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Abstract

In this work, we explore the implications of modeling the logarithm of hydraulic

conductivity, Y , as a Generalized Sub-Gaussian (GSG) field on the features

of conservative solute transport in randomly heterogeneous, three-dimensional

porous media. Hydro-geological properties are often viewed as Gaussian ran-

dom fields. Nevertheless, the GSG model enables us to capture documented

non-Gaussian traits that are not explained through classical Gaussian mod-

els. Our formulation yields lead- (or first-) order analytical solutions for key

statistical moments of flow and transport variables. These include flow veloci-

ties, hydraulic head, and macrodispersion coefficients, as obtained across GSG

log-conductivity fields. The analytical model is based on a first-order spectral

theory, which constrains the rigorous validity of our results to small values of

log-conductivity variance (σ2
Y << 1). Analytical results are then compared

against detailed numerical estimates obtained through a Monte Carlo scheme

encompassing various levels of domain heterogeneity. An asymptotic Fickian

transport regime is attained at late times in both Gaussian and GSG Y fields.

Convergence to such regime is slower for GSG as compared to Gaussian fields.

This suggests a strong impact of the heterogeneity structure on non-Fickian

pre-asymptotic behaviors of the kind documented in the literature. The quality

of the comparison between analytical and numerical results deteriorates with
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increasing σ2
Y . Otherwise, our lead-order solutions frame macrodispersion coef-

ficients in appropriate orders of magnitude also for values of σ2
Y up to approxi-

mately 1.7, which are consistent with the spatial variability of Y across a single

geological unit. In this sense, our analytical approach enables one to obtain prior

information on solute plume evolution and to grasp the effects of non-Gaussian

medium heterogeneity while favoring simplicity. Our findings also enhance the

current level of understanding of the nature of mass transfer across heteroge-

neous media characterized by complex variability structures which cannot be

reconciled with classical Gaussian scenarios.
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1. Introduction1

Analyses of fluxes of solute mass through heterogeneous subsurface porous me-2

dia have been the subject of various studies. Their qualitative and quantitative3

assessment is relevant across several fields, such as energy engineering, hydrol-4

ogy, and Earth sciences. Characterization of the system evolution can be framed5

in terms of space-time distributions of solute concentrations. These are typically6

described by synthetic indicators which are representative of an effective behav-7

ior of the system [1, 2]. In this context, evaluation of trajectories of solute and8

fluid particles and patterns associated with solute plumes migrating across a9

target domain requires characterizing the underlying velocity field. This task is10

typically based on numerical solutions of a system of linearized governing differ-11

ential equations (involving fluid-dynamics, solute, and heat transfer scenarios)12

associated with domains which can be very rarely approximated as homoge-13

neous. The intrinsic spatial variability of the attributes of the host porous14

medium (e.g., permeability and porosity of natural subsurface reservoirs) pre-15

vents obtaining general closed-form analytical solutions describing the dynamics16

of quantities of interest such as space-time distributions of solute concentration.17
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Nomenclature of main symbols

Symbol Quantity

x position vector in a Cartesian system

xi component of position vector along direction i

x1 longitudinal (horizontal) position

x2 transverse (lateral) position

x3 transverse (vertical) position

y second position vector in a Cartesian system

yi component of second position vector along direction i

r separation or lag vector in a Cartesian system

ri component of lag vector along direction i

r1 longitudinal lag

r2 transverse (lateral) lag

r3 transverse (vertical) lag

r norm of r

K hydraulic conductivity

KG geometric mean of hydraulic conductivity

Y log-conductivity

〈Y 〉 ensemble expectation of Y

Y ′ zero-mean random fluctuation of Y around 〈Y 〉

G(x) multi-Gaussian random field

U subordinator

〈U〉 ensemble expectation of U

〈U2〉 ensemble expectation of U2

σ2
Y variance of Y

CY covariance function of Y

IY integral scale of Y

σ2
G variance of G

ρG correlation function of G

CG covariance function of G

IG integral scale of G
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Nomenclature of main symbols

Symbol Quantity

α shape parameter of log-normal U

η parameter quantifying the departure of Y from G

q Darcy flux

h hydraulic head

u seepage velocity vector in a Cartesian system

ui component of seepage velocity vector along direction i

k wave number vector in a Cartesian system

ki component of wave number vector along direction i

k norm of k

X particle displacement in a Cartesian system

Xi particle displacement along direction i

ĈY spectrum of CY

Ch hydraulic head covariance

CLh hydraulic head covariance along r1 (longitudinal)

CTh hydraulic head covariance along r2 or r3 (transverse)

σ2
h hydraulic head variance

Cuiui diagonal entry of seepage velocity covariance tensor

Ĉh spectrum of Ch

Ĉuiui spectrum of Cuiui

J hydraulic gradient

V advective velocity modulus

φ effective porosity

t time

t∗ dimensionless travel time

tADV advective time

t0 initial (particle tracking) simulation time

r∗i dimensionless lag component along direction i

CXii diagonal entry of displacement covariance tensor

D macrodispersion tensor
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Nomenclature of main symbols

Symbol Quantity

Dii macrodispersion coefficient along direction i

Lxi size of numerical domain along direction i

s numerical grid spacing

∆t time step for numerical particle tracking code

∆r1 average horizontal displacement in a time step

NP number of particles

NS number of Monte Carlo realizations

t̂∗i dimensionless travel time at which Dii

achieves its asymptotic value

xPj position vector of starting point considered

to estimate CXii for particle j numerically

xiPj component of xPj along direction i

xi,j,k spatial coordinate along direction i

of particle j in numerical simulation k

Xi,j,k displacement along direction i

of particle j in numerical simulation k

σ̂Xi,j displacement variance across the Monte Carlo

sample (of particle j along direction i)

σ̂Xi,k displacement variance across plume particles

(along direction i in simulation k)

D
(ens)
ii numerical ensemble macrodispersion along direction i

D
(eff)
ii numerical effective macrodispersion along direction i
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Characterization of spatial heterogeneities of natural subsurface reservoirs is18

always affected by uncertainties. These propagate from the stage of problem19

formulation (including model selection and ensuing parametrization) to mod-20

eling goals of interest [3–6]. When approached through numerical simulations,21

uncertainty quantification typically rests on a Monte Carlo framework and en-22

tails the need for large collections/ensembles of realizations [11, 13, 18]. This23

is in turn associated with large computational costs which might be somehow24

demanding from a data management and practical perspectives. The develop-25

ment of effective approaches capturing the effects associated with the interaction26

between solute mass transfer mechanisms and the structure of the underlying27

porous medium is then key to yield predictive tools that might find applications28

in diverse environmentally- and industrially-relevant scenarios.29

Various approaches have been introduced to upscale transport features to a30

macroscopic scale resting on different conceptual, mathematical and operational31

frameworks [10, 13–16, 42]. In this study, we focus on the classical macrodis-32

persive approach where the effect of system heterogeneity is addressed through33

the action of macrodispersion coefficients. The latter are conceptualized as at-34

tributes of the porous domain [1, 3, 12, 17, 18] in a way which is very similar to35

the case of thermal diffusivity. Thus, even as our study is keyed to mass transfer,36

the approach and strategy of analysis are readily transferable to settings entail-37

ing heat transfer in randomly heterogeneous porous media. Macrodispersion38

coefficients can be analytically derived starting from the statistics of the under-39

lying hydraulic conductivity fields. These analytical solutions allow obtaining40

closed-form relationships that can be promptly used to interpret experimental41

observations and numerical simulation results related to heat and mass transfer42

in aquifer systems [12, 17, 20]. Moreover, an additional benefit associated with43

analytical approaches is that they enable one to rigorously benchmark numeri-44

cally based results.45

Here, our key objective is to develop and test novel analytical solutions asso-46

ciated with the characterization of macrodispersion in three-dimensional het-47

erogeneous porous media. We do so upon relying on a stochastic approach48
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according to which uncertainty in the spatial distribution of hydraulic conduc-49

tivity is treated upon conceptualizing the system as a randomly heterogeneous50

field. With the aim of capturing key documented traits exhibited by empiri-51

cal probability density functions (pdfs) of log-conductivity (Y ) and its spatial52

increments in natural formations, a Generalized Sub-Gaussian (GSG) model53

has been introduced in [31] (its main traits are illustrated at the beginning54

of Section 2.1). This framework includes, as a particular case, the traditional55

approach based on viewing Y as a Gaussian field. It is then markedly more56

flexible, as it enables one to readily accommodate the increasing amount of ev-57

idences that document scaling behaviors of the pdfs of spatial increments of58

Y and other hydrogeological, geological, geophysical, and Earth science quan-59

tities [7, 22–30]. These evidences clearly demonstrate that the shape of the60

pdf associated with spatial increments of a variety of quantities (including, e.g.,61

log-conductivity, porosity, or electrical resistivity) changes with the separation62

distance (or lag) at which increments are evaluated. In particular, it is noted63

that pdfs of increments display sharp peaks and heavy tails at short lags, these64

features tending to change (i.e., peaks decrease and tails become thinner) with65

increasing separation distances between locations at which increments are eval-66

uated. Variance of the population of increments, which is directly related to the67

concept of variogram and spatial correlation, is also well known to change with68

lag. While the simultaneous occurrence of all of these traits is not consistent69

with an interpretation of Y as a Gaussian random field, these are fully captured70

by the GSG theoretical framework of [31, 33].71

Considering the above-mentioned body of evidences, our analysis rests on such72

a view, which ensures consistency in the joint stochastic representation of the73

random fields of Y and its increments. In this context, we recall that even74

as well-established analytical solutions are available for macrodispersive coeffi-75

cients in the presence of Gaussian distributions of Y [1, 21], these approaches76

have not been yet systematically extended to GSG conductivity fields. Indeed,77

the vast majority of studies that document transport in heterogeneous porous78

media still relies on Gaussian models for the description of underlying Y fields.79
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Figure 1: Workflow and sketch of the proposed approach.

Libera et al. [34] provide a first numerical study on the effect of a GSG dis-80

tribution of Y on concentration breakthrough curves at a well operating in a81

two-dimensional system. More recently, the role of the GSG nature of Y on82

transport behavior has been explored in [18] through a detailed suite of numer-83

ical Monte Carlo simulations within a laboratory column. Analytical solutions84

depicting transport in two-dimensional GSG domains are presented in [32] and85

[19]. In this setting, the key distinctive element of the current study is the86

derivation of closed-form analytical expressions characterizing the behavior of87

main statistical quantities employed to describe subsurface flow and transport88

dynamics in three-dimensional GSG systems. Similar to the two-dimensional89

GSG scenarios analyzed in [32] and [19], we obtain lead- (or first-) order analyt-90

ical solutions in the context of a perturbation approach. As the latter is based91

on a first-order approximation in terms of log-conductivity variance (σ2
Y ), our92

findings are rigorously valid for values of σ2
Y << 1. Therefore, we also assess93

in our study the potential of such lead-order solutions to be representative of94
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systems with low to mild heterogeneity. We do so upon relying on a numerical95

Monte Carlo framework. In this context our first-order solution can be used96

to (i) obtain prior information in preliminary analyses of solute plume evolu-97

tion and (ii) grasp the effects of (generally non-Gaussian) medium heterogeneity98

while favoring simplicity.99

Our work is organized as follows. Section 2 addresses the methods. Section100

2.1 describes the key theoretical elements and steps leading to the analytical101

expressions of the quantities of interest through first-order spectral methods,102

while Section 2.2 describes the setup and approach employed for our numerical103

analyses (see also Figure 1, where we illustrate the main methodological steps104

and we provide a sketch of the considered problem). Section 3 discusses key fea-105

tures of our analytical formulations and provides the comparison with numerical106

analogues for various levels of system heterogeneity. Section 4 summarizes the107

main findings of the work.108

2. Methods109

2.1. Analytical approach110

We consider steady-state uniform in the mean fully saturated groundwater flow111

taking place in a three-dimensional domain of infinite extent. The spatially het-112

erogeneous log-conductivity field, Y (x) = lnK(x) (K denoting a spatial field of113

hydraulic conductivity and x = [x1, x2, x3] being the position vector), is char-114

acterized through a GSG model. Here and in the following, the notation Z ′115

identifies a zero-mean random fluctuation of random process Z around the en-116

semble mean 〈Z〉. Random fluctuations of Y (x), i.e., Y ′(x) = Y (x) − 〈Y (x)〉,117

are modeled as Y ′(x) = U(x)G(x), where U(x) is a random positive subor-118

dinator and G(x) is a zero mean multi-Gaussian random field. For the pur-119

pose of our analysis, we take the covariance function of G(x) as isotropic, i.e.,120

CG(r) = σ2
GρG(r/IG) (σ2

G, ρG, and IG represent variance, correlation function,121

and integral scale of G, respectively; r = |r| = |x− y| denotes the norm of the122

separation vector r = [r1, r2, r3] between two distinct locations x and y). In123
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this context, it has been shown [31] that the covariance CY (r) of Y is fully de-124

termined by CG(r) and the first two-orders statistical moments of U , according125

to:126

CY (r) =

σ
2
G 〈U〉

2
ρG(r/IG) r > 0

σ2
Y =

〈
U2
〉
σ2
G r = 0

. (1)127

Equation (1) reveals that the covariance of a GSG field always exhibits a nugget128

effect, which is therefore a distinctive feature of Y . The integral scale of Y129

(IY ) is always shorter than its counterpart (IG) associated with the underlying130

Gaussian field, i.e.,:131

IY =
IG
η

, with η =

〈
U2
〉

〈U〉2
> 1. (2)132

In this work we take ρG to be exponential, i.e., ρG = e
− r
IG , so that Equation133

(1) can be expressed as:134

CY (r) =


σ2
Y

η
e
− r
ηIY r > 0

σ2
Y r = 0

. (3)135

Note that the correlation structure of Y is taken to be exponential for conve-136

nience of mathematical derivation. This does not constitute a basic assumption137

of the approach, which could be readily extended to other functional formats.138

Flow is driven by a constant average hydraulic gradient J = −〈∇h〉 that is139

aligned with the longitudinal direction (here denoted through the positive di-140

rection of the coordinate axis x1) and is governed by:141

∇ · q = 0; q(x) = −K(x)∇h(x), (4)142

where q is the Darcy flux and h is hydraulic head.143

In the following, we develop analytical expressions for (a) hydraulic head covari-144

ance; (b) diagonal entries of the covariance matrix of seepage velocity u(x) =145

q(x)/φ, φ being the effective porosity, which is taken as a deterministic constant;146

(c) diagonal components of the covariance matrix of particle displacement X;147

and (d) longitudinal and transverse components of the macrodispersion tensor.148
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Our theoretical framework rests on a first order spectral theory [21]. Accord-149

ingly, all of the above mentioned statistical moments can be evaluated starting150

from the three-dimensional spectral representation of Equation (3) [21, 35], here-151

after denoted as ĈY (k), where k =
√
k2

1 + k2
2 + k2

3 represents the magnitude of152

the wave number vector k = [k1, k2, k3] in a Cartesian space (see also Figure153

1 for a schematic representation of the main derivation steps). Details on the154

derivation of the spectrum (or spectral density) of CY are included in the Sup-155

plementary Material A (see Equation (A.5)).156

Spectra of longitudinal and transverse head covariance coincide and can be eval-157

uated as [21]:158

Ĉh(k, k1) = J2 k
2
1

k4
ĈY (k). (5)159

Spectra associated with the diagonal components of the covariance matrix of160

seepage velocities evaluated upon considering lags parallel to the mean flow161

direction x1 can be computed as (see also [21]):162

Ĉu1u1(k, k1) = V 2 (k2 − k2
1)2

k4
ĈY (k), (6)163

Ĉuiui(k, k1, ki) = V 2 (kik1)2

k4
ĈY (k), with i = 2, 3, (7)164

165

where V = KG
φ J is the magnitude of a macroscopic advective velocity, KG being166

the geometric mean of the hydraulic conductivity field.167

Expressions for the covariance of hydraulic heads along directions parallel (CLh )168

and transverse (CTh ) to the mean flow are derived in Supplementary Material169

B through the inverse Fourier transforms (in R3) of the spectrum provided in170

Equation (5), yielding:171

CLh (r∗1)

J2σ2
Y I

2
Y

= η

{
8

r∗31

− e−r
∗
1

[
1 +

1

r∗1

(
1

4
+

8

r∗1

(
1 +

1

r∗1

))]}
, (8)172

CTh (r∗i )

J2σ2
Y I

2
Y

=
η

r∗i

{
1− 4

r∗2i
+ e−r

∗
i

[
1 +

4

r∗i

(
1 +

1

r∗i

)]}
, with i = 2, 3, (9)173

174

where r∗i = ri/(ηIY ). Considering Equations (8) and (9) (see also the Supple-175

mentary Material B), the head variance, σ2
h, reads:176

σ2
h

J2σ2
Y I

2
Y

=
η

3
. (10)177
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Following a similar procedure, it can be shown (see the Supplementary Material178

C for details) that the diagonal entries of the covariance matrix associated with179

seepage velocity components (i.e., Cu1u1
and Cuiui , with i = 2, 3) evaluated at180

separation distances r∗1 along the mean flow direction are given by:181

Cu1u1
(r∗1)

V 2σ2
Y

= 8



1

ηr∗21

{
1

r∗1
− 12

r∗31

+ e−r
∗
1

[
1 +

1

r∗1

(
5 +

12

r∗1

(
1 +

1

r∗1

))]}
r∗1 > 0

1

15
r∗1 = 0

, (11)182

Cuiui(r
∗
1)

V 2σ2
Y

=



1

ηr∗1

{
− 2

r∗21

+
48

r∗41

− e−r
∗
1

[
1 +

2

r∗1

(
3 +

1

r∗1

(
11 +

24

r∗1

(
1 +

1

r∗1

)))]}
r∗1 > 0

1

15
r∗1 = 0

183

with i = 2, 3. (12)184
185

Note that Equations (11) and (12) are clearly characterized by the presence of186

a nugget effect, this feature being otherwise not displayed by the head covari-187

ance (see Equations from (8) to (10) and the Supplementary Material C). This188

behavior is mirrored also in the two-dimensional scenario previously analyzed189

by Riva et al. [32].190

The directional components of the covariance matrix associated with particle191

displacement, i.e., CXii , evaluated at lags oriented along the longitudinal direc-192

tion can be derived as [1]:193

CXii(r1) =
2

V 2

∫ r1

0

(
r1 − z

)
Cuiui(z)dz, with i = 1, 2, 3. (13)194

195

Replacing Equations (11) and (12) into Equation (13), respectively, leads to:196

CX11
(r∗1)

I2
Y σ

2
Y

= 8η

{
1

r∗1
− 2

r∗31

− 2

3
+

1

4
r∗1 +

2e−r
∗
1

r∗21

(
1 +

1

r∗1

)}
(14)197

CXii(r
∗
1)

I2
Y σ

2
Y

= 2η

{
− 1

r∗1
+

4

r∗31

+
1

3
− e−r

∗
1

r∗1

[
1 +

4

r∗1

(
1 +

1

r∗1

)]}
, with i = 2, 3.

(15)

198

199
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Following Gelhar [21], the diagonal components of the macrodispersion tensor200

D evaluated along direction i at (longitudinal) lags can be expressed as:201

Dii(r1) =

∫ r1

0

Cuiui(%)d%, with i = 1, 2, 3. (16)202

203

Making use of Equations (11), (12) and (16), normalized longitudinal and trans-204

verse macrodispersion coefficients become, respectively:205

D11(t∗)

V IY σ2
Y

= 1− 4η2

t∗2
+

24η4

t∗4
− 8η2

t∗2
e−

t∗
η

[
1 +

3η

t∗

(
1 +

η

t∗

)]
(17)206

Dii(t
∗)

V IY σ2
Y

=
η

t∗

{
η

t∗
− 12η3

t∗3
+ e−

t∗
η

[
1 +

η

t∗

(
5 +

12η

t∗

(
1 +

η

t∗

))]}
, with i = 2, 3.

(18)

207

208

Here, t∗ denotes the dimensionless format of travel time t, which is normalized209

against the characteristic advective time tADV = IY/V . The latter represents the210

time taken by one particle to travel a distance equal to IY (by advection). As211

the advective velocity is purely longitudinal in our settings, such displacement212

is fully along the direction parallel to the axis x1. Accordingly, dimensionless213

travel time t∗ can be written as:214

t∗ =
t

tADV
=
r1

IY
= ηr∗1 . (19)215

2.2. Numerical approach and setup for validation216

The lead-order analytical results illustrated in Section 2.1 are theoretically con-217

strained by a low heterogeneity level of the system (e.g., [1, 21]), i.e., σ2
Y << 1.218

Here, we assess the consistency of these results for various levels of heterogene-219

ity (in terms of σ2
Y ) through comparisons against a suite of detailed numerical220

Monte Carlo simulations performed across a three-dimensional domain (see also221

Figure 1 for a schematic illustration of the numerical approach). Note that222

the smallest σ2
Y value considered in our study has been selected to validate our223

numerical model (i.e., it is sufficiently low to completely fulfill the assumption224

σ2
Y << 1; see also Section 3.2). Following Riva et al. [32], the subordinator225

associated with the GSG model describing the heterogeneous spatial distribu-226

tion of Y is taken as log-normal, i.e., U(x) ∼ lnN(0, (2−α)2), where the shape227

13



parameter α < 2 governs the deviation of the probability density function of228

Y from Gaussian. Note that the GSG distribution tends to become Gaussian229

when α→ 2. In this context, the following relationships hold [31]:230

η = e(2−α)2 , σ2
Y = e2(2−α)2σ2

G, IY = e−(2−α)2IG. (20)231
232

Our numerical Monte Carlo simulations are then based on selecting α = 1.5233

(i.e., corresponding to η = 1.284, so that the Sub-Gaussian nature of the Y field234

is appreciable), and are showcased for various degrees of spatial heterogeneity,235

as detailed in the following. Multiple unconditional realizations of the Y fields236

are generated according to the approach illustrated in [36]. Groundwater flow237

is then evaluated on the resulting Y realizations. We do so by considering the238

three-dimensional setting depicted in Figure 2 and characterized by a longitudi-239

nal and transverse sizes equal to Lx1
= 300 m and Lxi = 70 m (with i = 2, 3),240

respectively, and discretized with a uniform grid of spacing s = 1 m (i.e., the241

domain is formed by 1.4 millions of cells). Mean uniform flow conditions are242

ensured through a constant head drop between the two vertical planes located243

at x1 = 0 and x1 = Lx1
. This yields an overall head gradient J = 2.5 · 10−3,244

the remaining domain boundaries being considered as impervious.245

We set φ = 10%, KG = 10−2 m/s and IG = 7 m (i.e., IY ≈ 5.5 m), which yields

Figure 2: Simulation domain and particles injection window.
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246

Lx1/IY ≈ 55 and Lxi/IY ≈ 13 (for i = 2, 3). We have verified that the numerical247

solution is not significantly affected by the boundary conditions at distances of248

approximately 6IY from the inlet/outlet and 3IY from the no-flow boundaries249

(see also Section 3.2). Three families of random fields are explored. These250

are associated with increasing levels of heterogeneity, as expressed through251

σ2
G = 0.001, 0.500, and 1.000 and corresponding to σ2

Y = 1.648·10−3, 8.244·10−1,252

and 1.648, respectively. These values are deemed as representative of various253

degrees of natural variability contained within a geological unit (see, e.g., [43]254

and references therein), which can potentially be depicted through statistically255

stationary heterogeneous models of the kind we consider here. Appreciably256

larger values of σ2
Y are otherwise recognized to stem from a homogenization of257

conductivity values pertaining to diverse geological facies within a unique pop-258

ulation (e.g., [39]).259

Flow is evaluated upon relying on an in-house, well tested, open-source code that260

employs a diagonally preconditioned Conjugate Gradient solver for symmetric261

matrices in compressed sparse row matrix format. It is here noticed that the262

selected mesh yields a satisfactory compromise between computational efforts263

and an acceptable reproduction of the spatial heterogeneity in each realization264

across which transport simulations are performed. In this sense, the resulting265

5 elements per correlation scale of the grid where Y is generated are typically266

viewed as an acceptable trade-off [40].267

We solve purely advective solute transport by way of a particle tracking al-268

gorithm that is implemented according to a uniform temporal discretization269

scheme. The selected time step is ∆t = 12500 s, which corresponds to ∆r1/IY270

roughly equal to 0.5, ∆r1 being the longitudinal displacement that is accom-271

plished on average by each particle in a single time step. Preliminary conver-272

gence tests showed that our choice guarantees a satisfactory approximation of273

(average) particles trajectories in relationship with the main purposes of our274

study (i.e., the numerical evaluation of key ensemble moments of the transport275

problem; details not shown).276
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Particles are initially randomly distributed within the blue volume depicted in277

Figure 2. Tracking a number of NP = 1000 particles across the domain enables278

us to obtain stable results in terms of the quantities analyzed in Section 3.2279

for each Monte Carlo realization of Y . The computational flow and transport280

simulation time is approximately 10 minutes for each Monte Carlo realization281

on a 40 system cores-based machine with 2 x Intel Xeon Gold 6148 CPU and282

192 GB RAM.283

284

3. Results and Discussion285

3.1. Analytical results286

This Section is devoted to the presentation and discussion of the analytical ex-287

pressions reported in Section 2.1. Statistical flow and transport moments are288

illustrated in Figure 3 for three values of η, i.e., η = 1.284, 1.041, and 1.000.289

These correspond to α = 1.5, 1.8, and 2, respectively, the latter value repre-290

senting the setting associated with a Gaussian Y field. The analysis of the291

scenario corresponding to η = 1.041 (i.e., α = 1.8) enables us to enrich the292

range of degrees of departure of Y from Gaussian and is consistent with the293

corresponding study performed in [32] for two-dimensional settings.294

Figure 3a depicts the behavior of hydraulic head covariance at increasing di-295

mensionless lag evaluated according to Equations (8) and (9). Head covariances296

along longitudinal and transverse directions display similar trends. The rate297

at which head correlation decreases is higher along the longitudinal direction,298

while transverse head covariance is still sustained at more than 20 integral scales299

of Y . The latter trait is consistent with the nature of the flow scenario inves-300

tigated according to which pressure head is uniform (on average) along the301

transverse direction. Figure 3a also evidences that head covariance obtained302

in GSG fields (regardless lag orientation and magnitude) is always larger than303

its Gaussian counterpart (corresponding to η = 1). This clearly indicates that304

Sub-Gaussianity strengthens the correlation degree exhibited by hydraulic heads305
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Figure 3: (a) Directional head covariance, (b) diagonal components of seepage velocity covari-

ance, (c) diagonal components of particle displacement covariance, (d) directional macrodis-

persion coefficients. Blue and red curves refer to longitudinal (i.e., i = 1) and transverse

directions (i.e., i = 2, 3), respectively.
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within the considered domain.306

Figure 3b depicts the behavior of the diagonal components of the velocity covari-307

ance tensor, which are evaluated according to Equations (11) and (12). Both lon-308

gitudinal and transverse velocity covariances are seen to exhibit a clear nugget309

effect at the origin (zero lag), which becomes more pronounced at increasing310

values of η and vanishes in the Gaussian case. The covariance of the transverse311

velocity component displays a behavior characterized by a hole effect. This312

feature was also observed in the presence of a Gaussian Y field (e.g., [1] and313

[21]) and is still preserved in the non-Gaussian setting here analyzed. Note that314

Figure 3b also embeds an insert which is focused on early times (i.e., short dis-315

tances) and enables to see that covariance curves intersect each other (see the316

symbols marking such intersection in the insert). This feature was also observed317

in [32] for a two-dimensional case at distances of about 3IY . Here, it is noted318

to take place at shorter distances (i.e., around (0.5 − 2)IY , depending on the319

direction). This corresponds to an inversion experienced in the relative strength320

of directional velocity covariances associated with Sub-Gaussian and Gaussian321

Y fields. GSG fields induce a weaker velocity correlation than their Gaussian322

counterparts at very short distances, (i.e., for r1/IY ≤ 0.5 − 2). Otherwise, we323

find an opposite situation at larger distances, i.e., where velocity correlation is324

more persistent in GSG than in Gaussian fields.325

Figure 3c depicts the behavior of longitudinal and transverse covariances asso-326

ciated with directional particle displacements, these quantities being evaluated327

according to Equations (14) and (15). Figure 3d displays normalized macrodis-328

persions evaluated by Equations (17) and (18). Longitudinal particle displace-329

ment covariance displays a monotonic growth with lag. At early times/small330

lags, the dependence on r1/IY is quadratic, lim r1
IY
→0 CX11

=
8I2Y σ

2
Y

15η ( r1IY )2, in331

agreement with the behavior observed in [1] for Gaussian Y fields. At late332

times/large separation distances, CX11
becomes a linear function of the dimen-333

sionless travel distance, lim r1
IY
→∞ CX11 = 2I2

Y σ
2
Y ( r1IY −

8η
3 ), a feature that is334

documented also in the Gaussian case [1]. These observations are consistent335

with the behavior exhibited by the longitudinal macrodispersion (see Figure336
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3d), where D11 is seen to linearly grow during the pre-asymptotic regime (i.e.,337

when CX11
∝ (r1/IY )2) to then attain a horizontal plateau at late times (i.e.,338

when CX11
∝ r1/IY ). The transition towards the latter condition, which is often339

referred to as asymptotic or Fickian macrodispersion regime, is also observed for340

transverse macrodispersion (see Figure 3d). The latter is seen to peak during341

the pre-asymptotic regime to then decay to zero, this behavior being consis-342

tent with that of transverse particle displacement covariance (see Figure 3c).343

Specifically, CXii (with i = 2, 3) is a quadratic function of r1/IY at short lags344

(lim r1
IY
→0 CXii =

I2Y σ
2
Y

15η ( r1IY )2), whereas, it reaches a horizontal asymptote at345

late times (lim r1
IY
→0 CXii = 2

3ηI
2
Y σ

2
Y ), analogous features being documented346

for the classical Gaussian case [1]. The sharp peak experienced by transverse347

macrodispersion even in the absence of pore scale diffusion has already been348

interpreted for classical Gaussian fields as a macroscale scale effect of the do-349

main heterogeneity [38]. In this sense, some particles are forced to depart from350

the average trajectory in the attempt to overcome low conductivity regions.351

This heterogeneity-induced twiggling and intertwinning effect (as also noted in352

[38]) is responsible for the transverse spread experienced by the plume also in353

Sub-Gaussian fields. This effect becomes increasingly pronounced as the do-354

main becomes more heterogeneous. It is also noticed that the peak of Dii (with355

i = 2, 3) is significantly lower in the three-dimensional setting as compared356

against its two-dimensional counterpart [32] (given the same values of IY and357

σ2
Y ). This is related to the observation that particles can spread more freely in358

three- than in two- dimensional systems.359

Figure 3d clearly shows that an increased departure of Y from the Gaussian360

scenario (i.e., increasing values of η) yields a longer delay which is experienced361

by longitudinal and transverse macrodispersion curves to reach an asymptotic362

transport regime. Otherwise, non-Gaussian features of Y do not impact the363

asymptotic values attained by longitudinal and transverse macrodispersion.364

The duration of pre-asymptotic regimes observed in our scenarios can be quan-365

tified introducing a characteristic time t̂∗i defined as the dimensionless time366

(t/tADV ) at which the normalized macrodispersion coefficient, Dii/(V IY σ2
Y ) , ap-367
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proaches its late time asymptote (equal to 1 when i = 1 and to 0 for i = 2, 3). Ac-368

cordingly, t̂∗1 is defined as the dimensionless time at which D11/(V IY σ2
Y ) achieves369

the value of 0.99, whereas t̂∗2 (or t̂∗3) is defined as the dimensionless late time370

at which D22/(V IY σ2
Y ) (or D33/(V IY σ2

Y )) becomes negligible. The latter condition371

is considered to be attained when D22/(V IY σ2
Y ) (or D33/(V IY σ2

Y )) reaches 1% of372

its maximum value. As shown in Figure 4, t̂∗i increases with η, i.e., the extent373

of the pre-asymptotic transport regime along longitudinal and transverse direc-374

tions increases with the departure of Y from classical Gaussian scenarios.375

The results presented so-far evidence that the departure from Gaussianity does376

not affect the extent to which directional spreading of the plume acts at late377

times, but has a marked influence on the pre-asymptotic behavior. This suggests378

that GSG effects on transport may be apparent when considering pre-asymptotic379

(non-Fickian) conditions and may vanish at asymptotic regimes. The shift to-380

wards larger distances experienced by the peak of transverse macrodispersion381

and the attainment of an horizontal plateau for D11 within Sub-Gaussian fields382

are also consistent with the trends exhibited by directional displacement covari-383

ances. The results obtained on the covariance of particle displacements suggest384

that adopting a GSG model is likely to have a relevant influence on mixing385

metrics. The assessment of these effects is beyond the objective of this study386

and will be considered in future works.387

3.2. Comparison between numerical Monte Carlo results and analytical solu-388

tions389

We illustrate here the comparisons of the (Monte Carlo-based) numerical results390

associated with particle displacement covariances and directional macrodisper-391

sions against the corresponding (perturbation-based) analytical solutions pre-392

sented in Section 2.1 and discussed in Section 3.1. The stability of these results393

is verified to be attained for a minimum number (NS) of Monte Carlo sim-394

ulations which increases with the degree of system heterogeneity (i.e., NS ≈395

1500, 2000, 4000 are required for σ2
Y = 1.684 · 10−3, 8.244 · 10−1, 1.648, respec-396

tively; details not shown). For consistency, all of the results we illustrate in the397
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Figure 4: Dimensionless travel time t̂∗i versus η.

following are based on NS = 5000. The three levels of domain heterogeneity398

are selected according to the following rationale: (i) results associated with the399

lowest value of σ2
Y (i.e., 1.684 · 10−3 << 1) can be employed to test the accu-400

racy of our numerical schemes when compared against the analytical outcomes;401

(ii) the remaining two values of σ2
Y are designed to assess the accuracy of the402

analytical solution at increasing levels of domain heterogeneity.403

Figure 5 depicts numerical and analytical results related to the covariance func-404

tions CXii versus r1/IY (with i = 1, 2, 3). Numerical estimates of CXii are405

computed according to:406

CXii(r1) =
1

NP

NP∑
j=1

[
1

NS

NS∑
k=1

(
Xi,j,k

(
x1Pj , x2Pj , x3Pj

)
− 1

NS

Ns∑
k=1

Xi,j,k

(
x1Pj , x2Pj , x3Pj

))
407

(
Xi,j,k

(
x1Pj + r1, x2Pj , x3Pj

)
− 1

NS

Ns∑
k=1

Xi,j,k

(
x1Pj + r1, x2Pj , x3Pj

))]
408

with xPj fixed ∀j, k; i = 1, 2, 3, (21)409410

where xPj = [x1Pj , x2Pj , x3Pj ] represents the starting point for the evaluation of411

CXii (corresponding to zero lag), i.e., the initial position of particle j in the injec-412

tion window highlighted in Figure 2. The displacement along direction i of parti-413

cle j in Monte Carlo simulation k is defined asXi,j,k(t) = xi,j,k(t)−xi,j,k(t0 = 0),414

where t0 denotes the initial time (i.e., when particles are released in the domain415
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depicted in Figure 2) and xi,j,k represents the spatial coordinate of particle j in416

simulation k, along direction i at time t (t being directly related to r1 accord-417

ing to Equation (19)). Figure 5 documents a satisfactory agreement between
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Figure 5: Covariance of (a) longitudinal (i.e., along direction i = 1) and (b) transverse (i.e.,

along directions i = 2, 3) particle displacements. Analytical and numerical solutions are

depicted with solid curves and colored circles, respectively.

418

numerical and analytical solutions of CXii . As expected, differences between419

numerical and analytical results increase with σ2
Y . The accuracy of numerical420

estimates of CXii at low degrees of domain heterogeneity (σ2
Y = 1.684 · 10−3)421

is slightly higher along the longitudinal direction. This aspect is ascribed to422

the relatively small size (in terms of integral scales of Y ) of the domain along423

the transverse directions, which might impact on particle displacement in a way424

which is slightly stronger than along the longitudinal one. Given the consis-425

tency and good quality of all results, however, our domain choice is justified by426

the achievement of a satisfactory trade-off between high numerical accuracy and427

extremely high computational costs (note that the CPU time needed for the full428

set of Monte Carlo simulations is about 35[days] for NS = 5000 realizations; see429

also Section 2.2).430

Figure 6 juxtaposes analytical and numerical results describing the behavior of431

(normalized) longitudinal and transverse macrodispersion coefficients at increas-432
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ing values of r1/IY . Here, the analytical solution is compared against ensemble433

and effective numerical estimates, which are evaluated according to different434

calculation schemes (presented in the following) commonly employed in the lit-435

erature (e.g., [37]).436

Ensemble macrodispersion coefficients are evaluated along the directions parallel437

(i.e, i = 1) and perpendicular (i.e., i = 2, 3) to the mean flow as:438

D
(ens)
ii (t) =

1

NP

NP∑
j=1

D
(ens)
ii,j (t); D

(ens)
ii,j (t) =

1

2

d

dt

(
σ̂2
Xi,j (t)

)∣∣∣∣∣
t

,439

with i = 1, 2, 3, j = 1, ..., NP , (22)440
441

where σ̂2
Xi,j

(t) corresponds to the ensemble variance of the displacement of par-442

ticle j along direction i evaluated across the collection of NS Monte Carlo real-443

izations, at time t (see Equation (D.3) in Supplementary Material D for details).444

Effective macrodispersion coefficients are computed as:445

D
(eff)
ii (t) =

1

NS

NS∑
k=1

D
(eff)
ii,k (t); D

(eff)
ii,k (t) =

1

2

d

dt

(
σ̂2
Xi,k

(t)

)∣∣∣∣∣
t

,446

with i = 1, 2, 3, k = 1, ..., NS , (23)447
448

where σ̂2
Xi,k

denotes the sample variance associated with the directional particle449

displacement of the plume in realization k (see Equation (D.4) in Supplemen-450

tary Material D for details).451

Figure 6a shows that the numerically-based ensemble longitudinal macrodisper-452

sion exhibits an excellent agreement with its analytical counterpart for σ2
Y =453

1.684 · 10−3. As expected, differences between analytical and numerical results454

are increasingly noticeable as σ2
Y increases. While longitudinal macrodisper-455

sion approaches a nearly horizontal (Fickian) asymptote at sufficiently late456

times/long distances for all levels of domain heterogeneity, the initial (pre-457

asymptotic) regime is characterized by a longer duration as σ2
Y increases and the458

asymptotic value increases with σ2
Y . These features are ascribed to higher-order459

contributions which are not encapsulated in first-order analytical solutions.460

The quality of the comparisons between numerical and analytical results as-461

sociated with transverse macrodispersion (see Figure 6b) is similar to the one462
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Figure 6: Normalized macrodispersion coefficients versus r1
IY

along (a) longitudinal (i.e., along

i = 1) and (b) transverse (i.e., along i = 2, 3) directions.
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documented for its longitudinal counterpart. This is so even as the discrepancy463

between numerical (ensemble) and analytical values appears slightly less influ-464

enced by the value of σ2
Y , the largest difference being about 14% in the cases465

here considered at r1/IY > 3. Differences observed for the smallest heterogeneity466

(i.e., σ2
Y = 1.684 · 10−3) are due to the impact of boundary conditions, which467

can be mainly felt along the direction normal to the mean flow, as discussed468

above.469

Figures 6a and 6b also enable one to visually appreciate that effective macrodis-470

persion coefficients are always smaller than their ensemble counterparts. This471

observation is consistent with the definition of the two quantities considered,472

according to which D
(eff)
ii represents a metric which quantifies the mean dis-473

persion of a plume, while D
(ens)
ii (with i = 1, 2, 3) is a measure of the mean474

degree of spreading of particles positions around the average plume position475

[37] (see also Supplementary Material D).476

4. Summary, Remarks, and Conclusions477

Our work provides an analytically-based assessment of the effect of non-Gaussian478

heterogeneous log-conductivity fields, Y , as captured by the Generalized Sub-479

Gaussian (GSG) model, on the key traits of flow and transport in three-dimensional480

settings. We focus on analytical expressions quantifying the spatial correla-481

tion of hydraulic head, seepage velocities, and particles displacements, to yield482

macrodispersion coefficients. An exponential correlation structure of Y is con-483

sidered for mathematical convenience to exemplify the key patterns of our so-484

lutions. The extension of the approach to include various functional formats485

of CY could be the subject of future works. Our study leads to the following486

major conclusions:487

• The covariance functions associated with hydraulic head and flow veloci-488

ties are markedly affected by deviations of the log-conductivity of the host489

porous medium from the classical Gaussian model. This is manifest, e.g.,490

through more persistent correlation structures of both head and velocity491
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fields. The degree of correlation associated with the latter is markedly pre-492

served at intermediate distances if compared against the classical Gaussian493

setting. Otherwise, such behavior persists at longer distances for direc-494

tional head covariances. The spatial analysis of velocity fields is here495

limited to a standard covariance metric, which might lead to an overes-496

timation of the level of correlation as compared to nonlinear indicators497

[9]. Quantification of the effects of the latter in GSG fields could reveal498

additional relevant information that will be addressed in future works.499

• Analytical results about directional macrodispersion coefficients indicate500

that the GSG nature of Y heavily influences pre-asymptotic dispersion val-501

ues. This element appears to be markedly relevant if one considers that502

non-Fickian transport models have been widely developed in the literature503

upon resting on the assumption that a Gaussian model is representative504

of the spatial structure associated with underlying Y fields [13, 14]. Our505

analyses suggest instead that the observed differences between GSG and506

Gaussian model-based scenarios may propagate to nonlinear mixing indi-507

cators [8], as these are known to be intrinsically linked to local transport508

features and particle transfer statistics. Late time conservative transport509

is always characterized by the attainment of a Fickian regime, a feature510

that appears independent of the degree of departure of the underlying511

domain from classical Gaussian structures.512

• The main benefits of relying on analytical approaches (in this study and in513

general) is that they enable one to (1) enhance the current level of knowl-514

edge of the dynamics driving system evolution and (2) rigorously bench-515

mark numerically based results. In this work, our analytical solutions also516

yield significant computational time/resources saving. Limitations of our517

results are related to the preliminary assumptions. Specifically, our ana-518

lytical solution is consistent with numerical results related to sufficiently519

large domains (well approximating the assumption of infinite unbounded520

domain) and values of log-conductivity variances sufficiently smaller than521
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unity.522

• As expected, numerical estimates of the analyzed statistical moments are523

in good agreement with the analytical solutions when σ2
Y << 1, a scenario524

which fully satisfies the lead-order framework of analysis here considered.525

Therefore, our analytical expressions and results can also constitute a526

benchmark in the context of (stochastic) numerical analyses of flow and527

mass transport in heterogeneous porous media. Otherwise, numerical re-528

sults suggest an increasingly significant role of higher-order terms at values529

of σ2
Y approaching or exceeding unity, a feature that cannot be captured530

considering only a first-order solution. Yet, the analytical solution can531

still capture the appropriate trend and order of magnitude of its (Monte532

Carlo-based) numerical counterparts even for the largest values of σ2
Y here533

considered (around 1.7). In this sense, reliance on our analytical approach534

is appealing because it enables one to grasp the effects of medium het-535

erogeneity while favoring simplicity. As such, and along the lines of what536

has been suggested in previous works [41], it could be used to obtain prior537

information in preliminary analyses of solute plume evolution. This result538

is particularly relevant considering (a) the limited amount of information539

required by the analytical solution, (b) the limited loss of accuracy of540

the first-order solution at σ2
Y approaching or slightly exceeding unity, and541

(c) the significant computational and data management efforts associated542

with the implementation of a comprehensive Monte Carlo analysis across543

three-dimensional domains.544
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