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aDepartment of Statistics, Athens University of Economics and Business, Athens, Greece; bMultisite Hemostasis, Laboratory, Hospices
Civils de Lyon, Lyon, France; cDepartment of Mechanical, Engineering Politecnico di Milano, Milan, Italy

ABSTRACT
In statistical process control/monitoring (SPC/M), memory-based control charts aim to detect
small/medium persistent parameter shifts. When a phase I calibration is not feasible, self-
starting methods have been proposed, with the predictive ratio cusum (PRC) being one of
them. To apply such methods in practice, one needs to derive the decision limit threshold
that will guarantee a preset false alarm tolerance, a very difficult task when the process
parameters are unknown and their estimate is sequentially updated. Utilizing the Bayesian
framework in PRC, we will provide the theoretic framework that will allow to derive a deci-
sion-making threshold, based on false alarm tolerance, which along with the PRC closed-
form monitoring scheme will permit its straightforward application in real-life practice. An
enhancement of PRC is proposed, and a simulation study evaluates its robustness against
competitors for various model type misspecifications. Finally, three real data sets (normal,
Poisson, and binomial) illustrate its implementation in practice. Technical details, algorithms,
and R-codes reproducing the illustrations are provided as supplementary material.
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1. Introduction

In statistical process control/monitoring (SPC/M), we are
interested in identifying when a process operating under
“statistical stability,” typically called in control (IC) state,
experiences some disturbance that is either of transient
or persistent form. Within parametric SPC/M, the IC
state assumes that the data form a random sample from a
distribution and using Deming’s (1986) terminology only
“common cause variation” is present. The concept of dis-
turbance translates typically to scenarios where the IC
distribution parameters experience a (transient or persist-
ent) shift. This occurs when some “assignable cause of
variation” is present, and it is called out of control (OOC)
state. In SPC/M, numerous control charting methods
exist, specializing in identifying different OOC scenarios
with the common goal being provision of high detection
power, while respecting a preset false alarm rate.

In the classical setup, the control charts require first
to be calibrated, using an IC sample of the process,
before they can be ready for use (i.e., online testing),
and this is typically achieved by adopting a phase I/II
separation (see, e.g., Montgomery 2009). This setup is

not feasible when we have either low volumes of data
or we wish to have online inference from the start of
the process, as in the medical laboratory internal qual-
ity monitoring case study, presented in Section 5, that
motivated the development of the present research.
For such cases, a stream of research formed, propos-
ing self-starting control charts, where calibration and
testing are performed simultaneously, vanishing the
need of a distinct calibration (phase I) step.

When we design a control chart for an application, we
are typically given a false alarm tolerance that the chart
needs to obey, such as the IC Average Run Length, ARL0
(i.e., the expected number of observations before the
occurrence of the first false alarm), or the family-wise
error rate (FWER) over a fixed (short) time horizon (i.e.,
the probability of at least one false alarm when multiple
hypotheses testing is performed). Depending on the
chart’s IC distribution, we tune the control limits to
achieve the predetermined false alarm threshold. In cases
where the process parameters are either known or have
been estimated after a phase I exercise, one can use either
analytic or simulation-based techniques to derive the con-
trol limit(s) (an overview of such methods can be found in
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Li et al. 2014). What happens though in self-starting con-
trol charts, where the parameter estimates are sequentially
updated? In the literature, the study of the IC distribution
of self-starting methods is very limited and is focused
exclusively in normal data. In Keefe, Woodall, and Jones-
Farmer (2015), the IC performance of self-starting
CUSUM (Hawkins 1987) and Q-chart (Quesenberry
1991) for normal data is presented when we condition on
the already observed data. In a similar spirit, Zantek
(2005, 2006, 2008) and Zantek and Nestler (2009) investi-
gated the run-length performance of the same type of self-
starting charts for normal data, exploring the Q-statistic
behavior and deriving an appropriate design.

In the present work, we focus on detecting persistent
parameter shifts that are of small/medium size, and we
have a short production run. In the self-starting paramet-
ric SPC/M literature, various memory-based control chart
proposals exist, such as the frequentist self-starting
CUSUM (SSC) by Hawkins and Olwell (1998) or the
Bayesian cumulative Bayes’ factors (CBFs) byWest (1986)
and West and Harrison (1986). In Bourazas, Sobas, and
Tsiamyrtzis (2023), a new self-starting Bayesian control
chart named predictive ratio cusum (PRC) was suggested
and, in a simulation study, was found to outperform the
SSC and CBF competitors for almost all scenarios tested.
In that simulation, the process parameters were known in
advance and so the decision threshold (control limits) cal-
culation was straightforward. In the present study, we
focus in the PRC scheme and especially on how to design
it to achieve a preset false alarm tolerance for a real-life
application where the process parameters will be
unknown. We will provide a general protocol that will
allow to derive the decision threshold values for all pos-
sible distribution setups of PRC, allowing its straightfor-
ward application in real-life problems. Furthermore, PRC
will be extended, including extra features, and its robust-
ness will be examined thoroughly before it is illustrated in
a series of real-life applications.

In Section 2, we review the basic PRC formulas from
Bourazas, Sobas, and Tsiamyrtzis (2023) that will be
needed in the development of the present work. Section
3 offers the design protocol, where the decision thresh-
old is derived for all possible PRC schemes and all pos-
sible scenarios that can be encountered in practice. In
addition, a fast initial response (FIR) feature for PRC is
presented to enhance the performance during the early
stages of a process. The robustness of the performance
achieved by PRC against the frequentist SSC and the
Bayesian CBF competitors to possible model type mis-
specifications is scrutinized with an extended simulation
study in Section 4. The PRC illustration to real data fol-
lows in Section 5, where one continuous (normal) and

two discrete (Poisson and binomial) real case studies
from an internal quality control monitoring plan of a
medical laboratory, a pharmaceutical company, and a
mailing of goods monitoring procedure, respectively,
are examined, implementing all possible PRC design
scenarios. Section 6 concludes this work. Technical
details and algorithms are provided in appendices,
which—along with R-codes that reproduce all PRC
illustrations—form the online supplementary material.

2. PRC skeleton

In this section, we provide the basic PRC formulation
from Bourazas, Sobas, and Tsiamyrtzis (2023) to intro-
duce the notation and basic formulas that we will be
needed in the current study. The PRC mechanism can be
used for any (discrete or continuous) distribution that
belongs to the k-parameter regular exponential family (k-
PREF), where if h will denote the unknown parameter(s)
and the data up to time n are Xn ¼ ðx1, :::, xnÞ then:

f ðXnjhÞ ¼
Yn
j¼1

gðxjÞ
" #

cðhÞ½ �n exp
Xk
i¼1

giðhÞ
Xn
j¼1

hiðxjÞ
8<
:

9=
;
[1]

For a conjugate initial prior p0ðhjsÞ, using a power
prior (Ibrahim and Chen 2000) to take into account
the possibly available historical data Y ¼ ðy1, :::, yn0Þ,
weighted by 0 � a0 � 1, we have:

p hjY , a0, sð Þ / f Yjhð Þa0p0 hjsð Þ, [2]

Based on the above we can derive in close form
both the posterior at time n:

p hjXn,Y ,a0,sð Þ ¼ KðsnÞ½ ��1 cðhÞ½ �sn,0 exp
Xk
i¼1

giðhÞsn, i
( )

¼ p0 hjsnð Þ,
[3]

and the respective predictive distribution for the
future observable nþ1:

f Xnþ1jXnð Þ ¼
ð
H

f Xnþ1jhð Þp0 hjsnð Þdh

¼K snþ tf ðXnþ1Þ
� �

K snð Þ gðXnþ1Þ [4]

where KðsnÞ refers to the normalizing constant (available
in closed form thanks to conjugacy) that will be given by:

KðsnÞ ¼
ð
H

cðhÞ½ �sn, 0 exp
Xk
i¼1

giðhÞsn, i
( )

dh<1, [5]
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In PRC, we consider a specific OOC scenario to test
against and we estimate the ratio of the shifted (OOC) pre-
dictive over the current predictive, which will be given by:

Lnþ1 ¼ f 0 Xnþ1jXnð Þ
f Xnþ1jXnð Þ ¼

K s0nþtf ðXnþ1Þð Þ
K s0nð Þ gðXnþ1Þ

K snþtf ðXnþ1Þð Þ
K snð Þ gðXnþ1Þ

¼ K s0n þ tf ðXnþ1Þ
� � � K snð Þ

K sn þ tf ðXnþ1Þ
� � � K s0nð Þ

, [6]

The memory-based PRCmonitors the log-ratio of pre-
dictive densities, logðLnþ1Þ, using a one-sided CUSUM:

Snþ1 ¼ maxf0, Sn þ logðLnþ1Þg or Snþ1
¼ minf0, Sn � logðLnþ1Þg

[7]

when we are interested in detecting upward or downward
shifts, respectively, with initial value S1 ¼ 0 (or S1 ¼
S2 ¼ 0, when we have two unknown parameters and
total prior ignorance). From a Bayesian perspective the
ratio in (6) is the predictive Bayes Factor at time nþ 1,
comparing the OOC model, M1 : f 0ðXnþ1jXnÞ, against
the IC model,M0 : f ðXnþ1jXnÞ, i.e., Lnþ1 ¼ Bnþ1

10 : Thus,
the statistic Snþ1 can be equivalently written as:

Snþ1 ¼ max 0, Sn þ log Bnþ1
10

� �� �
¼ max 0,

Xn
i¼j

log Biþ1
10

� �( )
or

Snþ1 ¼ min 0, Sn � log Bnþ1
10

� �� �
¼ min 0,

Xn
i¼j
� log Biþ1

10

� �( )
[8]

for the upward or downward shifts respectively, where
j ð1 � j � nÞ is the last time for which the monitor-
ing statistic was equal to zero (i.e., Sj ¼ 0 and 8l > j
we have jSlj > 0).

3. Design aspects of PRC

3.1. Tuning the PRC

PRC is simply a sequential hypothesis (model) testing
procedure, where two competing states of the predictive
distribution are compared via their log-predictive ratio,
within a memory-based (CUSUM) control scheme. In
the ratio, the denominator refers to the running (consid-
ered as IC) predictive model, while the numerator is the
intervened (considered as OOC) competing model. Our
goal is to detect a transition from the IC to the OOC
model as soon as it occurs, while keeping the false
alarms at a low predetermined level.

For the classical CUSUM process, where both IC
and OOC models have all parameters known, certain

optimality properties have been derived (like in
Moustakides 1986 or Ritov 1990) along with theoretical
results regarding the choice of the design parameters.
Namely, numerical algorithms have been developed to
compute the IC Average Run Length, ARL0, as in
Brook and Evans (1972). However, such algorithms are
not applicable to self-starting setups, where both the
IC and OOC distributions include unknown parame-
ter(s) that we estimate online (i.e., these distributions
are not fixed, but sequentially updated).

When PRC alarms, the process should be stopped
and examined thoroughly (triggering a potential cor-
rective action), preventing further contaminated data
from joining the calibration step. We will define as
stopping time T of a PRC, tuned for an upward shift:

T ¼ inffnþ 1 : Snþ1 � hg [9]

where nþ 1 � 2, except the special case with two
unknown parameters and complete prior ignorance,
where we have nþ 1 � 3, while h> 0 is a preselected
constant to guarantee a predetermined false alarm
standard (for downward shifts in (9) we have Snþ1 �
h, with h< 0). The choice of h reflects on the toler-
ance that we have on false alarms, measured via either
the family-wise error rate (FWER), for a fixed and not
too long horizon of N data points or the IC average
run length (ARL0), when we have an unknown or a
large-N scenario. Due to the general form of PRC’s
mechanism, which allows hosting any distribution
from the k-PREF, there is no single optimal strategy
in selecting h. In what follows, we will provide specific
guidelines for the selection of h, utilizing the distribu-
tional setup under study. There are three possible
scenarios that one can come across in practice: first,
when we have a location-scale predictive, second,
when the predictive is not a location-scale family dis-
tribution but we have an informative prior and, third,
when we have neither a location-scale predictive nor
an informative prior.

3.1.1. Scenario 1: The predictive is a location-scale
family distribution

In this case, we will derive h via the standard predict-
ive distribution (i.e., the distribution with location ¼
0 and scale ¼ 1). Then, at each step of PRC we will
perform the same location-scale transformation to
both the IC and OOC predictive distributions, so that
each time the IC, f ðXnþ1jXnÞ, becomes the standard
predictive (note that the location-scale transformation
will be different at each step). The transformed pre-
dictives will be used in the ratio (6). From all the dis-
tributions of the regular exponential family shown
Table 1 in Bourazas, Sobas, and Tsiamyrtzis (2023) in
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which PRC schemes were defined, the location-scale
predictive is valid for the normal and logarithmic
transformed lognormal likelihood cases, where the
logarithm of the standardized predictive ratio (6) was
tabulated. We provide Algorithms 1 and 2, which can
be used to derive via simulations the decision thresh-
old h depending on whether we aim to tune the PRC
control chart via either the FWER for a fixed horizon
of N data or a target ARL0 metric, respectively. In
addition, in Appendix A (supplementary material) we
provide a table with the derived h threshold values for
representative choices of (N, FWER) or ARL0 values,
combined with specific OOC shift sizes k, when we
have total prior ignorance (i.e., use of initial reference
prior and no historical data).

Algorithm 1 Determine decision threshold (h or hm)
based on FWER

1: Define the length of the data, N, for which PRC
will be employed . initial input

2: Define the FWER that we aim to have at the N-
th data point

3: Define the vector s0n, which represents the OOC
disturbance that we wish to detect

4: Define the number of iterations, I, used in the
empirical estimation

5: if f predictive distribution is a location-scale
family g then

6: f ðXÞ ¼ the standard distribution . loc.¼0, sc.¼1
and dfn ¼ 2ân if X � t

7: else
8: f ðXÞ ¼ the marginal (prior predictive) distribu-

tion from (10)
9: end if
10: Generate a matrix D of dimension I�N with

random numbers from f ðXÞ

11: Set S to be a matrix of dimension I�N filled
with zeros

12: Set M to be a vector of dimension I filled
with NAs

13: for fi in 1 : Ig
14: for fn in 1 : ðN � 1Þg
15: Lnþ1  f 0ðD½i, nþ1� jD½i, 1�, :::,D½i, n�Þ

f ðD½i, nþ1� jD½i, 1�, :::,D½i, n�Þ . Predictive ratio

16: S½i, nþ 1� ¼ maxf0, S½i, n� þ logðLnþ1Þg
(or S[i,nþ 1] ¼ minf0, S½i, n� � logðLnþ1Þg for

downward shifts) . PRC statistic
17: end for
18: M½i�  maxfS½i, �g
(or M½i�  minfS½i, �g for downward shifts)
19: end for

20: H  F̂
�1
I ð1� FWERÞ

(or H  F̂
�1
I ðFWERÞ for downward shifts)

. F̂ IðxÞ ¼ 1
I

PI
i¼1 1 M½i� < x

� �
21: if f predictive distribution is a location-scale

family g then
22: h H . empirical estimate of h
23: else
24: hm  H . marginal based (conservative) empir-

ical estimate of h
25: end if

Algorithm 2 Determine decision threshold (h or hm)
based on ARL0

1: Define the ARL0 that you aim to have
2: Define the numerical tolerance tol, which repre-

sents the maximum of error estimate
3: Define the vector s0n, which represents the OOC

disturbance that you wish to detect
4: Define the number of iterations I, used in the

empirical estimation
5: if {predictive distribution is a location scale

family}then
6: f ðXÞ ¼ the standard distribution . loc.¼0, sc.¼1

and dfn ¼ 2ân if X � t
7: else
8: f(X) ¼ the marginal (prior predictive) distribu-

tion from (10)
9: end if
10: start function ARL(h)
11: Set M to be a vector of dimension I filled

with NAs
12: for {i in 1 : I}
13: Set S 0
14: Set n 1
15: Generate xn � f ðXÞ
16: while {S< h (or S> h for downward shifts)}
17: Generate xnþ1 � f ðXÞ
18: Lnþ1  f 0ðxnþ1jx1, :::, xnÞ

f ðxnþ1jx1, :::, xnÞ . Predictive ratio

Table 1. The expected ratio of the variance of the likelihood
fðXjhÞ over the variance of the marginal fðXjY , a0, sÞ, defined
in (11).
Likelihood Initial prior Expected ratio (11)

fð�jhÞ p0ðhjsÞ q
Pðh � siÞ G(c, d) 1� 1

dþa0
Pn0

j¼1 sjþ1

BinðNi , hÞ Beta(a, b) 1� N
aþbþa0

Pn0
j¼1 NjþN

NBinðr, hÞ Beta(a, b) 1� r
bþa0

Pn0
j¼1 yj�1þr

Gða, hÞ G(c, d) 1� a
cþa�ða0n0þ1Þ�1

Wðh,jÞ IGða,bÞ 1� C2 1þ1
jð Þ Cðaþa0n0ÞC aþa0n0�2

jð Þ�C2 a�1
jð Þ� �

Cðaþa0n0ÞC aþa0n0�2
jð ÞC 1þ2

jð Þ�C2 1þ1
jð ÞC2 a�1

jð Þ
IGða, hÞ G(c, d) 1� a�2

cþa�a0n0�1þa

Paðm, hÞ G(c, d) 1� Varh h
h�1ð Þ

Ehð h
ðh�1Þ2 ðh�2ÞÞþVarh

h
h�1ð Þ
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19: S maxf0, Sþ logðLnþ1Þg
(or S minf0, S� logðLnþ1Þg for downward

shifts) . PRC statistic
20: Set n nþ 1
21: end while
22: M½i�  n
23: end for
24: return {ARLðhÞ  �M} . �M ¼ 1

I

PI
i¼1 M½i�

25: end function ARL(h)
26: Set h1 ¼ 2 (or h1 ¼ �2 for downward shifts)

the first initial value for h (or hm)
27: Get ARLðh1Þ . use of function ARL(h)
28: if {jARLðh1Þ � ARL0j < tol}
29: H  h1
30: go to 48
31: end if
32: Set h2 ¼ 4 (or h1 ¼ �4 for downward shifts)

the second initial value for h (or hm)
33: Get ARLðh2Þ . use of function ARL(h)
34: if {jARLðh2Þ � ARL0j < tol}
35: H  h2
36: go to 48
37: end if
38: H  h2 þ ðARL0 � ARLðh2ÞÞ � ðh2�h1Þ

ðARLðh2Þ�ARLðh1ÞÞ .
regula falsi estimate

39: Get ARL(H) . use of function ARL(h)
40: while {jARLðHÞ � ARL0j > tol}
41: H  h2 þ ðARL0 � ARLðh2ÞÞ � ðh2�h1Þ

ðARLðh2Þ�ARLðh1ÞÞ .
regula falsi estimate

42: Get ARL(H) . use of function ARL(h)
43: h1  h2
44: h2  H
45: end while
46: if {predictive distribution is a location scale

family}then
47: h H . empirical estimation
48: else
49: hm  H . marginal based (conservative) empir-

ical estimation
50: end if

3.1.2. Scenario 2: The predictive is not location-scale
family, but we have an informative prior

The posterior predictive remains in closed form, but
the unknown parameter(s) and the lack of standard-
ization (because we do not have location-scale family)
prevent from deriving a “generator” predictive distri-
bution, as in scenario 1. Our suggestion is to use the
marginal (prior predictive) distribution to generate
imaginary data. Using the power prior (2), the general
form of the marginal distribution will be available in
closed form:

f ðXjY , a0, sÞ ¼
ð
H

f ðXjhÞpðhjY , a0, sÞdh

¼ K sþ a0thðYÞ þ tf ðXÞ
� �

K sþ a0thðYÞð Þ gðXÞ [10]

The marginal is a compound distribution of the
likelihood and the prior, with the unknown parame-
ter(s) being integrated out. It has heavier tails (greater
variance) compared to the likelihood, leading to an
estimated decision limit hmð6¼ hÞ that will result a
more conservative FWER or ARL0 metric. Essentially,
the likelihood-based threshold h is a limiting case of
the marginal-based threshold hm, when the prior vari-
ance tends to zero. Thus, we can generate imaginary
data from the marginal, in order to control either the
FWER or the ARL0 and derive the hm threshold from
Algorithms 1 or 2, respectively.

An important issue in this proposal is that the
prior needs to be informative; otherwise, the marginal
would be too diffused compared to the likelihood,
resulting in an upper or lower bound hm that will be
too conservative (i.e., jhmj will seriously overestimate
jhj, decreasing significantly the false alarms and the
detection power). We propose to measure the discrep-
ancy of the likelihood over the marginal variance by:

Eh
VarðXjhÞ

VarðXjY , a0, sÞ
� 	

¼ q [11]

The ratio parameter q � 1 expresses the expected
underdispersion of the likelihood variance versus the
marginal variance. When q! 1 (i.e., we use a highly
informative prior), then the marginal is a reliable repre-
sentative of the likelihood, resulting in hm ! h: After an
extensive simulation study, we recommend using the
marginal distribution approach only when the distribu-
tional setting roughly satisfies q � 0:9: Table 1 provides
the formulas for estimating q for each of the PRCmodels
reported in Table 1 of Bourazas, Sobas, and Tsiamyrtzis
(2023; that do not fall in the location-scale family treated
by scenario 1), where for the power prior term, we
assume the historical data Y ¼ ðy1, :::, yn0Þ, which are
weighted by a0 (for no historical data, set a0 ¼ 0).

In Appendix B (supplementary material), we provide
some illustration of the achieved FWER and ARL0
based on hm, as a function of q for different parameter
values when we have Poisson or binomial likelihoods.

3.1.3. Scenario 3: The predictive is not location-scale
family and we do not have an informative prior

When our distributional setup does not conform with
either scenario 1 or 2, we face the most challenging
case. Because we do not have a reliable way to estimate
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h using imaginary data, we will make use of the pre-
dictive Bayes factor to form some evidence-based limits
for the charting statistics Snþ1: In (8) we expressed
Snþ1 as the zero truncated cumulative logarithmic
Bayes factor, which measures the evidence of the alter-
native model M1 (OOC) against the null M0 (IC). In
addition, under the assumption that the IC and OOC
models are equally probable a priori, i.e., PðM0Þ ¼
PðM1Þ, then Bnþ1

10 is simply the posterior odds of the
two models. Kass and Raftery (1995), following Jeffreys
(1961), provided an analytical interpretation of Bnþ1

10

and offered threshold values for decision-making.
Based on these guidelines, when Bnþ1

10 > 100, then the
evidence against the null model is referred as “decisive”
because the posterior probability of the alternative
model will be at least 100 times greater than the corre-
sponding of the null. Thus, we recommend using hJ ¼
logð100Þ 	 4:605 as an evidence based limit for Snþ1:
In other words, if Snþ1 > hJ (or Snþ1 < �hJ for down-
ward shifts), then we have a decisive cumulative evi-
dence in favor of the OOC state.

The evidence-based limits can be used for a few ini-
tial steps to monitor the process. At each step, as long
as the posterior odds reveal that we are in the IC state,
we can use the obtained data to update the prior set-
ting (because the posterior at each time point acts as
prior for the next observable) and examine whether it
becomes informative (based on q) or not. Once we
have an informative prior, we move to scenario 2, gen-
erating imaginary data from the marginal and deriving
hm, initiating a new PRC.

In Figure 1, we summarize all the proposed options
for deriving a PRC’s decision threshold. The threshold
h will depend on the likelihood of the data, the prior
settings, and the intervened vector s0n, with the latter
reflecting the discrepancy between the current (IC)
and the intervened (OOC) distribution. In general,
assuming that the deviation between IC and OOC
state is considerably large, then if a change of smaller
size occurs, PRC might absorb it. On the other hand,
if the real shift is greater than the one we have set,
then PRC probably will have a slightly delayed alarm,
but it is expected to react. Therefore, the choice of the
OOC state must take into account the absorption risk,
avoiding setting PRC for very large shifts (a similar
discussion regarding SSC can be found in Zantek
2006). This is an issue, closely related with West’s
(1986) CBF methodology where the alternatives are set
to be diffused, allowing potentially large shifts, a strat-
egy that has a high risk in absorbing small shifts and
not reacting on them (for more information, refer to
Section 4 where the relative performance and the
robustness of these methods are extensively examined).

Quite often in practice, we might need to employ
more than a single PRC, like when we monitor the
mean of a normal distribution for either an upward
or a downward shift. In such cases, we need to
account for the multiple testing, and so if we use the
FWER metric we simply need to adjust its value,
using, for example, Bonferroni’s correction (Dunn
1961). For the ARL metric, one can refer to Hawkins
and Olwell (1998), among others, on how to combine

Figure 1. Determining the decision threshold h for a predictive ratio cusum (PRC) scheme. A decision is represented by a rhom-
bus, and a rectangle corresponds to an operation after a decision is made.
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the individual CUSUM ARLs in getting a designed
overall ARL.

3.2. Fast initial response (FIR) PRC

It is well known that the self-starting memory-based
charts have a weak response to shifts arriving early in
the process. Failing to react to an early shift will lead to
its absorption, contaminating the calibration and reduc-
ing the testing performance. Lucas and Crosier (1982)
were the first to introduce the fast initial response
(FIR) feature for CUSUM by adding a constant value
to the initial cumulative statistic, enhancing its reaction
to very early shifts in the process. Steiner (1999) intro-
duced the FIR Exponentially Weighted Moving Average
(EWMA) by narrowing its control limits, with the
effect of this adjustment decreasing exponentially fast.
For PRC, we propose an exponentially decreasing
adjustment, multiplied to the statistic logðLnþ1Þ:
Specifically, the adjustment (inflation) will be:

FIRadj ¼ 1þ f � dðt�1Þ, [12]

where t is the time of the examined predictive ratio,
f � 0 represents the proportion of the inflation for
the PRC statistic, logðLnþ1Þ, when t¼ 1 and 0 < d <

1 is a smoothing parameter, specifying the exponential
decay of the adjustment (the smaller the d the fastest
the decay). As the first predictive ratio is available for
the second observation, we have t¼ 1 when n¼ 2.
The only exception is when we have two unknown
parameters and total prior ignorance (i.e., use of ini-
tial reference prior and a0 ¼ 0 due to lack of historical
data), where we get t¼ 1 when n¼ 3.

The proposed FIR adjustment is more flexible com-
pared to the fixed constant of Lucas and Crosier
(1982), FIR-CUSUM, as it allows to control the influ-
ence, by tuning the initial parameters (f, d), providing
a better interpretation. The FIR option can improve
the performance at the early start, but the choice of
the adjustment parameters must be prudent, avoiding
significant inflation of the false alarm rate. The
expected number of false alarms for PRC will depend
on the prior settings, especially when the volume of
available data is small. In general, the choice of f will
correspond to the inflation that we wish to have at
the start of the monitoring (t¼ 1). As a rule of thumb,
f could be selected so that after the first test
(nþ 1 ¼ 2) and assuming that logðL2Þ < h (i.e., we do
not have an alarm), then f ¼ ðh� logðL2ÞÞ=2; that is,
the inflation is such that it boosts up the monitoring
statistics, reaching halfway from where it was to the
decision threshold h. This strategy will guarantee that

we will not get an alarm due to adjustment setting at
the first test. Of course, a different choice will reflect
a different policy, but the general recommendation is
to avoid too large values as they will increase signifi-
cantly the risk of a false alarm. The parameter d, on
the other hand, will express the rate of decrease of the
adjustment. Precisely, specifying the time t
 where we
wish the inflation to be reduced to just a
 then a
 ¼
f � dðt
�1Þ, and thus we get:

d ¼ exp
logða
Þ � logðf Þ

t
 � 1


 �
[13]

Our suggestion is to be somewhat conservative,
especially when a weakly informative prior is used, so
that the FIR adjustment will not seriously affect the
predetermined expected number of false alarms. A
recommendation that we will follow throughout this
work is to use ðf , dÞ ¼ ð1=2, 3=4Þ, where the adjusted
logðLnþ1Þ will be inflated by f ¼ 50% for the first test,
while the inflation will be a
 ¼ 5% at the t
 ¼ 9 th
test (the choice of these parameters will reflect the
user’s based needs). Because for scenarios 2 and 3 in
determining the decision threshold, we will have hm
to be a more conservative estimate, resulting in lower
false alarms (from what we design), the use of FIR-
PRC is motivated. Additionally, in some cases of han-
dling big values of ARL0, the FIR adjustment might be
implemented for longer periods of data and not just
for the very few first observations. Figure 10 in
Appendix B (supplementary material) visualizes the
benefit of FIR-PRC when hm is used, while Appendix
C (supplementary material) evaluates its performance
for shifts occurring early in the process (the perform-
ance metrics used are defined in Section 4).

The PRC’s flowchart and pseudo-algorithm that
were presented in Bourazas, Sobas, and Tsiamyrtzis
(2023) are extended to include the new design con-
cepts of the decision interval h and FIR options and
presented here in Figure 2 and Appendix D (supple-
mentary material), respectively.

4. PRC robustness study

The PRC, much like any other parametric-type statis-
tical method, imposes certain modeling assumptions.
In the simulation study presented by Bourazas, Sobas,
and Tsiamyrtzis (2023), it was shown that when these
assumptions are valid, PRC outperforms its competi-
tors SSC and CBF. What happens, though, when we
encounter violations of these assumptions? In this sec-
tion, we will extend the simulation study of Bourazas,
Sobas, and Tsiamyrtzis (2023) by examining how
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robust the performance of PRC and its competing
methods is when we experience various model type
misspecifications.

First, we will provide the simulation setting and the
performance metrics that were used in Bourazas,
Sobas, and Tsiamyrtzis (2023) and will be adopted

Figure 2. Predictive ratio cusum (PRC) flowchart 2. A parallelogram corresponds to an input/output information, a decision is rep-
resented by a rhombus, and a rectangle denotes an operation after a decision-making. In addition, the rounded rectangles indicate
the beginning and end of the process. 
For the likelihoods with two unknown parameters and total prior ignorance (i.e., initial ref-
erence prior and a0 ¼ 0 in the power prior), we need n¼ 3 to initiate PRC, while for all other cases, PRC starts right after x1
becomes available.
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here as well. For each model setting assumed, we tune
all competing methods to have identical false alarm
rate and to be designed appropriately to detect the
assumed OOC scenario under study. To derive the
decision limit of each method, we simulate 100,000 IC
sequences of size N¼ 50 observations from Nðh1 ¼
0, h22 ¼ 1Þ (that will be used for both the mean and
the variance charts) and Pðh3 ¼ 1Þ: For the priors
used by the Bayesian methods (PRC and CBF), we
will consider the scenarios of absence/presence of
prior information using as initial priors p0ð�jsÞ :

� Normal: reference (non-informative) prior
p0ðh1, h22Þ / 1=h22 � NIGð0, 0, � 1=2, 0Þ or the
moderately informative NIGð0, 4, 2, 1:5Þ:

� Poisson: reference (non-informative) prior p0ðh3Þ /
1=

ffiffiffiffiffi
h3
p � Gð1=2, 0Þ or the moderately informative

G(4, 4).

The OOC scenarios will represent a persistent param-
eter shift of medium/small size introduced at one of the
locations x ¼ f11, 26 or 41g out of the N¼ 50 observa-
tions. Regarding the performance metrics, we start by tun-
ing all methods to have 5% family-wise error rate (FWER)
when we have IC data of length 50, i.e., FWERðNÞ ¼
PðT � Njx > NÞ ¼ 0:05, where T denotes the stopping
time, x is the time of the step change and N¼ 50 (length
of the data in this study). To measure the power, we will
use the probability of successful detection (PSD, Fris�en
1992), where PSDðxÞ ¼ Pðx � T � NÞ, where the big-
ger the PSDðxÞ, the better. The other important metric in
persistent shift detection is the delay in ringing the alarm,
which here will be evaluated via the truncated conditional
expected delay, i.e., tCEDðxÞ ¼ EðT � xþ 1jx � T �
NÞ (Kenett and Pollak 2012), and it is the average delay of
the stopping time, given that this stopping time was after
the change point occurrence and before the end of the
sample (i.e., point of truncation), so the smaller the delay,
the better the performance. In what follows, we will exam-
ine the robustness of PRC, SSC, and CBF in IC and OOC
data streams when we experience four different types of
modeling violations.

a. Likelihood misspecifications, with three cases,
where we:
� Tune all methods in detecting mean shifts of a

normal likelihood, but simulate the data streams
from the heavy-tailed Student - t5 distribution.

� Tune all methods in detecting mean shifts of a
normal likelihood, but simulate the data
streams from the right skewed Gumbelðl ¼
�0:5, b ¼ 0:8Þ distribution.

� Tune all methods for a shift in a Poisson likeli-
hood, but simulate the data streams from the
overdispersed NBinðr ¼ 4, p ¼ 1=5Þ distribution.

For all above cases, the OOC data will refer to the
simulating distribution that undergoes a parameter
shift of size 1 SD.

b. OOC state misspecifications, where we will tune
all the methods for detecting a step change of size
1r in the mean of normal data, but the simulated
OOC scenario will correspond to one of the fol-
lowing three cases:
� 0:5r mean shift (i.e., the OOC shift size is

smaller from what we designed)
� 1:5r mean shift (i.e., the OOC shift size is big-

ger from what we designed)
� 100% inflation of r (i.e., we misspecified the

type of change).
c. Prior misplacement. In the Bayesian approach and

in particular in real-life applications, users are often
concerned of the risk in selecting an
“inappropriate” prior. A strategy to break free from
a prior selection and still use a Bayesian approach
is to have an objective analysis, where among
others, a flat (uniform) prior, Jeffreys (1961) prior
or a reference prior (Bernardo 1979; Berger,
Bernardo, and Sun 2009) is employed. Within the
prior sensitivity analysis performed in Bourazas,
Sobas, and Tsiamyrtzis (2023), though, the effect of
using a moderately informative prior distribution
versus the objective choice of a reference prior was
examined for the Bayesian methods of PRC and
CBF, and it was observed (as expected) that the
moderately informative prior has higher detection
power compared to the reference prior. Thus, if
prior information exists, then it is recommended to
be used in the Bayesian scheme. The proposal is to
avoid to have highly informative priors (i.e., priors
with support on a very “narrow” region of the par-
ameter space) as in such cases there is a risk to
have what is known as prior-likelihood conflict,
where the prior probability is vastly concentrated
over low density areas of the likelihood. For the
issue of prior-data conflict one can refer, among
others, to Evans and Moshonov (2006), Bousquet
(2008), Evans and Jang (2011), Al Labadi and
Evans (2017), and Egidi, Pauli, and Torelli (2022).
In Bayesian control charts, a highly informative
prior properly allocated will provide top perform-
ance results, while if it is misplaced will give rise to
prior data conflict resulting in an inappropriate
false alarm rate. To mitigate the prior data conflict
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risk, our proposal is to select moderately (as
opposed to highly) informative priors, that is, pri-
ors with larger variance. The next question is what
happens when a moderately informative prior is
not properly located. In this scenario, we will test
how robust the performance of PRC and CBF is
when the moderately informative priors are not
accurately located. Precisely, we will set the proc-
esses for detecting mean step changes of size 1r
when the IC data are from a N(0, 1). The moder-
ately informative prior for this case, used in
Bourazas, Sobas, and Tsiamyrtzis (2023), was
NIGðl0, 4, 2, 1:5Þ with prior mean l0 ¼ 0, that is,
at the value of the unknown parameter. Keeping all
but l0 parameters of the NIG prior the same, we
will examine the effect of the prior misplacement.
Specifically, we will examine two cases:
� NIGð0:5, 4, 2, 1:5Þ with prior mean l0 ¼ 0:5,
� NIGð�0:5, 4, 2, 1:5Þ with prior mean l0 ¼ �0:5:

d. Independence violation. In PRC, as in most of the
traditional SPC/M methods, the data are assumed
to be independently sampled. In this scenario, we
will examine the performance when the data
exhibit autocorrelation. Precisely, we assume that
we have a PRC for normal independent data but
the simulated IC data are from an AR(1) model:
Xnþ1 ¼ /Xn þ �, with � � Nð0, 1Þ where:
� / ¼ 0:3, or
� / ¼ �0:3

We will examine the performance when we experi-
ence jumps of size 1 SD for the mean or 50% inflation
for the standard deviation.

Figures 3–6 provide a graphical representation of the
robustness results for scenarios (a)–(d) respectively, while
Tables 7–10 in Appendix E (supplementary material)
tabulate the corresponding results. The reference (base-
line) performance, where no assumption is violated, was
presented in Bourazas, Sobas, and Tsiamyrtzis (2023).

Figure 3. The family-wise error rate FWER(k) at each time point k ¼ 2, 3, :::, 50, the probability of successful detection, probability
of successful detection PSDðxÞ and the truncated conditional expected delay, truncated conditional expected delay tCEDðxÞ for
shifts at locations x ¼ f11, 26, 41g, of self-starting cusum SSC, cumulative Bayes factor CBF and PRC, under a reference (CBFr,
PRCr) or a moderately informative (CBFmi, PRCmi) prior for OOC scenarios with misspecified likelihood. All the procedures are set for
a mean step change size of 1r in data from a standard Normal or an rate increase of 50% in P(1) data.
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Figure 4. The PSDðxÞ and tCEDðxÞ for shifts at locations x ¼ f11, 26, 41g, of SSC, CBF and PRC, under a reference (CBFr, PRCr) or
a moderately informative (CBFmi, PRCmi) prior for OOC scenarios with misspecified jumps. All the procedures are set for a mean
step change of size 1r in data from a standard normal distribution.

Figure 5. The FWER(k) at each time point k ¼ 2, 3, :::, 50, PSDðxÞ and tCEDðxÞ for shifts at locations x ¼ f11, 26, 41g, of PRC
under two misplaced moderately informative priors in the negative and positive directions (PRC� and PRCþ respectively), along
with the and CBF under the same priors (CBF� and CBFþ). All the methods are set for detecting a positive mean step change of
size 1r in normal data.

JOURNAL OF QUALITY TECHNOLOGY 11



For (a), in Figure 3 we observe that PRC is less
affected by likelihood violations in either the false
alarms of IC sequence or the detection power in the
OOC scenarios. Specifically, the false alarms of SSC and
CBF become unacceptably high in most cases, while
those of PRC are close to the predetermined level, par-
ticularly with the reference prior, where PRC is almost
unaffected. PRC has greater detection percentages from
SSC and CBF, especially using the moderately inform-
ative prior. We should note that the reported improved
detection performance of SSC and CBF should be con-
sidered with caution as the associated false alarm rate is
significantly higher in these cases.

Regarding (b), where the shift size for the OOC
scenario is misspecified (Figure 4), we observe that
PRC is still dominating both SSC and CBF. Comparing
against the reference performance where all assump-
tions were valid, we observe that now it is somewhat
decreased/increased if the shift size is smaller/larger
from what PRC was tuned for. Seemingly, the only
exception regarding PRC’s dominance is in the case of
using a scheme that looks for a mean shift, while in
practice we have a change in variance. There, the CBF
has a superior performance, but this was expected, as

CBF is essentially a method that can successfully detect
changes in variance. However, as was shown in
Bourazas, Sobas, and Tsiamyrtzis (2023), the CBF is
identical to the PRC for variance shifts and thus the
exact same performance would be provided by a suit-
ably set PRC for variance shifts.

For scenario (c), in Figure 5 we observe that PRC
is quite robust (significantly outperforming the CBF),
when the moderately informative prior distribution is
mislocated. Notably, this is valid, even for the PRCþ
where the prior distribution is on the same direction
to the jump (i.e., l0 ¼ þ0:5) leading to a more exten-
sive overlap the IC and OOC predictive distributions.

Finally, for scenario (d), in Figure 6 we have that
in the case of variance shifts or mean shift with nega-
tive autocorrelation the performance is quite robust.
In contrast, when we have a positive mean shift and
positive autocorrelation, both the PRC and SSC have
a very high FWER compared to the designed level,
being the only exception in a solid performance. This
handicap was somewhat expected and can be attrib-
uted to the CUSUM’s sensitivity to autocorrelation
(see, e.g., Hawkins and Olwell 1998). In the cases
where high autocorrelation is present, it is suggested

Figure 6. The PSDðxÞ and tCEDðxÞ for shifts at locations x ¼ f11, 26, 41g, of SSC, CBF, and PRC, under a reference (CBFr, PRCr)
or a moderately informative (CBFmi, PRCmi) prior for OOC scenarios with dependent data. All the procedures are set for a mean
step change of size 1r for the mean or 50% inflation for the standard deviation in data from a standard normal distribution.
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first to apply a time series model to remove it and
then use PRC on the residuals, much like it is recom-
mended in various other SPC/M methods.

As a synopsis, the PRC appears to have a quite
robust performance in the presence of various model
type misspecifications, dominating both in terms of
false alarm behavior and detection power its competing
methods in the vast majority of the scenarios tested.
This is of great importance, especially regarding the use
of PRC in everyday practice, where it is not uncommon
to experience model assumption violations.

5. Real data application

In this section, we will illustrate the use of PRC in real
data. In particular, we will apply the developed method-
ology in three real datasets (one for continuous and two
for discrete data). Regarding the continuous case, which
motivated the development of PRC, we will use data
that come from the daily Internal Quality Control (IQC)
routine of a medical laboratory and specifically from the
area of hemostasis discipline. We are interested in the
variable “Factor V,” measured in percentage regarding
the international standards in Biology (National
Institute for Biological Standards and Control). Factor
V is one of the serine protease enzymes of the procoagu-
lant system, which interacts on a phospholipid surface
to induce formation of stable clot of fibrin. Deficiencies
of Factor V can induce bleeding disorders of varying
severity. The normal range for factor V level is 61% to
142% (for adults), and in this application we focus on
pathological values (i.e., measurements below 60%,
which biologists call abnormal values). In a medical
laboratory, where control samples are used to monitor
the quality of the process, it is known that a change of
reagent batch (i.e., change between two successive
batches) might introduce a step change to the measure-
ment of Factor V. This can occur at the early stages of
the process, and it is crucial to identify such a change
point, when present, to avoid clinically impacting the
patient’s care. We sequentially gathered 21 normally dis-
tributed IQC observations (Xi) from a medical labora-
tory (see Table 2), where Xi ðh1, h22Þ � Nðh1, h22Þ:j

From the control sample manufacturer, we elicit the
initial prior p0ðh1, h22jsÞ � NIGð31:8, 1=2, 2, 4:41Þ:
Furthermore, we have n0 ¼ 37 IC historical data (from a
different reagent) available, with �y ¼ 31:73 and varðyÞ ¼

3:31 and we set a0 ¼ 1=37 in the power prior term to
convey the weight of a single data point to these.
Combining the two sources of information within the
power prior (2) we obtain: pðh1, h22jY , a0, sÞ �
NIGð31:75, 3=2, 5=2, 6:02Þ: The goal is to detect any
small persistent positive or negative shift in the mean of
the process, as this will have an impact on the reported
patient results. The concept of small is expressed in terms
of a multiples of the standard deviation and so in this
setup, we choose the parameter k¼ 1, that is, we look for
persistent shifts of magnitude 1 SD, as at low levels of
Factor V the bleeding risk can hugely increase with small
differences. Thus, we tune the PRC in detecting mean
step changes, in either upward or downward direction, of
1 SD size (i.e.,6ĥ2). The PRC control chart will plot two
monitoring statistics: Sþnþ1 (evolving in the nonnegative
part) and S�nþ1 (evolving in the nonpositive numbers)
that will test for upward and downward persistent mean
shifts, respectively. Furthermore, we will have two deci-
sion limits, hþ and h–, which due to the normal distribu-
tion symmetry and the design of the same OOC step
change shift (6ĥ2) will be of the same magnitude (i.e.,
jhþj ¼ jh�j). As the data are normally distributed, the
standardized version of PRC is available and from scen-
ario 1 of Section 3.1.1 we derive the decision limit hþ ¼
3:882 (h� ¼ �3:882) to achieve FWER ¼ 5% for 21
observations (because we run two tests we used
Bonferroni’s adjustment resulting FWER ¼ 2:5% for
each of the PRCs). As this study is offline, we will not
interrupt the process after a PRC alarm (as we would
have done when PRC runs online), but instead we will let
it run until the end of the sample in order to perceive its
behavior in the presence of contaminated data.

Figure 7 provides the two-sided PRC chart along
with the plot of the available data. The control chart
rings an alarm at location eight indicating an upward
mean shift, which seems to be initiated right after loca-
tion four (i.e., last time where Sþnþ1 ¼ 0 before the
alarm), that is, x¼ 5 and we have a delay of three
observations in ringing the alarm. It is worth noting
also that the alarm persists until the end of the sample,
indicating PRC’s resistance in absorbing the change.
Regarding the self-starting methods SCC and CBF, we
should note that when applied in real problems with
unknown parameter values, they both lack the ability to
derive an appropriate decision threshold that will
respect a predetermined FWER, making their use in
everyday practice prohibitive.

Next, we provide the PRC’s illustration for Poisson
data, presented initially by Dong, Hedayat, and Sinha
(2008) and analyzed by Ryan and Woodall (2010) as
well. They refer to counts of adverse events (xi), per

Table 2. The Factor V (%) internal quality control observa-
tions of the current X ¼ ðx1, x2, :::, x21Þ data, reported during
September 24, 2019–October 8, 2019.
x1 � x11 31.0 30.0 32.0 28.0 33.2 33.2 35.1 35.1 33.9 37.9 33.2

x12 � x21 36.5 33.2 35.1 34.5 36.5 33.2 35.1 37.2 32.6 36.5
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product exposure in millions (si), in a pharmaceutical
company. We have 22 counts (see Table 3) arriving
sequentially that we will model using the Poisson distri-
bution with unknown rate parameter, that is, Xijh �
Pðh � siÞ: In contrast to the previous application, neither
prior information regarding the unknown parameter
nor historical data exist. Therefore, we use the reference
prior as initial prior for h, that is, p0ðhjsÞ / 1=

ffiffiffi
h
p �

Gð1=2, 0Þ and we also set a0 ¼ 0 for the power prior
term.

We tune PRC in detecting a 100% increase in the
rate parameter and we also provide the FIR-PRC ver-
sion, setting ðf , dÞ ¼ ð1=2, 3=4Þ: As the predictive dis-
tribution is not a location/scale family and the prior is
not informative, we fall under scenario 3 of Section
3.1.3, and so we will make use of the evidence-based
threshold hJ ¼ logð100Þ 	 4:605: Just as we did in the
previous application, we will analyze all the data in an

offline version and not interrupt the process after an
alarm to record the alarm’s persistence. In Figure 8, a
plot of the data along with the two versions of PRC
(with/without FIR) are provided.

The PRC provides the first alarm at observation 12,
while the FIR-PRC gives an alarm at location 11, both
indicating that we had a persistent rate increase,
which appears to have started right after location six.
Location six was the last time before the alarm where
the monitoring statistic was zero. Furthermore, the
alarm persists until observation 21, after which the
monitoring statistics returns to the IC region. It is
worth mentioning that, because we have a decisive
evidence that the procedure is OOC, we maintained
the evidence limit until the end of the sample, avoid-
ing the option of deriving hm via the marginal distri-
bution after the first few data, as described in scenario
3 of Section 3.1.3. We also note that both in Dong,

Figure 7. Predictive ratio cusum (PRC) for normal data. At the top panel, the data are plotted, while at the lower panel, we pro-
vide the PRC control chart, focused on detecting an upward or downward mean step change of one standard deviation size, when
we aim a FWER ¼ 5% for 21 observations.

Table 3. Counts of adverse events (xi) and product exposure (si) per million (i ¼ 1, 2, :::, 22), for each quarter reported during
July 1, 1999–December 31, 2004 (see Dong, Hedayat, and Sinha 2008).
Adverse events ðx1 � x11Þ 1 0 0 0 1 0 3 3 3 2 5

Product exposure ðs1 � s11Þ 0.206 0.313 0.368 0.678 0.974 0.927 0.814 0.696 0.659 0.775 0.731
Adverse events ðx12 � x22Þ 5 2 4 4 3 4 3 8 3 2 2
Product exposure ðs12 � s22Þ 0.710 0.705 0.754 0.682 0.686 0.763 0.833 0.738 0.741 0.843 0.792
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Hedayat, and Sinha (2008) and Ryan and Woodall
(2010), where the aim was to have an IC Average Run
Length ARL0 	 100, their cumulative evidence moni-
toring approach gave only a single alarm at location
19 (i.e., the alarm comes later compared to PRC and
is absorbed instantly). We complete this section by
providing the PRC’s application to binomial data,
using a dataset from Huang, Reynolds, and Wang
(2012), originally presented by Pruett and Schneider
(1993). The data refer to the shipping papers that
label shipping goods and record information about
the buyer. When a shipping paper contains incorrect
or missing information about a buyer is classified as
“defective” because it will result a delay in the ship-
ping process. For a period of 40 days, a sample of 50
shipping papers was inspected daily and the number
of defective papers found was recorded (Table 4).
If we denote as h the probability of a shipping
paper to be defective, then for the observed data we
assume Xijh � Binð50, hÞ, i ¼ 1, 2, :::, 40:

In the absence of any prior information in Huang,
Reynolds, and Wang (2012), the course of action was
to reserve the first 30 observations as phase I data,
which were used to calibrate the control chart. Then
they examined retrospectively the first 30 data points,
where no alarm was present, and they analyzed the
last 10 data points as phase II, receiving consecutive
alarms from point 36 until 40, tracing the change
point at location 31.

We will implement the PRC methodology on the
same data. Due to the lack of any prior information or
historical data, we employ as initial prior for the prob-
ability of a label being defective (h), the reference prior,
i.e., p0ðhÞ ¼ Betað1=2, 1=2Þ, while we set a0 ¼ 0 for
the power prior parameter. Furthermore, we tune the
PRC to detect a 100% increase in the odds of h. As
PRC is a self-starting approach, it will be able to pro-
vide online inference from the start of data collection,
with no need of employing a phase I exercise. Due to
the absence of any prior information we are under
scenario 3 of Section 3.1.3 and so we will use the evi-
dence based limit hJ ¼ logð100Þ 	 4:605: For the first
30 data points, we do not have any alarm (see Figure
9), just as in Huang, Reynolds, and Wang (2012), but

Figure 8. Predictive ratio cusum (PRC) for Poisson data. At the top panel, we plot the counts of adverse events xi (solid line) and
the rate of adverse events per million units xi=si (dashed line). At the lower panel, we provide the PRC control chart, focused on
detecting 100% rate inflation and the evidence based limit of hJ ¼ logð100Þ 	 4:605 is used. For the fast initial response (FIR)-
PRC (dashed line) the parameters ðf , dÞ ¼ ð1=2, 3=4Þ were used.

Table 4. The sequence of the data X ¼ ðx1, x2, :::, x40Þ, repre-
senting the number of defective per 50 sampled shipping papers.
x1 � x20 3 3 1 5 2 1 3 3 3 0 2 1 2 1 4 1 1 0 3 2

x21 � x40 4 6 0 1 3 2 2 4 2 1 2 4 5 2 4 8 4 4 8 5
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with the basic difference that PRC performed the test-
ing in an online fashion.

At the 30th data point, the posterior distribution for
h is a Betað66:5, 1434:5Þ: This will play the role of the
prior in deriving the marginal (predictive) distribution
in (10), resulting a BetaBinð66:5, 1434:5, 50Þ: Then, the
expected ratio parameter q from (11) can be estimated
(see Table 1) to be q 	 0:968: This relatively large
value (compared to the empirical 0.9 value suggested in
Section 3.1), supports that the marginal is a reliable
representative of the likelihood and so from the flow-
chart in Figure 1, we can generate imaginary data.
Setting ARL0 ¼ 400 (similar to Huang, Reynolds, and
Wang 2012) from the imaginary data we derive the
decision limit hm ¼ 4:332: Restarting the PRC at time
31 with the new decision limit and running it online
until the end of the data, we receive 5 alarms, starting
from observation 36 until the end of the sample, with
the change point being identified at location 31 (see
Figure 9), identical to the findings of Huang, Reynolds,
and Wang (2012).

6. Conclusions

Self-starting methods offer the flexibility to have online
inference from the start of the process, with no need to
have a phase I calibration step. These methods, though,
face a big challenge when one wishes to apply them in
practice. Precisely, it is difficult to tune such a method
to guarantee a predetermined false alarm tolerance, as
for the IC state distribution the involved parameters are
unknown and sequentially updated.

In this work, we focus in the PRC control chart (suit-
able for detecting persistent parameter shifts), and we
propose a protocol that derives a decision-making
threshold, based on the desired false alarm tolerance,
something that is generally missing in the literature,
especially when we deal with non-normal data. The
methodology utilizes the Bayesian framework and is cap-
able of providing exact (h) or approximate (hm) deci-
sion-making limit, depending on the likelihood used and
the available prior information. In the cases of total prior
ignorance (reminiscent of the frequentist approach), a
conservative evidence-based limit (hJ) is proposed, until

Figure 9. Predictive ratio cusum (PRC) for binomial data. At the top panel, we plot the number of defective shipping papers xi,
while at the lower panel, we provide the PRC control chart, focused on detecting 100% odds inflation. The evidence based limit of
hJ ¼ logð100Þ 	 4:605 is used for the first 30 observations, and then these data are used for the derivation of the decision limit
hm ¼ 4:332, setting the average run length ARL0 ¼ 400:
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the incoming data provide sufficient information to
form an informative posterior distribution.

Additionally, the fast initial response (FIR) feature
for PRC was introduced, and its study showed that it
can enhance the PRC performance, when we have shifts
that arrive at the early stages of the process. A detailed
simulation study indicated that PRC is quite robust
when different model-type assumption violations
occur, outperforming SSC and CBF in most of the cases
tested, a result of high interest to practitioners.

The PRC defines a Bayesian framework, where pos-
sibly available prior information and/or historical data
can be incorporated, enhancing the performance and pro-
viding a setup where one can derive a decision making
limit based on the required false alarm tolerance. PRC is
quite general, covering a big variety of discrete and con-
tinuous distributions used in SPC/M and is capable of
running even under total prior ignorance scenarios. The
closed form monitoring procedure, along with the avail-
ability of an associated decision-making limit (typically
absent in standard competing methods) based on the false
alarm policy that one wishes to have, allows its straight-
forward implementation in practice for either short (using
FWER) or long (via ARL0) sequences of data.
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