handwriting learning delays should be addressed early to prevent their exacerbation and long-lasting 
consequences on whole children’s lives. Ideally, proper training should start even before learning 
how to write. This work presents a novel method to disclose potential handwriting problems, from 
a pre-literacy stage, based on drawings instead of words production analysis. Two hundred forty-
one kindergartners drew on a tablet, and we computed features known to be distinctive of poor 
handwriting from symbols drawings. We verified that abnormal features patterns reflected abnormal 
drawings, and found correspondence in experts’ evaluation of the potential risk of developing a 
learning delay in the graphical sphere. A machine learning model was able to discriminate with 0.75 
sensitivity and 0.76 specificity children at risk. Finally, we explained why children were considered at 
risk by the algorithms to inform teachers on the specific weaknesses that need training. Thanks to this 
system, early intervention to train specific learning delays will be finally possible.

The first years of primary school represent a delicate period in which children build the basis of their knowledge 
and their whole life. Difficulties in the learning process must be promptly addressed, as they can affect whole 
children’s lives, resulting in early school abandon, behavioral problems 1, or criminal attitudes 2. Even in the digital 
era, handwriting is a fundamental skill for school-aged children 3, but children who struggle with mastering 
it are comprised between 5 and 27% of the school-aged population 4,5. This can be traced back to handwriting 
complexity, that involves different sub-domains, such as dexterity, eye-hand coordination, programming capa-
bilities, and automation 6. As handwriting is still a fundamental mean for self-expression, difficulties in learning 
this skill are particularly frustrating. It is then recognized that an early intervention helps to lower the number 
of children in difficulty 7, and responsiveness to treatments can also be considered a distinctive trait between a 
simple handwriting delay and a more severe learning disability.

The specific learning disability associated with handwriting impairments is called dysgraphia, and it is char-
acterized by handwriting skills below the expectancy nonetheless age, intelligence, and absence of sensori-motor 
problems 6. Even though an early diagnosis is fundamental, it is often delayed for different reasons. First, guide-
lines require that handwriting should be tested when mature, i.e., between second and third grade 5. Second, 
in-person visits with child neuropsychiatrists may not be easily accessible due to factors such as the long wait-
ing lists and the cost. A situation that has been exacerbated by the COVID-19 pandemic 8. In the meantime, 
the responsibility of helping children is shifted to teachers, who may observe an abnormal learning path and 
suggest reinforcement exercises. Notwithstanding the important role of teachers, their observation is subjective 
and experience-dependant, as schools lack specialized professionals. Therefore, some children with a learning 
delay might be left apart until the exacerbation of symptoms brings to severe consequences. Additionally, school 
closure during the COVID-19 lockdown made a direct observation impossible, stressing the limitation of such 
approach. On the other hand, implementing preventive training programs for entire classrooms is not feasible, 
as they are time consuming and costly due to teachers’ training.

To overcome these limits, novel screening approaches must include the possibility to objectively study the 
learning trajectory of children from an early stage, even in a remote setting. The digitalization of dysgraphia 
diagnosis has been a trending topic during the last years 9–12. The standard approach includes a digital tool—such 
as, a digitizer or a tablet equipped with a digital pen, or a smart ink pen to write directly on paper 13—capable of 
collecting information about pen pressure and tilt. Recruited subjects are asked to write some grapheme, word 
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or sentence, and both the written trace and various extracted features are correlated to handwriting proficiency. 
The latter is usually estimated through standard handwriting tests, such as the BVSCO-2 or the BHK 14,15. Both 
classical statistics and novel machine learning models have been employed to characterize the differences between 
typically developing and dysgraphic handwriting. Handwriting features that were found to be informative in the 
discrimination between proficiency levels can be grouped into macro-areas, that are: fluidity-related features, 
such as the signal-to-noise velocity peak difference 16, or the time spent with the pen lifted from the sheet 17; pen 
angle-related features, such as the variability of the tilt 18; pressure-related features, such as the pressure frequency 
content or variability  9; time-related features, such as the time to write in an accurate way (speed-accuracy trade 
off) 19, or the time adjustments related to writing size (isochrony and homothety) 20. Even though a digital evalu-
ation can ease the diagnosis process by improving objectiveness and allowing a remote assessment, this approach 
has the same weakness described for standard dysgraphia tests, i.e., it relies on handwriting knowledge, and does 
not allow to anticipate the screening.

An intuition to allow moving dysgraphia screening to a pre-literacy stage is to leverage the same parameters 
that have been studied for handwriting, but applying them to symbol drawing. This is the rationale behind the 
Play-Draw-Write tablet app 21. Play-Draw-Write comprises a Copy Game and a Tunnel Game. The game design 
is based on handwriting laws known to be altered in dysgraphic handwriting, that are isochrony, homothety 
and speed-accuracy trade off. Isochrony and homothety, together, assure that absolute and relative (letter-wise) 
writing time is kept constant, even when writing bigger or smaller. Speed-accuracy trade off predicts a linear 
relationship between the difficulty of a task and the time needed to perform it. Instead of investigating hand-
writing alteration, the game focuses on symbol drawing: to study isochrony, the request is to draw bigger or 
smaller symbols; to study homothety, the request is to draw a sequence of symbols at different sizes; to study the 
speed-accuracy trade off, the request is to steer letter- and symbol-shaped paths. Playing on a tablet equipped 
with a smart pen enables the extraction of pen position, pressure and angles in time, which provide informa-
tion about gesture production. Such objective parameters can be processed to match the features that proved to 
be powerful in discriminating between typically developing and dysgraphic handwriting. Leveraging symbols 
instead of words makes the tool independent from language. Moreover, the gamification of such tests assures 
better adherence in young children, and the wide availability of tablets makes the app more suited for a pre-
clinical screening compared to digitizers 21. The challenge of this approach is to leverage game performance to 
infer the potential difficulty that a child is encountering at the very beginning of its learning path, nonetheless 
the intrinsic uncertainty of defining such difficulty.

The aim of this work is to leverage drawings to automatically suggest directions for potential handwriting 
weaknesses remediation when handwriting is not learned yet. To achieve this goal, we can identify three sub-
aims: (1) to assess the validity of the proposed tool in providing an objective evaluation of children’s graphical 
abilities; (2) to detect which children mostly need to undergo a training program; (3) to locate the areas where 
children mostly need to be empowered.

Results
Participants.  A total of 241 children attending the last year of Kindergarten completed the evaluation 
by playing the four Play-Draw-Write games: Copy Game-Square (CGSq), Copy Game-Sequence (CGSe), Tun-
nel Game-Square (TGS), and Tunnel Game-Word (TGW). See Supplementary Figure S1 for games examples. 
Median age was 5.6, quartiles [5.3, 5.7]. 232 preferentially drew with the right hand, 9 with the left. 124 were 
male, 117 female. 165 were Italian mother-tongue, 76 were not.

Risk evaluation by teachers.  The risk of a grapho-motor delay was assessed by trained teachers, accord-
ing to the 15-items checklist reported in Supplementary Methods S2. Figure 1 reports the number of children 
deemed at risk for a specific item of the checklist (Panel a), and the number of children with a given number of 
items at risk (Panel b). 73 children out of 241 (30.29%) were considered at risk in at least one item. We considered 
these children as the Risk (R) group, whilst the others are the No-Risk (NR) group. Between R and NR groups, 
we did not find differences in age ( p = 0.957 ), nor in the proportion of right/left-handers ( p = 0.220 ); however, 
the relative number of males in the R group was significantly higher (NR: 46.4%; R: 64.4%; p = 0.010 ), as well as 
the relative number of non-Italian mother-tongue (NR: 23.8%; R: 42.5%; p = 0.004).

9.52% of the Spearman’s correlation coefficients between items responses were comprised between 0.3 and 
0.7, 8.57% were lower than 0.3, 81.91% were not significant. All significant correlations were positive. In par-
ticular, Items 13 (writing oneself ’s name) and 15 (distinguishing letters from different graphical signs) had a 
correlation higher than 0.5.

Graphical abilities analysis.  To assess the validity of the Play-Draw-Write solution in evaluating children’s 
graphical abilities, we leveraged the features extracted from the games in an unsupervised way, independently 
from teachers’ evaluation. This approach is inspired by classical dysgraphia tests 14,15, where normative ranges are 
built based on the average performance of the age-matched population. Then, children who deviate from their 
peers (e.g., two standard deviations lower than the mean writing speed 14) are considered affected by dysgraphia. 
We hypothesise that the same would apply to game performances and to the features extracted from the Play-
Draw-Write app. Hence, we detected “outlier children” by computing an “outlier score” (O-score), as defined in 
the "Methods" section. The O-score is expected to be low if a child’s performance is aligned with the majority of 
peers, high if it differs, thus revealing a potential risk.

Figure 2 represents some examples of the O-score, together with the related execution. Radar plots were used 
to display the O-score obtained in each game, stratified by feature category, as defined in the "Methods" section. 
Panel a, in the red box, shows a subject who applied an oddly high pressure, compared to the subject in the blue 
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box, and this is reflected into a high (i.e., bad) O-score in the Pressure category for the TGS. Panel b, in the red 
box, shows a subject that drew with frequent changes in speed. This behaviour is reflected into a high O-score 
in the Kinematics category for the TGW. The subject reported in the blue box, instead, performed the task with 
a more homogeneous speed (O-score equal to zero in all feature categories). Panel c compares both isochrony 
and homothety in two subjects who scored high (red) and low (blue) in the corresponding O-score. From the 
speed plotted against symbols size, we can notice that the expected modulation was not present in the subject 
who scored high in the Isochrony feature category. In fact, when writing smaller, a lower speed would have been 
expected to keep execution time approximately constant, as in the blue subject. On the contrary, the red subject 
drew faster when asked to draw small, thus reducing the execution time. A similar trend can be observed in the 
rest of the population. Unexpected speed modulation (big speed < spontaneous speed; big speed < small speed; 
small speed > spontaneous speed) were more frequent in children who achieved an O-score greater than zero 
in the Isocrony feature category (CGSq: 53.1%; CGSe: 40.2%; Chi-squared test p-value < 0.001 for both games) 
than in those who had an O-score equal to zero (CGSq: 16.1%; CGSe: 15.4%).

As for homothety, the fraction time in Fig. 2c (i.e., the time to draw each symbol, divided by the total time to 
draw the sequence) was more variable in the subject who obtained an O-score greater than zero in the Homothety 
feature category. If this law of handwriting had been respected, the fraction time for each symbol would have 
been approximately constant, independently from changes in size. This concept is highlighted by the shaded areas 
that comprise the range of fraction time variability between the spontaneous, big, and small executions. Wide 
areas mean that the corresponding symbol required a different fraction of the total sequence time, depending 
on the modality it was drawn. This is a violation of the invariance predicted by the homothety principle. The 
same happened for the rest of the population: subjects who scored greater than zero in the Homothety O-score 
had higher variability in fraction time, in respect to those who had an O-score equal to zero. In fact, the fraction 
time range for the circle, median [quartiles], was 0.08 [0.05; 0.13] for the zero-scoring group, and 0.1096 [0.0469; 
0.2061] for the high-scoring group (Mann–Whitney p-value = 0.053); for the line it was 0.04 [0.03; 0.06] for the 
zero-scoring group and 0.05 [0.03; 0.13] for the high-scoring group (p-value = 0.011); for the reversed U it was 
0.06 [0.04; 0.10] for the zero-scoring group and 0.13 [0.09; 0.25] for the high-scoring group (p-value < 0.001).

Panel d analyzes the speed-accuracy trade off (SAT), as formulated in the Steering law 22. The Steering law 
predicts a linear relationship between index of difficulty and movement time. The subject who achieved an 
O-score greater than zero in the SAT category (red) did not comply with the law, as shown by the non-significant 
regression line, with opposite 95% confidence intervals. Non-significant regressions were present only in children 
who obtained an O-score greater than zero in the Speed-Accuracy trade off feature category (TGS: 29.0%; TGW: 
28.0%), whilst those who scored zero always achieved significance (Chi-squared p-value < 0.001).

Figure 3a reports the distribution of the O-score, stratified by risk class. The Mann–Whitney U test revealed 
a significant difference in the O-score between R and NR children (p<0.001; NR median and quartiles: 0.86 
[0.40, 1.50]; R: 1.503 [0.65, 2.46]). This means that R children tend to lay more often at the extremes of feature 
distribution (are more often outliers). This procedure was also applied to each game separately, to investigate 
whether a single game could result informative enough; in such a case, the protocol could be simplified to this 
specific task to become faster and increase adherence. We obtained again a significantly higher O-score for R 
children, compared with NR children, in the CGSq ( p = 0.023 ; NR: 0.13 [0.04, 0.32]; R: 0.22 [0.09, 0.43]) and 
in the CGSe (p<0.001; NR: 0.15 [0.03, 0.40]; R: 0.35 [0.12, 0.70]). This means that, in the R group, there was 
a higher incidence of performance that deviated from the standard. Significance was not reached in the TGS 
( p = 0.201 ) and in the TGW ( p = 0.189).

The thresholds reported in Fig. 3a as horizontal lines are put at each tenth percentile of the O-score distri-
bution. For each of these thresholds, sensitivity and specificity of the R children classification are reported in 

Figure 1.   Children at risk. (a) X: item of the checklist; Y: number of children at risk for a given item. (b) X: 
number of items selected for a child; Y: number of children with a given number of items considered at risk.
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Fig. 3b Sensitivity declines to zero, as the threshold for being considered at risk becomes stricter (i.e., higher 
percentile). This procedure has been repeated for all games (i.e., all features) together, and considering only the 
features computed from each game separately.

From the result in Fig. 3a, the algorithm suggests that also some NR children tend to lay at the extremes of 
the feature distribution (high O-score). Hence, we took a deeper look at these children’s execution, to understand 
this phenomenon. Figure 4 shows the execution of four out of twelve children that teachers labelled as NR, but 
scored high (i.e., bad) with our algorithm (above the 90th percentile of the O-score). Their executions present 
different kinds of abnormalities, that can motivate a high O-score, similar to R children. Panel a refers to CGSq, 
that was visibly rotated. Panel b refers to CGSe, but the sequence is both mirrored in respect to the template and 

Figure 2.   O-score correspondence with children executions. (a–d) report in red a sample subject with a 
high (i.e., bad) O-score in a specific feature category; in blue a sample subject with a low O-score. Axes of 
the radar plot show the O-score divided by feature category, computed only on the game shown in the right 
part of the Panels. (a) Pressure from TGS, colours correspond to pressure. (b) Kinematics from the TGW, 
colours correspond to execution speed. (c) Isochrony and Homothety from CGSe, speed and fraction time of 
spontaneous, big and small executions are shown. (d) Speed-Accuracy trade off from the TGS.
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drawn from right to left (color progression: from blue to yellow). Panels c and d refer to TGW. The first is really 
shaky, the second presents errors in the L and the second E loops (clockwise, without intersection).

We also analyzed the characteristics of the six R children who scored below the 10th percentile of the global 
O-score. All of them had difficulties in only one or two items of the questionnaire. One child had difficulties in 
locating differences between images (item 6); another one in recognizing rotated forms (item 7); a third one in 
both activities. One child had difficulties in occupying the space on the sheet (item 9); another one both in this 
activity and in steadily keeping the sheet while drawing (item 10). The last one had difficulties in respecting the 
correct drawing direction (item 11).

Considering the need for simplification—useful both for tests administration and for dimensionality reduc-
tion of the problem—, we proceeded in the analysis with the CGSe only, as it proved to be the most effective in 
the preliminary analyses.

Risk detection.  To classify a binary risk label, we leveraged machine learning techniques on CGSe features. 
Specifically, we designed a convolutional neural network, the LearNet, as described in the "Methods" section. 
As for features, maximum speed and maximum pressure were discarded, as they were co-linear with the cor-
responding median values. Hence, a total of 88 features were leveraged to train the model. Concerning partici-

Figure 3.   (a) O-score, stratified by risk. Red horizontal line: median; box: inter quartile range; notch: median 
95% confidence interval; red crosses: outliers. The same graph is repeated considering all games together and 
each game separately. (b) Sensitivity and specificity at the different percentile thresholds. The same graph is 
repeated considering all games together and each game separately.
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pants, data from four children were discarded as they did not complete the game. As a result, the training set 
comprised 212 children, whilst the test set comprised 25 children. The structure of the LearNet, which resulted 
from Bayesian optimization, is shown in Table 1. The threshold computed to dichotomy the predicted prob-
ability was 0.5. The LearNet achieved a sensitivity of 75.0% and a specificity of 76.5% on the unseen test set. The 
confusion matrix is reported in Fig. 5a, whilst the comparison of the LearNet results with other classical machine 
learning models is reported in Table 2.

In Fig. 5, Panels c and e show the examples of executions belonging to two subjects that the model assigned 
to the R class. Even if one subject was a true positive (Panel c), and one a false positive (Panel e), the execution 
of both of them reveals abnormalities that probably guided the classification. In both, we can detect anomalies 
in the execution that justify the classification: in Panel c, symbols are coloured according to time, from blue to 
yellow, revealing that the progression was not left-right, as expected; in addition, the symbol furthest to the right 
presents a wrong shape. In Panel e, symbols are coloured according to the speed, that presents several fluctuations 
For reference, we report also a true negative (Panel g). The drawing is coloured according to the pressure exerted, 
that presents smooth changes between symbols parts; in addition, the shape of the sequence of symbols is correct.

We applied a feature ranking technique based on Shapley values 23 on the LearNet to explain how our model 
reached its performance. The ten features that mostly contributed to the prediction are shown in Fig. 5b. For 
each feature, the category is reported on the Y axis. The X axis represents the absolute mean of the impact of each 
feature with respect to the model default prediction. This means that the most important feature, i.e., Dominant 
frequency of tilt-big, has an average impact on the baseline prediction of 4.8% (see Fig. 5b). Figure 5 Panels d, 
f, and h show the individual Shapley value computed for the sample subjects reported in Panels c, d, and g, 

Figure 4.   Examples of executions from NR children that achieved a high O-score. Color represents time 
progression. Templates are reported for reference.

Table 1.   Architecture of LearNet. The structure is intended to be sequentially ordered from top to bottom and 
divided into two parts: the first is composed of 1D convolutional layers and is intended as a feature extractor. 
The second is composed of dense layers and has the role of the classifier. We introduced a dropout between the 
first and the second dense layer to prevent overfitting.

Layer ↓ Units Filters Kernel size Strides Activation Dropout probability

Conv1D – 47 7 1 ReLu –

Conv1D – 57 2 2 ReLu –

Conv1D – 31 2 2 ReLu –

Conv1D – 21 7 2 ReLu –

Conv1D – 45 13 2 ReLu –

Conv1D – 39 9 2 ReLu –

Flatten – – – – – –

Dense 53 – – – ReLu 0.3

Dense 10 – – – Sigmoid –

Dense 1 – – – Sigmoid –
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respectively. In this representation, starting from a 0.31 baseline computed by the algorithm, positive values 
(red bars) moved the prediction towards the R class, whilst negative values (grey bars) moved the prediction 
towards the NR class. The cumulative sum (black bar) is above 0.5 for subjects in panels d and e, as they were 
both classified as R, and below 0.5 for the subject in panel h, as she was classified as NR.

Figure 5.   Results of the prediction. (a) confusion matrix of test predictions. (b) global normalized feature 
importance for the LearNet predictions on the test set, computed as Shapley values averaged on all subjects. (c, 
e, g) Sample executions. (d, f, h) The corresponding feature contribution to the prediction.
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Discussion
As failing to master handwriting have life-lasting consequences, an early intervention is fundamental. Hence, in 
this work, we provided solutions to anticipate the screening of handwriting disorders to a pre-literacy stage. We 
leveraged a tablet-based app, Play-Draw-Write 21, which allows investigating handwriting alterations typical of 
dysgraphia, but starting from symbol drawing. To assess the sensitivity of this tool, we designed an experiment 
that included 241 children. Children played the four games that compose Play-Draw-Write, that require copy-
ing or tracing symbols at different sizes or difficulties. Additionally, trained teachers performed a systematic 
observation of potential indicators of a graphical delay and filled in a 15-items checklist, that we considered the 
reference for the evaluation of our methods.

The sample was composed by approximately 30% of children considered at risk of developing an handwrit-
ing delay. This is in line with literature 5: high figures are common in early school years, and tend to decrease 
when proper training is performed 7. We can observe that the majority of children considered at risk presented 
difficulties in only few items, with a quasi-exponential decay when considering more items together. However, 
since correlation between items reaches significance only in few cases, we can infer that children presented het-
erogeneous difficulties, without many common patterns. This point stresses the necessity to address handwriting 
difficulties as a multi-dimensional problem 10.

Our first aim was to evaluate if playing with the app allowed disclosing pre-graphical difficulties. To this 
extent, we extracted objective features from game execution, and we transformed them into a score that sum-
marized how often a child laid at the extremes of feature distribution (outlier score, O-score). We found that 
children considered at risk of a delay are more often outliers, with a significantly higher O-score. This expands 
the current scientific research on handwriting difficulties, that focused on describing anomalous behaviours 
from written words only 9–11,16–20,24. In the past, attempts of analysing the drawing of a circle provided poor 
results 20. This can be due to the nature of the features extracted (average speed, disfluency and average pressure), 
as the concept that the mere average of a kinematic or dynamic feature has been surpassed by recognizing that 
dysgraphic handwriting is characterized by high variability and unsteadiness 9. On the other hand, even when 
the analysis of lines and semicircles drawings seemed promising 25,26, the age of the target population (6-7 years 
old) did not guarantee the absence of an influence of handwriting knowledge in the drawings, thus impeding to 
translate the results to a pre-scholar age.

When stratifying by game the O-score, we observed that only the two Copy Games reached significance. 
Specifically, copying a sequence of symbols was the game where the distinction between children’s group was 
more evident. During such task, children were required to discriminate between symbols to correctly reproduce 
them in the given order, and to vary their size. Such task may result in a quite simple activity for children with 
age-adequate mastery of drawing. However, it involves good visual discrimination, working memory, ability to 
comply with space constraints, on top of simple graphical abilities. Given the fact that the analysis of the checklist 
responses shows that two of the most problematic items were Item 4 (copying a geometrical figure), and Item 11 
(respecting the left-right directionality), this game seems to be the most complete to rank drawing proficiency. 
This can explain the higher predictive power shown by this exercise, in respect to the others, in an unsupervised 
risk detection. On the counterpart, the O-score computed on tunnel game features did not significantly differ 
between groups. We can conjecture that these games are demanding for all children, resulting in a flattening of 
the performance. To verify this point, older children should be assessed on these games, as it is recognized that 
speed-accuracy trade off abilities develop with age 21.

Reducing the problem to a single game allows simplifying the administration procedure. Hence, we proceeded 
considering only the Copy Game-Sequence to pursue our second goal, i.e., to detect children who mostly need 
to be helped. We trained a deep learning algorithm, the LearNet, to classify teachers’ labels, and we achieved 
75.0% sensitivity and 76.5% specificity. It must be underlined that our model was trained on real-world data, 
that imply imbalanced class proportion, thus making the classification task even more challenging. This result 
further highlights the discrimination capability of the game, as similar classification tasks were recently applied 
on handwriting and produced comparable results 11. An additional achievement of our game design—that relies 
on symbols drawing—is the language-agnostic assessment. This represents a significant improvement from the 
current state-of-the-art, that is usually focused on specific languages or alphabets (e.g., Hebrew 17, French 10, or 
Slovak 11).

To achieve the third aim of suggesting a targeted intervention, we extracted the feature (and feature categories) 
in which children had difficulties, both from the O-score analysis and from the LearNet classification. When we 
stratified the O-score by category of features, we found a good correspondence with the raw execution, that is 
encouraging in terms of explainability.

This is important to shape a targeted intervention. As an example, if a child shows problems in the Pressure 
feature category, pressure modulation could be trained by proposing to draw with tools that allow to understand 

Table 2.   Classification results. For each metric, the best performances is reported in bold.

Model Accuracy Sensitivity Specificity F1 G-Mean

Baseline (all NR) 68.00 0.00 100.0 0.00 0.00

Logistic regression 64.00 25.00 82.40 30.80 45.40

Support vector machines classifier 60.00 12.50 82.40 16.70 32.10

LearNet 76.00 75.00 76.50 66.70 75.70
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its change (pencil, wax crayon, pastel) and helping to visualize it with simple and playful examples (be heavy as 
an elephant, be light as a bird). The hand could be trained with manipulation games, such as, playing with clay, 
balling up paper, etc. Additionally, if a child shows problems in the drawing direction (Error feature category), 
it would be useful to train proprioception first, to understand the concepts of left and right on oneself body (e.g., 
swing an arm while the other one is still 27), and then suggest tracing paths or name figures following the correct 
direction, with the help of stories.

Moreover, our tool seems to be sensitive to deviations even when teachers did not report them: we examined 
the drawings from children considered not at risk, but with a high O-score, and we found out potential problems 
that justify the bad score. Therefore, our analysis highlights even aspects that cannot be noticed by a subjective 
evaluation only. Hence, our tool can be complementary to experts’ observation. This is promising, as Play-Draw-
Write could become a valid aid in detecting areas of difficulties to be empowered, even without the need of a 
trained teacher, or even in a remote setting.

As for the deep learning model, from the average value of feature importance (Fig. 5b), it is evident that there 
is not a single feature the model relies on. Conversely, it learnt to exploit the information from different features 
jointly, and this is confirmed from both the absence of significant importance drops, and the low importance 
magnitude of the ten top features, which are able to change the baseline prediction only of few percentage points. 
Another explanation is that the important features are different for each subject, as confirmed by considering 
subject-wise feature ranking. This is in line with the heterogeneous picture of handwriting pre-requisites that 
we are considering for the Risk label. We can observe that the top-ranking features for the deep learning model 
belong to the Frequency category. This suggests that an alteration in the frequency domain is consistently distinc-
tive of children with potential handwriting problems. The same holds when handwriting is analysed, as found in 
previous work 9. This confirms that the drawing process is similar to handwriting, thus enforcing the feasibility 
of an early screening.

The main limitation—which is also the main challenge—of this work is the uncertainty of the risk label. Even 
if teachers have been trained to assess children on a checklist co-designed by experts, by now it is not possible to 
assure if some of these children will improve or worsen in the future. Additionally, even if teachers underwent the 
same training, the evaluation may still be partially subjective, and depending on their usual class environment.

As an example, it could be argued that the risk imbalance found between the Italian and non-Italian mother-
tongue children may be due to teachers’ pessimistic attitude towards the latter group. However, objective data 
collected with the Play-Draw-Write app confirmed that the latter group could be really disadvantaged, as sup-
ported by similar studies on kindergartners28, rather than being scored worse by teachers: a Mann–Whitney U 
test on the O-score (dependent variable) leveraging the Italian or non-Italian mother-tongue label as independent 
variable showed that the latter group performed worse (p-value = 0.016, median [quartiles]: 1.37 [0.67; 2.00]) 
than the first one (0.87 [0.42; 1.62]). However, confounding factors could have introduced additional noise into 
the labels. This is reflected in the results: we retrieved children with potential problems, even when some teach-
ers discarded them.

The sharp discrimination between the two risk classes, that is inspired by classical diagnostic tests but may 
be affected by labels noise, can be instead modulated in a spectrum of severity, if considering the O-score or 
the SHAP score.

We are conscious that Play-Draw-Write cannot substitute the experts’ opinion. Instead, it should be an aid 
for an early intervention, suggesting a visit with a specialist for those children that do not improve in time. To 
address these points, a follow-up is scheduled in two-year time, when handwriting will be consolidated and a 
retrospective assessment will be possible. Moreover, within the European ESSENCE project 29, we are planning 
to leave the system at the children homes for one year to evaluate the feasibility of a periodic self-assessment 
and a fully automated risk evaluation.

To conclude, this work presents the potentiality of the Play-Draw-Write app in objectively detecting the risk 
of handwriting delay, starting from an age when handwriting is not learned yet. With our tool, we can (1) pro-
vide a ranking to prioritize the intervention, leaving to schools the decision on how many children to include 
in training programs, according to their capabilities; (2) provide a classification of children that could develop a 
handwriting delay, according to experts’ evaluation. In both cases, we are able to inform teachers—and profes-
sionals—of the specific weaknesses that should be trained. This is an important step towards the early treatment 
of handwriting difficulties.

Methods
Participants and protocol.  241 children attending the last year of Kindergarten were included in the 
study. The sample size was computed considering the lower bound of dysgraphia incidence suggested in the 
literature (5%), with the aim of finding at least ten subjects at risk, with a 20% dropout. Subjects who could not 
understand Italian at all (just moved from a differently speaking country), or with a diagnosis of a neurological, 
visual, or motor pathology that can compromise drawing were excluded. Children from non-Italian mother-
tongue families were included in the study, as long as they could understand the instructions. The information 
of belonging to families that moved to Italy from other countries—independently from the reason for moving—
was retained, as it could be that parents who are unfamiliar with activities usually performed in kindergartens 
are less supportive in case of difficulties.

Children were asked to use the Play-Draw-Write app, with their preferred hand. First, they had to play the 
Copy Game (CG), that comprised coping a square (CGSq) and a sequence (CGSe) of a circle, a vertical line, and 
a reversed U. Three sizes were required: spontaneous, big, and small. Children were verbally instructed by the 
experimenter, who assured that the task was understood even by non-Italian mother-tongue children. However, 
symbols were not named, nor a tutorial was shown, as in similar neuropsychological tests 30. If children did not 
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follow the requests (e.g., if they drew a flower or a cow instead of the square), they were asked to repeat the 
trial. Second, they had to play the Tunnel Game (TG) that comprised tunnels shaped as squares (TGS) and as 
the cursive sequence of letters “ele” (TGW), similarly to a dysgraphia test 14. For TG, verbal instructions were 
followed by a tutorial and an example trial. Then, children were requested to steer fourteen tunnels of different 
sizes, that corresponded to five indices of difficulty as in our previous work 21. During the trial of the “ele” tunnel, 
particular attention was payed to let them understand the correct direction (counterclockwise). Children had 
to repeat the trial if the pen was lifted before the end of the tunnel. An example of the four games is reported in 
the Supplementary Figure S1.

Data acquisition took place in a quiet room of the Kindergarten. Five Kindergartens, all located in the prov-
ince of Varese (Italy), participated in the study. Acquisitions took place during January and February 2020. Data 
were collected by 6th and 7th generation iPads, with an Apple Pencil, 1st generation. The protocol was approved 
by Politecnico di Milano Ethical Committee, n. 24/2019, and an informed consent was signed by the children’s 
parents. The research was performed in accordance with relevant guidelines and regulations and in accordance 
with the Declaration of Helsinki.

Risk evaluation by teachers.  The definition of the risk of dysgraphia before handwriting is even learnt is 
nontrivial. Due to this complexity, previous studies leveraging drawings in handwriting skills assessment only 
recruited children who already mastered handwriting and could be more easily defined at risk 25,26, potentially 
altering the generalizability of the result to younger ages. In our work, to overcome this limit, starting from a 
structured review of the literature, a checklist was designed by a steering group of psychologists, child neuropsy-
chiatrists, and bioengineers, with the aim of detecting the risk of handwriting delay.

Dysgraphia is a complex disability that does not simply affect handwriting quality 10. First, it is recognized 
that handwriting difficulties are associated with fine gesture impairment, such as cutting with scissors, touching 
fingers with the thumb, or screwing 31. In addition, visual discrimination capabilities could be a predictor of 
handwriting proficiency. Some examples can be the capability of matching rotated shapes, of copying a figure, 
of catching differences between images, or of understanding the concept of directionality 32. Then, inconsistent 
spacial occupation can often be found in this population, together with difficulties in achieving stability while 
writing. The latter may appear both as pressure fluctuations, and as coordination difficulties of the non-writing 
hand in holding the sheet steadily 6. Finally, the sense of rhythm—such as tapping, isochrony and homothety 20—
and the capabilities of tracing in narrow paths are known to be altered in children affected by dysgraphia 19.

From this analysis, a 15-items checklist was developed, as reported in Supplementary Methods S2. The check-
list was addressed to teachers who followed 10 days of a specific training program delivered by psychologists, 
child neuropsychiatrists, and pedagogists. They were required to observe children from the end of November 
2019 to the end of January 2020, and to indicate if they had some difficulties in any item of the checklist. Each 
child was observed by two or three teachers, according to the kindergarten class structure, but a single judgment 
was agreed among them. Teachers were not influenced by Play-Draw-Write results, as they were blind to game 
execution that was performed by experimenters only.

We analyzed responses distribution with frequency analysis, and we computed the Spearman’s correlation 
between item responses to understand if some difficulty was often associated to others. Based on the checklist, a 
child was deemed at risk if he/she was reported to have difficulties in at least one item. We thus assigned a binary 
label of risk (R) and no-risk (NR) of a handwriting delay.

Data processing.  The Play-Draw-Write app sampled pen position, pressure, and tilt, with the associated 
timestamp, at 240 Hz. We leveraged Matlab R2020a to compute features that proved to be promising in discrimi-
nating between proficient and dysgraphic handwriting, as well as game-specific features.

Details on feature computation are reported in Supplementary Methods S3.
We distinguished them into ten categories, that are reported in Table 3. For each feature, Table 3 reports also 

the number of times it was computed. For the Copy Game, features were computed three times, once per level, 
with the exception of features that looked for trends over different levels, which were computed once. For the 
Tunnel Game, each feature was computed fourteen times, once per level, and then mediated when two or more 
levels shared the same index of difficulty 21, resulting in five repetitions of the same feature. The Speed-Accuracy 
trade off (SAT) features, that are computed over all levels combined, resulted in a single value. In total, 73 features 
were computed for the CGSq, 94 for the CGSe, 95 for the TGS and 97 for the TGW.

Graphical abilities analysis.  To identify children deviating from their peers’ performance, we computed 
an “outlier score” (O-score) starting from the features in Table 3. For a robust estimation even with non para-
metric data, we used a median-based outlier detection method, with three scaled median absolute deviations as 
threshold 33. To compensate for the different number of outliers per feature, the binary score of being an outlier 
was weighted by the inverse of the number of outliers for each feature. Then, to achieve a final O-score that could 
approximate graphical abilities, single feature scores were summed up.

To check if the O-score can objectively model a graphical difficulty, for some feature categories we show 
exemplary executions that achieved an O-score equal to zero—that should correspond to good graphical abili-
ties—and greater than zero—that should correspond to some weaknesses. Beyond the examples, representative 
features were chosen to prove that an O-score greater than zero corresponds to an alteration in graphical gesture 
production. To this end, we performed either Mann–Whitney U or Chi squared tests, by leveraging the chosen 
feature as dependent variable, and having an O-score equal to or greater than zero as independent variable.
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To check if our approach found correspondence in teachers’ evaluation, we applied a Mann–Whitney U test 
on the O-score (dependent variable), stratifying children by risk (independent variable). Significance threshold 
was set to 0.05.

Then, we performed a sensitivity analysis. We considered different thresholds at each tenth percentile of the 
O-score distribution, considering all children together (both R and NR). For each threshold, we considered R 
children those above, and NR those below, and we computed sensitivity and specificity in the classification of 
R children at each threshold.

Table 3.   Features extracted by the four games, with the number of repetitions. ◦Starting point and the 
direction. ˆThe final drawing did not replicate the given sequence. ∗Difference between spontaneous and big 
levels, and between spontaneous and small levels.

Category Feature CGSq CGSe TGS TGW​

Kinematics

Median speed x3 x3 x5 x5

95th percentile of the speed x3 x3 x5 x5

Standard deviation of the speed x3 x3 x5 x5

Median acceleration x3 x3 x5 x5

Fluidity

Signal-to-noise velocity peak diff. x3 x3 x5 x5

In-air time x3 x3

On-tablet pauses x3 x3 x5 x5

Speed in crossing the ele intersection x5

Speed in the upper part of the ele loop x5

Speed diff. btw intersection and up loop x5

Angles
Median tilt x3 x3 x5 x5

Standard deviation of the tilt x3 x3 x5 x5

Frequency

Dominant frequency for the speed x3 x3 x5 x5

Dominant frequency for the pressure x3 x3 x5 x5

Dominant frequency for the tilt x3 x3 x5 x5

Pressure

Median x3 x3 x5 x5

Maximum x3 x3 x5 x5

Standard deviation x3 x3 x5 x5

Space

X centroid x3 x3

Y centroid x3 x3

Total trace length x3 x3

Drawing strategy for the square◦ x3

Std. dev. symbols height x3

Errors

Number of repetition of the level x3 x3 x5 x5

Wrong order in the sequenceˆ x3

Not drawing left-right x3

Nr of out-of-tunnel points x5

Out-of-tunnel time x5

Out-of-tunnel speed x5

Nr of ele loops performed clockwise x1

Nr of levels with clockwise loops x1

Isochrony

Execution time x3 x3

Time diff. divided by size diff.* x2 x2

Size diff.* x2 x2

Speed diff.* x2 x2

Time diff.* x2 x2

Speed diff. divided by size diff.* x2 x2

Homothety
Fraction time for each symbol x3x3

Fraction time diff.* x3x2

SAT

Steering Law R 2 x1 x1

Steering Law rmse x1 x1

Steering Law regression significance x1 x1

Steering Law Index of Performance x1 x1

Global movement time x1 x1

Level-wise movement time x5 x5
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Risk detection.  To classify the risk of handwriting delay, we leveraged the previous analysis to choose the 
game that seemed to be more promising in modelling graphical abilities. The features computed in the chosen 
game were used as predictors to build a machine learning model.

It was preferred to use the whole set of features, and not only the O-scores in the different feature categories, 
as predictors because analysing more complex patterns may be helpful in risk detection. Hence, machine learning 
models directly applied on those features would be the right choice to uncover those patterns. Moreover, as the 
same features are computed on different game levels, also between-level patterns may be informative.

To avoid co-linearity, we computed pairwise Spearman’s correlation between features. If the 0.95 threshold 
was trespassed, one of the two features was removed from the feature set. Children not completing part of the 
selected game were discarded. Other missing values were imputed with the median or the mode values, for 
continuous or categorical features, respectively.

The whole dataset was divided into a train/validation set and test set, maintaining the NR/R proportion com-
ing from the teachers’ evaluation. After that, both training and test sets were normalized on the training dataset, 
to minimize the bias. The model chosen for the prediction was a 1-dimensional convolutional neural network 
(1D-CNN). As the model was aimed at detecting learning difficulties in children, we named it LearNet. Such an 
architecture allows to find between-level patterns, instead of considering each feature separately. In addition, we 
set up the parameter search space in such a way that the receptive field could always cover the entire feature set, 
thus allowing all features to be linked together, regardless of their position in the input vector of the network. 
We replaced pooling layers with 2-step strides to maintain the whole information from the vector space, instead 
of restricting it as in 2D-CNNs, where feature spaces are much larger. Layer parameters were tuned via Bayesian 
optimization and evaluated by 10-folds stratified cross-validation. This resulted in ten models with identical 
configuration but trained and evaluated on different folds. We chose to combine Bayesian optimization with 
stratified 10-fold cross-validation because we believe it is a good trade-off between evaluation robustness (i.e., 
between holdout and nested k-fold cross-validation) and parameter search time (i.e., fixed parameters and wide 
grid search). Given the classes imbalance, it was not possible to optimize the parameter search with respect to 
conventional metrics, such as, accuracy or specificity. Then, the optimization metric chosen was the geometric 
mean, i.e., the square root of sensitivity and specificity, which is particularly suitable for unbalanced classifica-
tion problems34. An optimization metric that accounts for both sensitivity and specificity allows to minimize the 
number of false negatives without negatively impacting true positive and true negative rates.

We guaranteed a wide exploration margin in terms of epochs for each model by setting a validation early 
stopping based on the geometric mean and with 200 steps of patience. Finally, the ten models obtained via the 
stratified 10-folds cross-validation were applied to the test set and the results were stored in terms of probability. 
An average probability was computed and data were dichotomized according to the threshold moving technique 
to deal with the classes imbalance 35. To assess the goodness of LearNet, we compared it against two classical 
machine learning models, i.e., Logistic Regression and Support Vector Machines Classifier. Regarding Support 
Vector Machines Classifier, we tested different kernel choices by grid search, finding that the best performance 
was obtained using the linear one.

As for our third aim, to explain the predictions, we used SHapley Additive exPlanations (SHAP) 36,37, a model 
explanation library based on game theory. It computes the Shapley values of the features, according to their 
impact on the model’s predictions. We applied SHAP to build the feature ranking for each model of the stratified 
10-fold cross-validation, with respect to their predictions on the test set. Finally, we averaged each set of Shapley 
absolute values to obtain the final feature ranking.

LearNet and SHAP were implemented in Python 3.9 with Tensorflow 2.6.0.

Data availibility
The data that support the findings in this study are available from the corresponding author upon reasonable 
request.

Code availability
The code is available from the corresponding author upon reasonable request.
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