
Autonomous Intelligent
Systems

Polenghi et al. Autonomous Intelligent Systems             (2022) 2:2 
https://doi.org/10.1007/s43684-022-00021-7

O R I G I N A L A R T I C L E Open Access

An ontological modelling of multi-attribute
criticality analysis to guide Prognostics and
Health Management program development
Adalberto Polenghi1* , Irene Roda1 , Marco Macchi1 and Alessandro Pozzetti1

Abstract
Digital technologies are becoming more pervasive and industrial companies are exploiting them to enhance the
potentialities related to Prognostics and Health Management (PHM). Indeed, PHM allows to evaluate the health state
of the physical assets as well as to predict their future behaviour. To be effective in developing PHM programs, the
most critical assets should be identified so to direct modelling efforts. Several techniques could be adopted to
evaluate asset criticality; in industrial practice, criticality analysis is amongst the most utilised. Despite the
advancement of artificial intelligence for data analysis and predictions, the criticality analysis, which is built upon
both quantitative and qualitative data, has not been improved accordingly. It is the goal of this work to propose an
ontological formalisation of a multi-attribute criticality analysis in order to i) fix the semantics behind the terms
involved in the analysis, ii) standardize and uniform the way criticality analysis is performed, and iii) take advantage of
the reasoning capabilities to automatically evaluate asset criticality and associate a suitable maintenance strategy.
The developed ontology, called MOCA, is tested in a food company featuring a global footprint. The application
shows that MOCA can accomplish the prefixed goals; specifically, high priority assets towards which direct PHM
programs are identified. In the long run, ontologies could serve as a unique knowledge base that integrate multiple
data and information across facilities in a consistent way. As such, they will enable advanced analytics to take place,
allowing to move towards cognitive Cyber Physical Systems that enhance business performance for companies
spread worldwide.

Keywords: Criticality analysis, Ontology, Artificial intelligence, Prognostics and Health Management, PHM,
Maintenance

1 Introduction
Digital technologies are enabling Prognostics and Health
Management (PHM) to become a cornerstone for com-
panies willing to have insights on their shopfloor status
[1]. Specifically, PHM allows to evaluate the health state
of the physical assets and to predict their future behaviour
so to intercept possible deviations from normal condi-
tions [2]. These potentialities have increased over time
thanks to the use of several modelling techniques, includ-
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ing physical models, statistical models and artificial in-
telligence (AI) [3]. Specifically, AI models, in particular
Machine and Deep Learning, are promising to improve
state detection, health assessment and prognostic assess-
ment performance given their ability to describe and ap-
proximate complex dataspaces, where statistical models
may stack [4]. As such, PHM could support maintenance
management and has a key role also within asset manage-
ment [5].

Nevertheless, a PHM program to succeed needs to be
properly set since the beginning; many are those programs
that do not reach optimal performance, for various rea-
sons [6] that are either technical or organisational. Thus,
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to pave the way for a successful PHM program develop-
ment, it is important to perform an analysis of available
assets to understand on which the modelling efforts must
be directed [7]. It is relevant to adequately plan the spend-
ing committed in the development of advanced technolo-
gies and organizational implications; indeed, investments
in PHM, for hardware, software and competencies, should
be carefully defined as, otherwise, they may compromise
the benefits the PHM itself could bring in terms of perfor-
mance improvement. In order to make a balanced anal-
ysis of costs and opportunities, high-priority assets are
typically addressed by PHM programs. The evaluation of
the prioritization of the assets is performed by looking
at their criticality, assessed from several perspectives de-
pending on specific business requirements [8]. The multi-
ple perspectives extend the traditional machine-narrowed,
availability-focused criticality evaluation of assets towards
a broader set of characteristics, envisioned to be more sus-
tainability [9] and system level [10] oriented for the com-
ing years. However, extended criticality analyses are not
widely spread in industry for various reasons and several
shortages exist in the related tools [11].

Indeed, to assess the criticality of an asset it is possible
to refer to process hazards analysis (PHA) that includes
several techniques, such as, for example, FMEA/FMECA
(Failure Modes and Effects Analysis, with eventual Crit-
icality Analysis) and HAZOP (Hazards and Operability
analysis) [7]. Amongst them, the multi-attribute critical-
ity analysis, both at asset level and component level is the
most widely used [12]. Despite its relevance, the multi-
attribute criticality analysis currently suffers of some lim-
itations, mainly related to the unavailability of historical
data to evaluate asset performance; this limitation is es-
pecially true in the beginning of life (BoL) of the asset,
where only qualitative information through a subjective
judgment from experts could be extracted if no bench-
marking is possible [13]. Furthermore, for companies own-
ing geographically dispersed facilities, the way the multi-
attribute criticality analysis is performed may differ and an
overall cross-plant evaluation for budget allocation by the
headquarter may be challenging, even unfeasible, due to
this potential misalignment [14]. Hence, despite the wide
adoption and the strategic role the criticality analysis has,
several are the pitfalls that affect its correct implementa-
tion.

In this work, the application of symbolic AI is explored
to cope with the current gaps in criticality analysis. Sym-
bolic AI refers to the application of techniques, like logic
programming and semantic modelling [15]. Specifically,
an ontology is proposed to i) fix the semantics behind the
terms so to have common and agreed-upon meanings be-
tween the involved stakeholders and ii) fix the methodol-
ogy and computations so to have a common way to per-
form the criticality analysis. These goals are pursued to

leverage on a standardization of the criticality analysis to
help properly direct the spending committed for the assets,
in particular for the application of advanced technologies,
in companies owning several plants.

The proposed ontology follows recent ontology develop-
ment methodologies and best practices. In particular, the
realised ontological model is tested in a global manufac-
turer in the food sector to prioritise the assets in a new
plant in order to plan maintenance strategies in advance
in its BoL and, thus, to better direct PHM-related invest-
ments. This required to identify and establish a common
criticality analysis methodology to be adopted, as stan-
dard approach, in other plants to make the evaluation uni-
form. Generally, depending on the criticality value, differ-
ent maintenance strategies could be engaged: for those as-
sets of high priority, PHM programs are envisioned to take
place to support condition-based maintenance (CBM) as
well as predictive maintenance; for very high priority val-
ues also redesign, i.e., a more asset management related
strategy acting on the characteristics of the industrial tech-
nology, plant and/or production process, could be also se-
lected.

The structure of the work is as follows: Sect. 2 provides
an overview of criticality analysis; Sect. 3 reviews the lit-
erature on ontologies used for criticality analysis to un-
derstand current gaps; Sect. 4 proposes and describes the
MOCA (multi-attribute ontology-based criticality analy-
sis) ontology, which is then tested, as presented in Sect. 5,
in the food company case. Finally, Sect. 6 draws some con-
clusions and paves the way for future research. This arti-
cle is an extended version of a conference paper [16] pre-
sented at the 17th IFAC Symposium on Information Con-
trol Problems in Manufacturing INCOM 2021. With re-
spect to the conference paper, the current work proposes a
new, extensive literature review adopting a systematic ap-
proach to identify the current state of the art in the on-
tological formalisation of criticality analysis, pinpointing
the current gaps. Furthermore, the MOCA ontology is de-
tailed out, clarifying the used methodology for its devel-
opment, the reason behind the selection of a specific foun-
dational ontology, the choice to go for non-reflexive rela-
tionships between concepts, and a thorough description of
how MOCA works thanks to its formalised rules.

2 Basics of multi-attribute criticality analysis
The criticality analysis allows to identify and prioritise un-
desired events [17]. It is a general-purpose technique that
found a flourished application in maintenance and asset
management domains. As such, it allows to take asset-
related decisions [12].

Single-attribute and multi-attribute criticality analysis
are available and the selection of how many attributes
depend on the dimensions worth to consider [18] and
the unit of analysis, being the asset or the failure mode.
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Figure 1 Example of severity value definition based on multiple
criteria (adapted from [21])

The traditional application of the criticality is based on
the evaluation of the RPN (Risk Priority Number), which
quantifies the criticalities and allows to prioritise assets
and/or related failure modes. The RPN is closely related
to the FMEA/FMECA methods as expressed in the IEC
60812 [19]. In single-attribute FMECA-like criticality anal-
ysis, occurrence, severity and detectability are usually
equally weighted and the final RPN defines the final rank.
The way RPN is calculated could consider also uncertain-
ties by means of fuzzy logic approaches [20]. To associate a
scale to the parameters and relative thresholds there exists
some standards, like SAE (link) that merges several criteria
to consider, like availability, safety, and quality. In Fig. 1, a
scale for severity taken from Bowles [21] is reported, where
it is possible to see that a severity value is associated with
more criteria.

The multi-attribute criticality analysis goes beyond the
evaluation of RPN and introduces more parameters rather
than occurrence, severity and detectability only, like ex-
pected cost of failure [18]. In so doing, it is possible to
prioritise assets and failure modes in a more precise way
given that the weights to the parameters are determined
by maintenance experts; a sensitivity analysis is also use-
ful if objective weights cannot be established. The result
is a list of assets and failure modes ranked and prioritized
according to their criticality.

Once available this information, it is possible to better
plan the maintenance strategies. At asset level, for low
criticality assets, corrective maintenance still remains the
best option; when the criticality increases, it is possible

to implement time- or age-based preventive maintenance,
condition-based maintenance with or without prognosis,
and redesign as last option, beyond the scope of mainte-
nance and more within that of asset management. The crit-
icality thresholds to identify the best maintenance strategy
could be defined through a cost-benefit analysis consider-
ing the available budget. Figure 2 reports an example of
how to allocate maintenance strategies by considering oc-
currence and severity.

In spite of the long-lasting history behind criticality
analysis, its relevance is still increasing due to CBM [22],
which enables diagnostics and prognostics actions framed
within the PHM discipline. However, not all assets require
CBM/PHM to be put in place since the investment in mon-
itoring systems, both in terms of hardware and software,
may not be economically advantageous. This is particu-
larly true for companies owing multiple plants in which
investments may be heavy and where there is not consis-
tency to perform criticality analysis, so that budget plan-
ning and allocation may be erroneous based on misleading
information. Also, to optimise the operational expenditure
during the usage phase of the assets (alias, the middle of life
of the assets, i.e., MoL), it is important to plan maintenance
strategies in advance with respect to the commissioning of
the assets and their operation [23]. However, prior to the
installation, thus in the BoL, operational data are not avail-
able if not coming from tests, benchmarks, data banks or
simulations. These sources of information could be helpful
to set a first draft planning of the maintenance strategies,
but the conditions in which the assets were tested, simu-
lated, benchmarked, or reported in data banks, could be
(very) different from the actual ones. Anyway, planning
maintenance strategies in the BoL could be of great ad-
vantage [24]. Thus, integrating the available sources at BoL
phase, considering both quantitative and qualitative data,
is vital to succeed in establishing the criticality analysis. As
qualitative data are usually due to experts’ knowledge, it is
important to manage their knowledge, and related subjec-
tive evaluation, to achieve homogeneity in the analysis.

In the specific context of large companies with a global
footprint due to the worldwide spread facilities, the criti-
cality analysis could be carried out taking advantage of the
collective knowledge available from experts on field. Nev-
ertheless, there may be the risk that the underlying mean-
ing of terms could change, thus leading to incompatible re-
sults between production sites. This, in turn, may affect
the optimisation of maintenance and asset management
strategies since criticality may be affecting other plans,
also related to the spare parts management [25] and in-
vestment/reinvestment appraisal [23]. Therefore, a careful
consideration should be kept in order to assure the homo-
geneity of criticality analysis and asset-related decision-
making.

https://www.sae.org/standards/content/arp926c/
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Figure 2 Example of a criticality value plot for maintenance strategies planning

Figure 3 Overview of the research process

In this regard, ontologies are showing potentialities to
identify the most suitable maintenance strategies by se-
lecting and assessing machine criticality [26, 27]. In par-
ticular, ontologies, models related to symbolic AI, are used
in the scientific literature and industry to set up com-
mon and agreed-upon terminologies between stakehold-
ers. Furthermore, their reasoning capabilities offer sup-
port in the automatic allocation of maintenance strategies
to proper assets, and its related components, also com-
bining information coming from diagnostics, for which
ontologies are already established, powerful state-of-art
means [28]. Nonetheless, as the following Sect. 3 describes
through an extensive literature review, some gaps still exist
regarding ontology modelling of multi-attribute criticality
analysis, especially from the semantic perspective.

3 Review of ontological modelling of criticality
analysis in industry

To define the state of art of ontology modelling for criti-
cality analysis, a systematic literature review is performed.
The considered databases are Scopus, Web of Science and
IEEE Xplore and the research protocol includes:

• Keywords: ontolog* AND criticality analysis
• Eligibility criteria:

– Limitation to journal and conference papers only.
– Only English written documents.
– No predefined timespan.

The identified documents are screened to assess if they fit
with the current goal and only documents relating to the
industrial domain are kept. Then, a snowball analysis is
performed so to integrate additional scientific works. Fig-
ure 3 summarises the step-by-step results obtained in the
searching process. The final set is composed of 7 eligible
documents, which are analysed to depict the state of art in
modelling criticality analysis through ontologies in indus-
try.

Defèr et al. [29] focused on the criticality analysis as a
relevant tool to cope with increasing complexity of today
production systems. In their work, the authors proposed
an ontology for high-level mapping of concepts that overall
describe the risk management in complex production sys-
tems; furthermore, a lot of effort is put on the identification
of relevant data that are needed to be collected from infor-
mation systems so to suitably carry out the criticality anal-
ysis. Ali and Hong [30] studied the criticality analysis in the
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context of CPS (Cyber Physical System) and position the
ontology in the cognition level of the 5C architecture [31].
The developed ontology is able to carry out the criticality
analysis according to the traditional FMECA approach; the
application shows that the ontology is able to identify the
most critical components in a condition monitoring sys-
tem. In line, also Zhou et al. [28] developed an ontology
for advanced FMECA analysis in the context of wind tur-
bines. Both research [28, 30] introduced SWRL (Semantic
Web Rule Language) to improve reasoning performance
and provide output to the decision-maker; in both cases,
the attention is given to failures that affect the availabil-
ity attribute, thus embracing the traditional approach of
FMECA. Castet et al. [32] ontologically modelled both the
FMECA and the FTA (Failure Tree Analysis) by defining
the main concepts and the relationships between them.
The application to two simplified cases, a rover for night-
time operations and a NASA habitable spacecraft, shows
that the models allow for a deep understanding of the phys-
ical decomposition of the asset, the failure modes in evo-
lution and possible failure causes that are affecting the
current functioning of the asset. Rehman and Kifor [33]
used ontology to model the PFMEA (process FMEA). In
their work, the ISO 15926 [34] is used as reference ontol-
ogy to support modelling all needed concepts that relate
to the traditional approach of criticality analysis based on
the evaluation of the RPN. Finally, the last eligible paper
is a very recent work published in 2021 by Wu et al. [35].
In this work, the FMEA in manufacturing is reviewed so
to understand the different approaches and methods that
could be used to support criticality analysis in complex in-
dustrial environments and at different indenture levels. Es-
pecially, the authors summarised the several contributions
ontologies bring to FMECA, like specification of seman-
tics, knowledge reuse and reasoning, and improved knowl-
edge management.

3.1 Concluding remarks
The eligible documents allow to state some remarks about
the employment of ontologies to model criticality analysis
for industrial assets and their related failure modes:

1. all the proposed models confirm that the RPN and
the failure mode criticality are the two agreed-upon
indicators to prioritise assets and failure modes;

2. ontologies are seen as a way to extract information
and infer possible failure modes that are occurring to
the asset or possible failure causes that initiate a
failure mode;

3. all the proposed ontology-based criticality analyses
do consider availability as main attribute, that is,
physical (a breakdown) or functional (loss of
functionality) failures impacting availability are
introduced and prioritised thanks to RPN
computation;

4. each of the proposed ontological model relies on its
own physical decomposition of the asset, i.e., number
of considered indenture levels, and there is no
consensus on this matter.

Overall, the analysis of the literature shows that critical-
ity analysis is increasingly related to the ontological mod-
elling. Nonetheless, difference are the holdbacks that are
worth to investigate. Firstly, none of the analysed docu-
ment explicitly states the use of a reference foundational
ontology except in one case where the ISO 15926 is used.
Secondly, the analysed papers do not advocate, at least
from the manuscripts content, the use of methodologies
to develop ontological models. Thirdly, none of the eligible
documents explicitly uses ontologies as a way to guarantee
semantic alignment between stakeholders, but mainly use
them for reasoning capabilities. Finally, the availability is
the main considered attribute, also safety is worth to men-
tion; nevertheless, it is evident the limited potentiality of-
fered by the criticality analysis in prioritising assets/failure
modes in light of additional attributes and, thus, a broader
scope of asset-related characteristics. Therefore, this re-
search aims at coping with some of the pitfalls emerged
from the systematic literature review. The proposed ontol-
ogy, named MOCA (Multi-attribute Ontology-based Crit-
icality Analysis) focuses on the description of the multi-
attribute criticality analysis based on a reference founda-
tional ontology and by introducing additional attributes as
described in Sect. 4.

4 Proposed ontology for multi-attribute criticality
analysis

The ontological modelling of MOCA considers a multi-
attribute criticality analysis for asset prioritisation that in-
cludes quality and energy, which are additional relevant
attributes to be considered, besides availability. The main
goal of the realised model is the ontological formalisation
of concepts as well as the standardization and uniformity
of the methodology to evaluate asset criticality. Indeed,
the proposed ontology does not outperform the numerical
results obtained through already available multi-attribute
criticality analysis methods, given that the underlying op-
erations are the same, whereas MOCA is focused on the
semantic formalisation and definition of relevant concepts
and relationships so to establish a common background
and semantic alignment between stakeholders.

Before presenting the ontological modelling, Sect. 4.1
describes the adopted methodology for ontology develop-
ment, shedding lights on the main design choices with at-
tention towards the selection of the reference foundational
ontology; then, Sect. 4.2 proposes the MOCA ontology for
the multi-attribute criticality analysis integrating availabil-
ity, quality, and energy.



Polenghi et al. Autonomous Intelligent Systems             (2022) 2:2 Page 6 of 16

4.1 Ontology development methodology and design
choices

The methodologies to develop ontologies are varied and
over the years several ones have been proposed. Time by
time, the methodologies have become more and more
structured, clearly fixing the steps to follow to manage
the entire ontology lifecycle. In this work, the AMODO
methodology proposed by Polenghi et al. [36] is adopted.
To the best of authors’ knowledge, AMODO is the only
methodology for ontology modelling specifically refer-
ring to the maintenance field. Furthermore, it is consistent
with advanced general methodologies, namely NeOn [37]
and DOGMA [38], and it integrates most of IOF (Indus-
trial Ontologies Foundry) guidelines [39]; finally, AMODO
provides a compendium of ontologies in the field of main-
tenance and asset management, which is useful not to start
from scratch. The methodology entails four main phases,
which are hereinafter summarised (please refer to the orig-
inal work for more information):

1. Specification. The step includes the definition of the
domain, purpose and scope of the ontology, the
identification of appropriate competency questions,
and the selection of foundational ontology and
implementation language.

2. Knowledge elicitation. This phase looks after
additional ontological and non-ontological resources
to be integrated in the developed ontology.

3. Conceptualisation. The step relates to classes,
relationships, and properties summary, accompanied
by appropriate definitions and axioms.

4. Formalisation & Implementation. The ontology is
implemented so to be verified against the defined
competency questions and finally deployed.

The specification represents the most critical phase since
the main design choices are here taken. Apart from the do-
main and scope, which depends on the current application
(in this case, the domain is maintenance, and the scope is
the multi-attribute criticality analysis), the selection of a
suitable reference foundational architecture is particularly
critical. The foundational ontologies formalise very gen-
eral entities and could potentially be used to describe every
domain of discourse, from medicine to industry. Several
are the ontologies that are labelled as foundational: BFO1

(Basic Formal Ontology) [40], DOLCE2 (Descriptive On-
tology for Linguistic and Cognitive Engineering) [41] and
SUMO3 (Suggested Upper Merged Ontology). All founda-
tional ontologies have different commitment, conciseness
and also intended use [42]. Nevertheless, BFO is the most
concise [43] and this property eases its adoption.

1Basic Formal Ontology (BFO)—https://basic-formal-ontology.org/.
2Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)—
http://www.loa.istc.cnr.it/dolce/overview.html.
3Suggested Upper Merged Ontology (SUMO)—http://www.ontologyportal.
org/.

From a philosophical perspective, BFO embraces real-
ism when representing entities. As such, ontology mod-
ellers seek to represent “directly” entities in the reality
they want to describe rather than concepts or mental ar-
tifacts persons have about those entities [44]. The impli-
cations the adoption of ontological realism have are mul-
tiple. Mainly, realist ontologies have an intrinsic capabil-
ity of fostering intra- and inter-enterprise data integra-
tion [45]. This happens because modelled entities do have
counterparts in the real world, that is the domain of in-
terest. Therefore, assertations introduced in the ontology
should adhere with what happens in the real world and, if
false, must be corrected. It is worth to mention that “real
world” does not specifically refer to physical entities, but
everything upon which an agreement has been reached,
e.g., physical laws. Despite partially overlapping with BFO
[46], DOLCE instead does not embrace a strong ontolog-
ical realism, that is, the modelled entities could be merely
putative and speculative. Indeed, in DOLCE, entities be-
longing to fiction of mythology are welcome; this leaves
floor for interpretation since assertations could not find
proofs in the reality, but modelled entities refer to concepts
that persons create in their mind about a certain thing that
could possibly exist. According to the scope of research
work within the maintenance domain in industry, BFO fits
better. Lastly, SUMO is excluded from the options since
it could be hardly labelled as a foundational ontology in
the sense intended in this work (that is, an ontology that
could serve for a downward population that specifies enti-
ties of specific domains). Indeed, SUMO already propose
biology-related terms.

The selection of BFO as reference foundational ontology
also stems from the current trend of ontological modelling
in industry. Firstly, the ISO 21838 [47] specifies the BFO
as the reference top-level (a synonymous of foundational,
also said formal) ontology to be used when developing a
new ontology. Secondly, BFO is the reference foundational
ontology of the IOF and CHAMP (Coordinated Holistic
Alignment of Manufacturing Processes) initiatives, which
are structuring industry-related relevant knowledge as ex-
tension from BFO.

According to the embraced philosophical perspective
and the recent trends in ontology development, BFO is
selected as reference foundational ontology to develop
MOCA. This represents the main ontology design choice
of this research work and is a relevant difference with re-
spect to extant criticality analysis works related literature
since foundational ontologies are not exploited and used.

As such, the modelling approach is top-down, that is,
starting from the ground formalisation of reality in very
general terms downwards to the needed concepts for the
application of interest [48]. This way guarantees seman-
tic consistency through levels, at the cost of being burden-
some.

https://basic-formal-ontology.org/
http://www.loa.istc.cnr.it/dolce/overview.html
http://www.ontologyportal.org/
http://www.ontologyportal.org/
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To complete the overview of design choices, the pro-
posed ontology is developed in OWL (Web Ontology Lan-
guage) and natural language definitions are adopted. This
because the formalised knowledge is new, or it is not
fixed and agreed-upon between already available mod-
els and standards. For examples, the physical decompo-
sition is differently expressed by several standards, like the
ISO 14224, ISO 15926, and IEC 62264, used to develop
AAS (Asset Administration Shell). However, it is already
demonstrated that the maintenance-related terms urge ef-
fort to be syntactically and semantically consistent [36, 49].
Thus, MOCA extensively relies on BFO-compliant ontolo-
gies, and, in case of missing or contradicting formalisa-
tions, a look to international standards is given; ultimately,
a look towards the vocabulary already used by the food
company in which the ontology is verified is given to re-
solve incompliances. Amongst those ontologies relevant
to reuse, general enough to be applied to every domain,
there are CCO (Common Core Ontologies) [50] and IAO
(Information Artifact Ontology) [51], from which MOCA
extends.

4.2 Description of MOCA
In the remainder of the document, the final version of
MOCA is proposed. This because the development is an
iterative process and the conceptualisation, formalisation
and implementation phases of AMODO were repeated
more times. The implementation is described in Sect. 5.

The domain to which the MOCA ontology refers to is
the one of maintenance, with the goal of modelling the
multi-attribute criticality analysis for asset prioritisation
as a support to PHM programs. The developed ontology
is particularly thought for asset in the discrete manufac-
turing sector, where authors’ experience is concentrated.
Apart from the selection of BFO as reference foundational
ontology and OWL as modelling language, it is important
to define the competency questions that drive the ontology
development. Some competency questions are hereinafter
presented:

• What is the criticality value of the asset?
• What is the value of the detectability for the

availability attribute for a certain asset?
• What is the specific criticality value of energy for a

certain asset?
Indeed, the multi-attribute criticality analysis includes
three main attributes, which are: availability, quality, and
energy. Thus, the competency questions also refer to qual-
ity and its parameters that are not shown here for short-
ness, because they have the same questions structure as
for availability and energy.

The backbone of MOCA is the physical decomposition
of the asset. Indeed, this is one of the most debated mod-
elling choices in ontological modelling for industrial appli-
cations:

• Some models propose different physical
decomposition based on the industry needs or
industrial standards advocated as reference (see the
works in the literature of Sect. 3). Generally, the asset
(a single machine or equipment) is decomposed from
the second up to the fifth indenture level. This is
compliant with the ISO 14224 [52] that is a reference
for both process and discrete manufacturing
industries. Worth also noting that in some cases, also
the “asset” concept has a blurred meaning, since asset
could be either a single machine, a line or department
or an entire plant.

• Some models instead resolve the physical
decomposition complexity by introducing reflexive
relationships at the “component” level. In so doing, the
ontological model is flexible since it can accommodate
different needs regarding the indenture level.
However, this may create semantic inconsistency since
a “component” could have as part other component/s.

Figure 4 summarises how the physical decomposition in
maintenance-related works could be modelled in ontolo-
gies. The picture is drawn using the UML (Unified Mod-
elling Language) class diagram.

In the proposed ontology, the decision is to use a three-
level physical decomposition since, according to authors’
experience, is the most used. Figure 5 reports how the de-
composition is modelled in MOCA.

Except from the upper-level concepts in BFO, the phys-
ical decomposition extends from CCO:artificat that is
defined as “an object that was designed by some agent
to realize a certain function” [53] and from BFO:object_
aggregate defined as that is a BFO:material_entity con-
sisting of a plurality of BFO:object(s) as continuant parts
[54]. In MOCA, asset plant, that is the entire plant or fa-
cility composed of all systems to realise a product trans-
formation, and the asset system, that is a part of the asset
plant that is in charge of realising a specific set of trans-
formation processes on the product, are formalised as
MOCA:asset_plant and MOCA:asset_system, respectively.
They extend from the BFO:object_aggregate. Other con-
cepts related to the physical decomposition extend from
CCO:artifact. Namely, asset, functional_unit, and compo-
nent are inheritance of CCO:artifact and are all disjoint
classes. They are related each other’s via the has_part re-
lationships with cardinality as shown in Fig. 5. Since this
physical decomposition could not fit with other industrial
needs and applications, in MOCA the physical decompo-
sition problem is solved by introducing the maintainable_
item concept by ROMAIN [55] (the modelled concept is
MOCA:maintainable_item). A maintainable_item is the
physical entity that is the target of a specific maintenance
strategy; also, it is not disjoint with the concepts “on the
other branch”, which are asset, functional_unit, and com-
ponent. In so doing, the physical decomposition could be
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Figure 4 Options for physical decomposition

Figure 5 Physical decomposition in MOCA
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Figure 6 Taxonomical view of MOCA

Figure 7 Maintenance strategy modelling in MOCA

changed and customised according to specific needs, but
the multi-attribute criticality analysis is anyhow valid since
it is linked with the maintainable_item.

In MOCA, the multi-attribute criticality analysis is for-
malised, whose main concepts extend from the ICE
(IAO:information_content_entity) and from CCO, namely,
the Information Entity Ontology, as reported in Fig. 6. As
anticipated, MOCA formalises three dimensions of the

multi-attribute criticality analysis, which are availability,
quality and energy.

On the side of the CCO:directive_information_content_
entity, the maintenance_strategy_type is introduced and
its sub-concepts are related to the main strategies con-
sidered, that are: corrective_maintenance_strategy, pre-
ventive_maintenance_strategy, condition_based_mainte-
nance_strategy, and predictive_maintenance_strategy, as
in Fig. 7.
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Once the maintenance strategies are modelled, it is nec-
essary to define what are the main parameters to be consid-
ered in accordance with the FMECA standard (IEC 60812).
The parameters considered are the occurrence, severity,
and detectability. These criticality_parameter are defined
as follows (to be noted that the IEC 60812 provides unique
definitions for severity only):

• Occurrence is defined as “relative ranking of likelihood
of happening of a failure or a fault”. Even the literature
does not provide an agreed-upon definition for
occurrence but they generally merge the meaning of
“frequency” with “occurrence” [26, 33]. It is worth
underlining that frequency could be used as a proxy to
define the occurrence. Therefore, the two should be
distinguished. Indeed, an occurrence value could be
defined even though there is no information about the
frequency of the failure, but relying only on
maintenance operator’s expertise, e.g., in BoL.

• Severity is defined as “relative ranking of potential or
actual consequences of a failure or a fault” by the IEC
60812 [56]. Worth adding that the consequence of a
failure should be measured at both local and global
scale to embrace the systemic orientation of
maintenance and asset management.

• Detectability is defined as “relative ranking of the
potentiality to intercept the failure or fault before its
happening”. Even in this case the IEC does not provide
support since it defines the “detection method” only.
The detectability parameter is very broad and actually
much effort is put in more formally defining it through
detection methods and measurement techniques
formalisation [57]. It connects to the potentiality
offered by current technologies in monitoring specific
signals characteristics of a failure mode, leading to
diagnostic and prognostic capabilities.

It is worth noting that the above definitions suffer of the
traditional approach to criticality analysis where the per-
spective was the one of availability only [28]. Instead, in the
criticality analysis formalised in this work, failure is con-
sidered in its broad view as a deviation from the expecta-
tions and requirements in different characteristics. In so
doing, MOCA aims to express the parameters, e.g., occur-
rence, for the three considered attributes that are availabil-
ity, quality and energy as target asset-related characteris-
tics.

In particular, an occurrence_ availability is as an occur-
rence measured in terms of asset not able to perform its
function (also called failure) leading to unavailability (due
to production stoppages). The occurrence_quality is an
occurrence measured in terms of product whose quality
is far from the expected specification; the related quality
threshold may depend on customers’ requirements. The
occurrence_ energy is an occurrence measured in terms of

energy requirements of the asset. Then, each of these pa-
rameters could in turn be defined more precisely depend-
ing on the practical case, depending on the quantitative
and qualitative sources that are at hand.

For example, regarding the availability attribute, the fol-
lowing definition may apply: frequency of asset failures
for the occurrence_ availability; weighted average of lo-
cal and global effects leading to production stoppages
for the severity_ availability; capability to detect a failure
based on available in-house technologies for detectability_
availability.

Then, the specific_criticality_value is the RPN assessed
for each of the attribute, and so its subclasses are
energy_criticality_value, availability_criticality_value,
and quality_criticality_value. The multiplication of all
subclasses of specific_criticality_value generates the
criticality_value of the asset that is the weighted aver-
age of the specific ones. The asset is related to these ICE
subclasses via data properties like has_criticality for the
criticality_value, has_ener_criticality for the energy_
criticality_value (analogously for quality and availabil-
ity), and has_ener_det_param for the detectability_energy
(analogously for quality and availability).

Figure 8 briefly reports how the criticality analysis in
MOCA works. The ACV is the instance of the availability_
criticality_value and has_value the ACVv (the range of the
data property has_value) and has_weight the ACVWv (the
range of the data property has_weight). Analogously for
energy and quality.

Through SWRL, the criticality_value is elaborated,
namely, the CVv (the range of the data property has_value)
and associated with the asset of interest. The SWRL rules
are summarised in Table 1.

By establishing a range of criticality value for which
a certain maintenance strategy is better than the other
(e.g., the axiom for predictive_maintenance_strategy:
maintainable_item and (has_criticality_value some xsd:
decimal[>=45]) it is possible to associate a maintenance
strategy to each specific asset.

To summarise how MOCA works, Fig. 9 depicts the
functioning model by highlighting the asserted and in-
ferred knowledge formalised and derived in OWL and
the SWRL rules, how the rules work and the results they
provide. The four main steps are represented by the four
SWRL rules:

1. Evaluate the RPN for each of the three attributes
(availability, energy, quality), based on occurrence O,
severity S, and detectability D:

RPNi = Oi × Si × Di,

∀i = {availability, energy, quality}.
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Figure 8 Informal scheme of principal relationships in MOCA

Table 1 SWRL rules implemented in MOCA

SWRL rules

The SWRL1 and SWRL2 allow to evaluate the criticality analysis for the availability attribute (the same structure with different relations and atoms for
energy and quality). The rules consider also a weight (?ACWv) that balances the importance of availability_criticality_value (?ACV) with respect to energy
and quality. This allows to evaluate the criticality value of the asset as a weighted average of the specific criticality values.

SWRL1:MOCA:maintainable_item(?a) ˆ MOCA:has_avail_sev_param(?a, ?AS) ˆ MOCA:has_value(?AS, ?ASv) ˆ MOCA:has_avail_det_param(?a, ?AD) ˆ
MOCA:has_value(?AD, ?ADv) ˆ MOCA:has_avail_occ_param(?a, ?AO) ˆ MOCA:has_value(?AO, ?AOv) ˆ swrlb:multiply(?ACv, ?ASv, ?ADv, ?AOv) ˆ
MOCA:has_avail_criticality(?a, ?AC) ->MOCA:has_value(?AC, ?ACv)

SWRL2:MOCA:maintainable_item(?a) ˆ MOCA:has_avail_criticality(?a, ?ACV) ˆ MOCA:has_weight(?ACV, ?ACWv) ˆ MOCA:has_value(?ACV, ?ACVv) ˆ
swrlb:multiply(?ACVWv, ?ACWv, ?ACVv) ->MOCA:has_wvalue(?ACV, ?ACVWv)

The SWRL3 and SWRL4 instead elaborate firstly the criticality value of the asset overall and then associate the value to the asset (maintainable item) of
interest.

SWRL3:MOCA:maintainable_item(?a) ˆ MOCA:has_criticality(?a, ?CV) ˆ MOCA:has_avail_criticality(?a, ?ACV) ˆ MOCA:has_wvalue(?ACV, ?ACVWv) ˆ
MOCA:has_ener_criticality(?a, ?ECV) ˆ MOCA:has_wvalue(?ECV, ?ECVWv) ˆ MOCA:has_qual_criticality(?a, ?QCV) ˆ MOCA:has_wvalue(?QCV, ?QCVWv) ˆ
swrlb:add(?CVv, ?ACVWv, ?ECVWv, ?QCVWv) ->MOCA:has_value(?CV, ?CVv)

SWRL4:MOCA:maintainable_item(?a) ˆ MOCA:has_criticality(?a, ?CV) ˆ MOCA:has_value(?CV, ?CVv) ->MOCA:has_criticality_value(?a, ?CVv)

2. Evaluate the weighted RPN for each attribute given
the weights w:

RPNw,i = wi × RPNi,

∀i = {availability, energy, quality}.
3. Evaluate the weighted RPN for the asset:

RPNasset =
∑

i

RPNw,i,

i = {availability, energy, quality}.
4. Associate the obtained RPN (criticality value to the

maintainable item).
5. Associate the maintenance strategy, done through

axioms, as the one of
predictive_maintenance_strategy expressed before.

Indeed, the MOCA ontology is able to relate the asset
with the corresponding strategy through reasoning. This
is demonstrated by the application described in Sect. 5.

5 Application of MOCA in a food company
The developed MOCA ontology is applied in a food com-
pany, which has a twofold objective:

1. Define a common methodology that facilitates and
homogenises how the criticality analysis is performed
in multiple geographically dispersed facilities. This is
urgently required by the company since they are
pursuing the centralisation of the maintenance
strategies definition in the headquarter and they need
that all assets are prioritised with the same criteria.

2. Identify the most critical assets in a new plant in the
BoL so to establish the most suitable maintenance
strategies to each asset before the operative/MoL
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Figure 9 Functioning model of MOCA

Figure 10 General scheme of the three-attribute criticality analysis for the food company

phase. More precisely, special attention is given to
high-priority asset, for which the company could
develop PHM programs for diagnostic and
prognostic activities.

The project could be seen as action research since re-
searchers and industrial practitioners, namely the asset
manager of the food company, work together to come up
with the final artifact. To be effective, several data and in-
formation are collected by the research team and elabo-
rated so to properly understand the production plant at
hand and related characteristics and then feed the multi-
attribute criticality analysis: production plant P&ID (Pro-
cess and Instrumentation Diagram), several extractions
from their ERP (Enterprise Resource Planning) so to have
the complete list of assets together with their character-
istics, suggested maintenance activities by the Original
Equipment Manufacturers, and a first draft of a single-
attribute criticality analysis that was already performed.

Figure 10 provides the general scheme of the multi-
attribute criticality analysis where availability, quality and
energy are modelled and related occurrence, severity and
detectability are filled in.

For each specific parameters some rules have been de-
fined that are not shown here for privacy issues. Anyway,
whenever quantitative data are not directly available, inter-
views with experts are put in place. Especially, the former
ones allow to cope with missing information for the occur-
rence parameters while the latter ones mainly suit with the
detectability parameters. Overall, 380 assets are present in
the plant, but at this stage only a PoC (Proof of Concept)
is realised including a few of assets to test the ontological
formalisation of criticality analysis.

5.1 MOCA implementation
The implementation includes both ontology verification
and validation. The former allows to assess if the ontology
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Table 2 Criticality value thresholds definition

Criticality value thresholds Maintenance strategy

[45; +∞) Predictive or condition-based
[15; 45) Preventive
[0; 15) Corrective

is rightly produced, while the latter is focused on whether
the produced ontology is the right one [55]. Ontology ver-
ification is the first step to be performed; verifying the on-
tology means that the definitions of concepts are properly
stated, and it is able to correctly answer to the competency
questions, thus it can suitably represent the knowledge in
the domain of interest. Validation instead requires testing
if the ontology properly represent the intended meanings.
To this end, the industrial dataset provided by the food
company is used, and the results are shown below.

Practically, the MOCA ontology is implemented in OWL
and populated via the Protégé editor, which allows also
to verify that MOCA answers to the competency ques-
tions by using several plugins. Specifically, SPARQL query
plugin is used to interrogate the asserted MOCA knowl-
edge base, but also the Snap SPARQL query plugin is used,
which allows to interrogate the inferred knowledge.

One of the main advantages of MOCA, is that the phys-
ical decomposition could be easily customised since the
criticality refers to the maintainable_item. In the food
company case, the maintainable_item is the asset due to
the pursued objective (prioritisation of assets from main-
tenance strategies planning).

The last step includes the identification of the best crit-
icality value thresholds to let MOCA differentiate be-
tween the various maintenance strategies and allocate
them properly. The thresholds have been defined together
with the asset manager, which embraces a conservatory
position as understandable from Table 2. The maximum
reachable criticality value is 125 since each parameter O,
S, and D has a scale ranging from 1 to 5.

As notable from Table 2, the assessment of predictive
or condition-based maintenance will be done later in the
project since the feasibility of a predictive maintenance

approach should be carefully assessed considering asset
characteristics. The decision to go for a condition-based
approach without extending to predictive will be decided
during the PHM program development in the future de-
pending on the availability of data and other factors, like
selected indenture level and available technological archi-
tecture.

Once all values related to occurrence, severity, and de-
tectability are inserted together with the criticality value
thresholds, the Pellet reasoner is used to let MOCA infer
the best maintenance strategy to be associated to specific
maintainable_item, i.e., asset. The association of the val-
ues is performed automatically by the ontology via SWRL
rules, while the retrieval of the inferred knowledge is done
through the Snap SPARQL query as follows:
PREFIX owl: <https://www.w3.org/2002/07/owl#>
PREFIX rdf: <https://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <https://www.w3.org/2000/01/rdf-schema#>
PREFIX MOCA: <https://www.semanticweb.org/user/ontologies/2020/09/
MOCA#>

SELECT ?asset ?mStrat
WHERE {

?mStrat rdfs:subClassOf MOCA:maintenance_strategy_type.

?asset rdf:type ?mStrat }

In the above query, ?asset is a proxy for maintainable_item
and ?mStrat is a proxy for maintenance_strategy_type. The
output is shown in Fig. 11.

For the PoC, the three attributes, i.e., availability, quality
and energy, are equally weighted 0.33 each. Indeed, how
to better tune this is an open issue and many options are
available, like using ANP (Analytic Network Process) [58,
59], but it is outside the scope of this research.

The obtained results allow the asset manager to bet-
ter set the maintenance strategies before the assets are in
their operational phase. Moreover, the project unveils the
highly critical assets for which a condition-based and/or
predictive maintenance should be put in place. The de-
velopment of such strategies underneath the wider im-
plementation of PHM as data acquisition and manipula-
tion are cornerstones that must be faced beforehand. In-
deed, the company could establish a campaign aimed to
install monitoring systems without interrupting the pro-
duction. As such, costs are reduced since i) the proper

Figure 11 Maintenance strategy allocation

https://www.w3.org/2002/07/owl#
https://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/2000/01/rdf-schema#
https://www.semanticweb.org/user/ontologies/2020/09/MOCA
https://www.semanticweb.org/user/ontologies/2020/09/MOCA
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maintenance strategies are established for assets accord-
ing to their criticality and ii) the production suffers of no
interruption since monitoring systems are installed before
the operating phase of the plant. This PoC also serves to
demonstrate, in the food company, the possibility to set a
unique methodology for criticality analysis consistent with
the strategic values that the centralised Asset Management
function pursues. Therefore, the methodology could be
spread worldwide so that machine criticalities from var-
ious plants will be consistent. Besides consistency, this
approach also provides the capability of an efficient inte-
gration of the cross-plant knowledge, which may open to
different benefits, such as e.g., periodic re-assessment of
criticalities and strategies, or intra- and inter-plant com-
parison based on the cumulative knowledge base.

6 Conclusions
This research work investigates how to model the multi-
attribute criticality analysis through ontologies. This is
driven by the relevance that this kind of analysis has in
current industrial context since PHM program must be di-
rected to those assets that have high criticality. Companies
with world-wide dispersed plants could suffer of critical-
ity analysis performed differently, and investments may be
misdirected since the information about asset criticality is
not evaluated in the same way. It is a relevant challenge
that the present work considers since its beginning.

Extant scientific literature on the topic shows that sev-
eral holdbacks exist: a reference foundational ontology
is barely considered, structured ontology development
methodologies are not followed, there is no focus on the
underlying semantics of concepts and the semantic align-
ment between stakeholders, but only on reasoning capa-
bilities, and availability is the only considered attribute in
the criticality analysis. Therefore, this work proposes the
MOCA ontology. MOCA is built considering a structured
methodology specifically grounded on the selection of a
reference foundational ontology. For this reason, BFO is
considered as top-level ontology to provide to the ontol-
ogy a strong and agreed-upon backbone. Also, MOCA de-
scribes a multi-attribute criticality analysis, where not only
availability is modelled, but also energy and quality. In ad-
dition to the strong semantic perspective adopted, MOCA
is able to infer the best maintenance strategy allocation to
assets, also thanks to SWRL rules. Hence, for highly criti-
cal machines, a PHM program development could be put
in place.

The developed ontology is tested in a food company that
is pursuing a twofold objective. Firstly, the company wants
a homogeneous methodology to develop criticality analy-
sis for the assets in its geographically dispersed facilities.
Secondly, the multi-attribute criticality analysis needs to
guide the allocation of maintenance strategies to a new
plant before its operational phase. Thus, MOCA repre-
sents an answer to the goals pursued by the food company

and demonstrates its capability in fixing the semantic be-
hind concepts and in helping the maintenance strategies
planning activity. As such, several assets have been identi-
fied as potential targets of PHM programs.

The main limitations concerning the proposed ontology
refer to its restriction to the three availability, quality and
energy attributes. Even though other ones could be man-
ually introduced, MOCA is not able to accommodate au-
tomatically other attributes. Also, MOCA has been tested
only at asset, or related components, level (i.e. maintain-
able items); as such, additional concepts to prioritise fail-
ure modes are missing at the current state of the developed
ontology.

Envisioned future works relate to multiple aspects.
Firstly, the syntactic and semantic consistency of terms
for criticality analysis needs to be pursued through an ex-
tensive review of available models, standards, dictionar-
ies etc.; in the long run this will contribute to an agreed-
upon formalisation. Secondly, additional attributes related
to sustainability and system-oriented performance are to
be introduced in order to improve machine criticality anal-
ysis in line with the current trends. Thirdly, it is worth to
extend the application to other cases so to enlarge the in-
dustrial datasets and the introduction of failure modes re-
lated concepts in the MOCA ontology. Furthermore, addi-
tional work should be done on exploiting quantitative and
qualitative data; reasoning capabilities should be improved
so that the ontology automatically evaluates the value of
each parameter based on a wide and diversified set of in-
formation. This will result in an automatic assessment of
the criticality of assets and/or related failure modes that
stems from numerical data from the asset operation, sim-
ulated data, data from similar assets through benchmark-
ing and experts’ opinion. As such, PHM program could
be easily directed to the high priority assets and the ontol-
ogy could also serve as storage from which PHM-purposed
algorithm could be fed. In the long run, a unique knowl-
edge base that integrates multiple aspects could promote
the application of advanced algorithms towards cognitive
CPS for smart factories.
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