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Abstract: Electromechanical actuators (EMAs) have shown a high efficiency in flight surface control
with the development of more electric aircraft. In order to identify the abnormalities and potential
failures of EMA, a methodology for fault diagnosis is developed. A simulating model of EMA is
first built to perform different working states. Based on the modeling of EMA, the corresponding
faults are then simulated to re-generate the fault data. Afterwards, a gated recurrent unit (GRU)
and co-attention-based fault diagnosis approach is proposed to classify the working states of EMA.
Experiments are conducted and a satisfying classification accuracy on simulated data is obtained.
Furthermore, fault diagnosis on an actual working system is performed. The experimental results
demonstrate that the proposed method has a high efficiency.

Keywords: electromechanical actuators; fault diagnosis; small sample; gate recurrent unit; co-attention
mechanism

1. Introduction

Recently, more electric aircraft (MEA) initiatives have focused on increasing the pen-
etration of the electrical systems into the aircrafts, in order to decrease the weight and
increase the overall efficiency [1,2]. Once restricted to airborne hydraulic distribution
systems, the move towards MEA has considerably progressed with advances in electrically
powered actuators. Electromechanical actuators (EMAs) present a solution which exploits
a mechanical drivetrain to reach the control surface [3]. Compared with the alternatives
(e.g., classical hydraulic systems and electro-hydrostatic actuators), the EMAs simply con-
trol the motor and leverage on a planetary roller screw pair to translate the rotary motion
into linear motion, which has brought paradigm shifts to power the MEA transmission. As
one of the commercial aircrafts, the Boeing 787 applies EMAs to landing gear braking, a
spoiler, as well as a trimmable horizontal stabilizer [4,5].

In spite of the reduced complexity and easy maintenance, EMAs are currently used in
fewer safety-critical control surfaces or tasks with redundant alternatives [6]. This is due to
the fact that the failure risks and accumulated reliability experience are absent [7]. That
is, the latent failures of EMAs relegate them to still be implemented on secondary flight
controls. Consequently, the fault diagnosis of EMA is mostly studied, which paves the way
for deeply understanding the fault occurrence and its principle [8,9].

Theoretically, fault diagnosis aims at detecting and identifying any type of potential
abnormalities and faults [10,11]. Numerous artificial intelligence techniques and statistical
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learning methods have been widely used in fault diagnosis, such as k-nearest neighbor
(k-NN) algorithms [12], Bayesian classifier [13], support vector machine (SVM) [14], and
deep learning approaches [15]. In recent years, deep-learning algorithms have underpinned
the state-of-the-art implementations for fault diagnosis tasks [16,17]. More precisely, the
deep-learning-based methods use a large number of samples for model training, based on
which they predict the underlying failures [18,19]. Consequently, a set of complete data
that represent both normal and faulty cases is required [20]. However, fault data collection
in EMA remains challenging, especially in expensive and precise components, which
cannot be threatened to recreate fault occurrences. Furthermore, failure tests on EMAs in
actual working conditions are highly-priced and time-consuming, which also poses a major
limitation of data-based fault describing and distinguishing [21]. For these reasons, the
system virtual simulating is highlighted [22]. As mentioned in [23], ‘virtual simulation is
defined as the creation of interactive environments that replicate a real-world scenario’.
Using the virtual simulator, the dynamic model of EMA can be devised and the faults can
be injected [24,25]. Therefore, the signals that characterize the EMA working states are
measured by virtual sensing elements in simulated tests, which provides opportunities to
collect samples for fault diagnosis model training.

This paper develops a virtual simulator in line with the functionalities of EMA in
practical working conditions, while focusing on the components’ failure principle to gener-
ate and inject faults into the simulated model. For fault diagnosis, a deep-learning-based
network is proposed, while the fault data are collected for model training. Fault signals
from both simulation tests and in-service EMA are measured and sent to the proposed
model, to verify the efficiency of the proposed fault diagnosis method.

The remainder of this paper is organized as follows. The background knowledge
of EMA is presented in Section 2. Section 3 details the virtual simulator of EMA. The
deep-learning based fault diagnosis model is presented in Section 4. The experimental
results are provided in Section 5. Finally, the conclusions are drawn in Section 6.

2. Prerequisite
2.1. Architecture of EMA

The schematic diagram of EMA is presented in Figure 1. In general, an EMA is made
up of a mechanical actuating assembly and an electronic controller. More precisely, the
mechanical actuating assembly consists of a servo motor and mechanical transmission
components (i.e., a planetary roller screw pair), to convert the electric drive into mechanical
power [26]. The controller is used to determine the current by voltage pulse width modula-
tion (PWM) to the motor, according to the position demand. The motor rotates forward and
in reverse in line with the output control commands from the controller [27]. The planetary
roller screw pair then converts the rotational motion into linear movement of the EMA rod
end [28]. In response, signals of position, velocity, and current are detected and sent to the
controller as feedback.

2.2. Faults in EMA

The malfunction information of EMAs mainly comes from the following sources: Fail-
ure Modes, Effects, Criticality Analysis (FMECA) information provided by Moog Corpora-
tion [21], reports from US military programs [29–31], and general survey of publications
involved with EMA diagnostics [16–20].
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Figure 1. EMA schematic diagram.

In general, four categories of faults exist in EMA: motor, mechanical system, sensor
and electronics. To the best of our knowledge, motor malfunction is the most important
among all these faults. With respect to the motor components, the failure probability of
bearings is 41% following with the stator accounting for 37%. More precisely, almost
80% stator failures result from winding insulation faults. A small inter-phase short circuit
or short to ground can also lead to the collapse of the flight control system, which is more
severe than the damage of bearings. Therefore, a sensor that detects the motor current is
also used to monitor the working state. Several current studies deal with the electrical
failures of the motor in EMA.

2.3. Fault Diagnosis of EMA

Fault diagnosis of EMAs has received a certain amount of interest in recent years.
Despite the lack of reliable fault statistics, state-of-the-art methods work on detecting the
faults of components before the system evolves into catastrophic consequences. Specifically,
Yu et al. proposed the concept of extended analytical redundancy relations, based on
which a fault diagnosis approach is developed for nonparametric fault identification of
electromechanical systems [20]. Moreover, Daniele et al. applied the fuzzy inference system
to detect failures on the electric motor of EMAs [16]. Aiming to predict multiple failure
modes, Zhang et al. estimated the EMA working data on both the simulation model and
experiment platform of EMA [32]. Notably, studies on deep-learning-based EMA fault
recognition models are ongoing. Siahpour et al. devised a CNN-based model across
distinguishing sensing data [18]. Likewise, Zhang et al. proposed a method by integrating
a gated recurrent unit, attention mechanism, and similarity measure. In addition, a model
based on a sparse feature and long short-term memory network has been developed [19].
With the faults injected, experimental results validated the working performance of the
deep learning method.

3. EMA Simulator
3.1. Simulation Model Development

For the purpose of fault diagnosis, an EMA simulator is first developed to inject
fault data into it. The virtual model of EMA is constructed in line with the actual EMA
to simulate its working states, as illustrated in Figure 2. As previously mentioned, the
mechanical assembly of the proposed EMA model contains a reduction gear, a bearing,
and a planetary roller screw, while the electrical components are a triple-loop controller, a
permanent magnet synchronous motor (PMSM), together with the motor drive. The control
command is transformed into the motor torque and rotating speed, and therefore drives
the movement of the screw through the mechanical assembly. The moving relationship of
the mechanical drivetrain is performed using mathematical equations.
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Figure 2. EMA Simulator.

The mechanical assembly: considering the working principle of EMA, the planetary
roller screw is the key component which aims to match the torque and speed between the
motor and the external load by transitional mechanism [26]. Mathematically, the motion o

vs =
p

2π
ωm (1)

Fs =
2π

p
Tm (2)

where vs and Fs, respectively, represent the axial speed and output force of the screw, ωm
and Tm, respectively, denote the torque and rotating speed of the motor, and p is the lead of
planetary roller screw.

The energy loss within the transmitting pairs should also be considered, including
the inertia effect, friction loss. The inertia of the planetary roller screw is negligible in the
system and is equivalently converted to that of the motor rotor. The friction loss can be
simplified proportionally to the rotating speed, known as viscous friction. Consequently,
the motion of the mechanical drivetrain is given by:

Fs =
2π

p
(Tm − J

dωm

dt
− Bmωm) (3)

where J and Bm, respectively, represent the inertia moment and viscous friction coefficient
equivalent to the motor rotor.

The model of mechanical assembly, containing a planetary roller screw, sensing ele-
ments, and the external load, is developed in AMESim; see Figure 3. All the components are
obtained from the AMESim standard library, while the load is given by directly inputting
dynamic force.

Actuators 2022, 11, x FOR PEER REVIEW 4 of 18 
 

 

permanent magnet synchronous motor (PMSM), together with the motor drive. The con-

trol command is transformed into the motor torque and rotating speed, and therefore 

drives the movement of the screw through the mechanical assembly. The moving rela-

tionship of the mechanical drivetrain is performed using mathematical equations.  

 

Figure 2. EMA Simulator. 

The mechanical assembly: considering the working principle of EMA, the planetary 

roller screw is the key component which aims to match the torque and speed between 

the motor and the external load by transitional mechanism [26]. Mathematically, the mo-

tion o 

𝑣𝑠 =
𝑝

2𝜋
𝜔𝑚 (1) 

𝐹𝑠 =
2𝜋

𝑝
𝑇𝑚 (2) 

where 𝑣𝑠 and 𝐹𝑠, respectively, represent the axial speed and output force of the screw, 𝜔𝑚 

and 𝑇𝑚, respectively, denote the torque and rotating speed of the motor, and 𝑝 is the lead 

of planetary roller screw. 

The energy loss within the transmitting pairs should also be considered, including 

the inertia effect, friction loss. The inertia of the planetary roller screw is negligible in the 

system and is equivalently converted to that of the motor rotor. The friction loss can be 

simplified proportionally to the rotating speed, known as viscous friction. Consequently, 

the motion of the mechanical drivetrain is given by: 

𝐹𝑠 =
2𝜋

𝑝
(𝑇𝑚 − 𝐽

𝑑𝜔𝑚

𝑑𝑡
− 𝐵𝑚𝜔𝑚) (3) 

where 𝐽 and 𝐵𝑚, respectively, represent the inertia moment and viscous friction coeffi-

cient equivalent to the motor rotor.  

The model of mechanical assembly, containing a planetary roller screw, sensing el-

ements, and the external load, is developed in AMESim; see Figure 3. All the compo-

nents are obtained from the AMESim standard library, while the load is given by direct-

ly inputting dynamic force. 

 

Figure 3. Mechanical assembly model. 

Position 
controller

Velocity
controller

Current
controller

Velocity loop

Current loop

Position loop

Position 
command

Three-phase PMSM
PRS

Load

Motor driver
Controller

Planetary roller screw External loadSensors

Figure 3. Mechanical assembly model.

The electrical module: the electrical module is mainly used to transform the control
command into the mechanical assembly inputs for actuating. The triple-loop controller
contains three control units: a position controller, a velocity controller, and a current
controller (see Figure 2 for details). The current controller exploits the spatial vector control
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to meet the requirement of high-frequency switching of the motor driver. Circular rotating
magnetic field generated by a space vector are dedicatedly designed to improve the tracking
accuracy of the current loop. The speed and position loops use the Proportional Integral
(PI) control, which ensures the settling time and the steady-state accuracy.

Furthermore, a three-phase inverter and six Insulated Gate Bipolar Transistor (IGBTs)
are used as the motor driver. The three-phase inverter receives the PWM signals from the
spatial vector controller, regulates the on-off switching of all the IGBTs, and thus delivers a
three-phase sinusoidal voltage to the motor stator.

In line with the three-phase voltage on the stator, the rotating speed and the electro-
magnetic torque of rotor are generated. The transformation between the two-phase rotating
reference frame (dq) and the three-phase stationary coordinate system (abc) is performed
using the constant-power Clarke and Park transformation and inverse transformation:

ud = Rsid + Ld
did
dt
−ωmLqiq (4)

uq = Rsiq + Lq
diq
dt

+ ωmLdid +

√
3
2

ωm ϕ f (5)

Tm = −n(

√
3
2

iq ϕ f + (Ld − Lq)iqid) (6)

where u, L, and i, respectively, represent the voltage, inductance, and current of dq coor-
dinate, Rs denotes the equivalent resistance of each stator winding, ϕ f is the permanent
magnet flux linkage, and n is the number of the motor pole-pairs.

The overall EMA model, containing the mechanical assembly and the electrical module,
is built on the platform of AMESim (see Figure 4 for details). The motor and its driver are
devised using standard components, while the hysteresis controller and PI controllers are
developed based on mathematical expressions. More precisely, all the key parameters of
EMA, such as the equivalent moment of inertia to the rotor and screw viscous damping
coefficient, as well as the control parameters of the PI controller, are identified using a
differential evolution algorithm [33].
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3.2. Simulation Model Verification

The efficiency of the proposed EMA model in failure simulation is assessed. The simu-
lation parameters are obtained based on the differential evolution algorithm [33,34]. Each
parameter presented in Table 1 obtains an optimal value after the differential evolution.
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Table 1. Specifications for EMA model simulation.

Parameter Notation Value

Three-phase inverter voltage (V) U 310
Screw lead (m) p 0.00254

Equivalent moment of inertia to rotor (kg·m2) J 0.0026
Equivalent viscous friction coefficient to rotor (Nm/(rad/s)) Bm 0.5

Equivalent resistance value of each stator winding (ohm) Rs 2.26
Permanent magnet flux (Wb) ϕ f 0.2375

Number of pole pairs n 4

A step signal: y =


10, 0.8s < t < 2.4s

0, 0s < t < 0.8s, 2.4s < t < 4s, 5.6s < t < 6s
−10, 4s < t < 5.6s

and a sinusoidal

signal y = 2sin(2π × 2t) are sent to the model as the reference to evaluate the tracking
performance. The simulated tracking outcomes are presented in Figure 5.
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Figure 5. Simulation response to different inputs. (a) Response to step input; (b) Response to
sinusoidal input.

In terms of step signals, system overshoot, steady-state error, and settling time are
typically employed to characterize the tracking accuracy. During the input signal drop
from 0 to −10 mm, the steady-state error is less than 0.2% with the settling time of 0.20 s.
When the input jumps to 10 mm, the steady-state error varies within 0.3%, and the settling
time is 0.21 s. No overshoot is generated during tracking. For the 2 Hz sine input signal,
amplitude attenuation and phase lag of the proposed model are computed, which are
0.18 mm and 28.1◦ within the stabilization. The simulation results demonstrate that the
proposed model has a satisfying performance in both tracking accuracy and settling time.
Consequently, the proposed EMA simulator can be applied to the fault injecting process for
fault data generation.

4. EMA Fault Diagnosis Method

At this stage, a sine signal is considered as the control command of EMA, whose
amplitude is 2 mm and the frequency ranges from 0.3 Hz to 6 Hz with an interval of 0.3 Hz.
The external load is of 0 N and 500 N.

Forty sets of different working conditions are performed. The three-phase current
of the motor is measured to characterize the working state of EMA. Notably, all these
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40 sets of data refer to general working conditions while singular condition is currently
not considered.

4.1. Fault Injection

As previously mentioned, the open circuiting of the motor stator is a serious fault
to the control system and motor, which accounts for a high proportion of all the EMA
faults. Therefore, the motor open circuit malfunction is simulated, containing an open
circuit of stator windings and IGBT in motor driver. In general, the unstable power supply,
ground faults, and mechanical vibrating shock can result in the disconnection. An open
circuit in phase A indicates the current of this phase approaches 0, as shown in Figure 6.
Consequently, the current summation of the other two phases is also equal to 0. Using this
property, the open circuit fault is injected into the EMA simulator. Specifically, an electric
switch is inserted to A phase to control the output current, as presented in Figure 7. With
the fault injected, the current of phase A is 0 while those of the other phases tremendously
increases. Figure 8 exhibits the three-phases current of A-phase open circuit while the
normal state data is also given for comparison.
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Figure 8. Fault data of A-phase open circuit. (a) A-phase current; (b) B-phase current. (c) C-
phase current.

A-phase open circuit represents iA ≈ 0 and iB + iC = 0.
On the other hand, the IGBTs of the inverter work in a high-voltage condition, which

generate a large amount of heat during the high-frequency switching. Therefore, the
IGBTs always suffer from the alternation of cold and heat, and are therefore subjected to
continuous shear stress. Due to the fact that two IGBTs exist for each phase, each IGBT
has the risk of disconnection during the work process. Hence, the faults are defined as the
open circuit of upper-bridge IGBT (Figure 9a), lower-bridge IGBT (Figure 9b), and both
IGBTs (Figure 9c) of each phase. The open circuit of IGBT will result in increasing the phase
voltage and phase current, and further lead to the motor instability.
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Figure 9. Schematic diagram of A-phase IGBT open circuit. (a) Open circuit of upper-bridge IGBT;
(b) open circuit of lower-bridge IGBT. (c) Open circuit of both IGBT.

An IGBT open circuit of phase A is injected into the EMA simulator by disconnect-
ing the IGBT(s) of this phase. The three-phase currents of the motor are generated (see
Figures 10–12 for details). The open circuit of the upper-bridge IGBT causes current absence
in the negative half-cycle, while that of the lower-bridge generates the current abnormality
in the positive half-cycle. More precisely, the open circuit of both IGBTs indicates a winding
disconnection in this phase.
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Figure 10. Fault data of A-phase upper-bridge IGBT open circuit. (a) A-phase current; (b) B-phase
current. (c) C-phase current.
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Figure 11. Fault data of A-phase lower-bridge IGBT open circuit. (a) A-phase current; (b) B-phase
current. (c) C-phase current.
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Figure 12. Fault data of A-phase both IGBT open circuits. (a) A-phase current; (b) B-phase current.
(c) C-phase current.
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Moreover, the sensor malfunction is also injected to validate the efficiency of the fault
diagnosis method. On the contrary, the sensor malfunction is the most controllable to
conduct on actual failure tests, due to the fact that it does not destroy the crucial component
within the EMA structure. The sensor failures can lead to abnormal feedback of the closed-
loop control and an unreliable system deviation. As illustrated in Figure 2, the EMA system
involves a displacement sensor to detect the output rod displacement, a speed sensor to
detect the motor speed, and a current sensor to detect the stator current. Theoretically, a
sensor fault in the outer loop will result in a more uncontrollable system state. Therefore,
the sensors’ failures containing an open circuit of displacement sensor and a velocity sensor,
are also injected into the EMA simulator to generate fault data. The three-phase current
of the normal and failure conditions is generated (Figures 13 and 14). In addition, the
reproduction of these sensor faults is implemented on the actual working EMA, which
aims at demonstrating the validity of the fault diagnosis approach in practical use.
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Figure 13. Fault data of displacement sensor open circuit. (a) A-phase current; (b) B-phase current.
(c) C-phase current.
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Figure 14. Fault data of velocity sensor open circuit. (a) A-phase current; (b) B-phase current.
(c) C-phase current.

4.2. Fault Diagnosis Method Based on Gated Recurrent Unit (GRU) and Co-Attention Network

In this section, a network is proposed to identify the working state of the EMA under
different conditions. The model is designed using the GRU and the co-attention mechanism,
as shown in Figure 15.
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Figure 15. Fault diagnosis model architecture.

GRU is a variation of recurrent neural networks (RNNs) proposed by Cho et al. [35],
which is generally used to learn sequential features from an input data stream using
historical ones. A GRU is established on two gates and activation functions to integrate the
previous memory into the current input, and thus update the output. The GRU is able to
weaken the gradient vanish and get easily converged with a simple structure. On the other
hand, the co-attention network deals with the interaction of different parts, and extracts
the discriminative features from the input. In a deep-learning model, the integration of
a co-attention mechanism aims at reducing the unrelated information and obtaining the
essential information within the sequence. With respect to different types of sensing signals
of the EMA simulator, the proposed model is based on the co-attention network, which
aims at highlighting the significances of the time-varying and co-dependent data. The
attentive information of each part is taken into account towards the final fault identification.

A given sequence of signals X = [x1, x2, · · · xi, · · · xn] ∈ Rn is exactly detected from the
coaxial-rotor unit. xi is considered as the ith input vector of the proposed model. The input
signals are fed into the three consecutive fully-connected layers to obtain sparse vectors
while preserving features. For each layer, the leaky-Rectified Linear Unit (leaky-ReLU)
function is used to activate the feature of xi. The leaky-ReLU is expressed as:

leakyReLU =

{
x

leak ∗min(0, x)
x ≥ 0
x < 0

(7)

where leak represents the function slope for a negative input, which is generally a constant
between 0 and 1, set to 0.2 in the proposed model.

Therefore:
x′i = wxi + b (8)

and:
yi = leakyReLU

(
x′i
)

(9)

where w is the weight matrix and b is the bias vector. Both parameters are determined by
model training.
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Similarly, yi is considered as the input of the following two-layer activation and thus
an hi is obtained:

zi = leakyReLU(wyi + b) (10)

ui = laekyReLU(wzi + b) (11)

Hence, features of the inputs can be thoroughly gleaned.
As previously mentioned, the sensing signals are encoded by GRU to capture the

internal characteristics of the working state in time-sequence. For the vector ui sent to a
GRU cell, the previous information from the last hidden unit is integrated. Consequently,
the output hi is generated:

hi = GRU(ui) (12)

hi is kept as the hidden representation for the next-step processing within its GRU cell.
At this stage, considering the input sequence of X = [x1, x2, · · · xi, · · · xn], the corresponding
set H = [h1, h2, · · · hi, · · · hn] is obtained.

With an increasing amount of detected sensing data, a more accurate description of
the working system can be accessed. Nevertheless, the more input signals are collected,
the more complicated the processing procedures will be. In this paper, since all the data
are sensed to characterize the working state, the three-phase current signals are fused to
facilitate the processing rather than neglecting any important information. The co-attention
mechanism is then performed to eliminate the irrelevant properties and obtain the essential
features. Considering the interaction among different working parts in the system, the
sensing signals on each part apparently affect the other sensor outcomes, and vice versa. For
the vectors hi and hj, the attentive weight matrix can be calculated based on the interactive
learning of the co-attention network:

W = leakyReLU
(

hT
i Mhj

)
(13)

where M ∈ Rn×n represents the parameter matrix and hT
i denotes the transpose of hi.

Furthermore, for the current sequence H = [h1, h2, · · · hi, · · · hn], the attention mecha-
nism is given by:

R = W
(

HT
)
+ B (14)

where B is the bias matrix that is finetuned during the training process.
At this stage, the outcome vector R with the basic feature of the system, is sent to a

softmax classifier to identify the working conditions:

o = so f tmax(R) (15)

and:

αi = so f tmax(βi) =
exp(βi)

∑C
k=1 exp(βk)

(16)

where C represents the number of different working conditions.
Thus, the fault classification result is given by:

O = (o)T (17)

4.3. Model Training

The training process of the proposed model is performed using the cross entropy and
L2 regularization as the loss function:

J = −∑C
i=1 gilog(yi) + λr

(
∑θ∈Θ θ2

)
(18)

where gi is the real distribution of sentiment, yi is the predicted one, and λr is the weight of
L2 regularization.
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The gradients as well as the other parameters are updated by back propagation with
the learning rate λl :

Θ = Θ− λl
∂J(Θ)

∂Θ
(19)

5. Experiments
5.1. Experimental Setting

Experiments are conducted to verify the efficiency of the proposed fault diagnosis
method. As previously mentioned, the model inputs are three-phase current signals that
describe the EMA working states. Two general categories of failures (i.e., open circuit of
motor and sensor malfunction) are simulated. The former contains 9 distinguishing faults
while the latter contains 2 faults. Since 40 different working conditions exist, 440 sets of
fault data and 40 sets of normal data are generated. Data of every single working state
are simulated for 3 s, with a frequency of 1 kHz. For each data set, 1024 points of data
are randomly picked in time sequence. In addition, for each data point, the following
512 points are considered as a data sample for further processing. Consequently, 491,520
(1024 × 480) sets of data are generated. All the samples are subdivided into the sets of
training, validating, and testing with a ratio of 8:1:1.

The proposed model is finetuned with an ADAM optimizer with β1 = 0.9, β2 = 0.999
and ε = 1× 10−8. The initialization parameters are used for 1000 iterations to optimize the
related parameters. All the parameter matrices are randomly generated in the distribution
of U (−0.1, 0.1), while the bias is initialized to 0. The hidden states dimension of the GRU
cell is set to 300, with a learning rate of 0.001. Both the batchsize and the training epoch are
set to 10. Moreover, the L2 regularization weight is set to 0.0001, and the dropout rate is set
to 0.5 to prevent overfitting.

5.2. Results

In this experiment, the accuracy is considered as the evaluation metric used to char-
acterize the working performance. Table 2 presents the testing accuracy of each fault
diagnosis task, for each working condition.

Table 2. Fault diagnosis accuracy.

Fault Category Accuracy

Motor stator open circuit

A-phase open circuit 98.0%

B-phase open circuit 97.9%

C-phase open circuit 97.5%

Motor driver open circuit

A-phase upper-bridge IGBT open circuit 98.6%

A-phase lower-bridge IGBT open circuit 98.2%

B-phase upper-bridge IGBT open circuit 98.2%

B-phase lower-bridge IGBT open circuit 98.1%

C-phase upper-bridge IGBT open circuit 98.0%

C-phase lower-bridge IGBT open circuit 98.2%

Sensor malfunction
Displacement sensor open circuit 95.9%

Velocity sensor open circuit 95.9%

Normal state 97.8%

Among all the evaluation settings, the motor driver open circuit diagnosis has the best
and most consistent performance compared to that of the other methods. The accuracy
of the motor driver open circuit classification ranges between 98.0% and 98.6%. The best-
performing outcome in this group is the diagnosis of the A-phase upper-bridge IGBT open
circuit. The results obtained on motor stator open circuit range from 97.5% to 98.0%, and
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therefore they are slightly lower than those obtained on motor driver open circuit. In addi-
tion, the diagnosis accuracy of sensor malfunction and normal state are 95.9% and 97.8%,
respectively. Consequently, the experimental results in Table 2 demonstrate the universality
of the proposed model, due to the accuracy consistency in different working conditions.

5.3. Experimental Verification

In this experiment, the sensor failure is used for representation to perform the actual
experimental setup, which aims at identifying the outperformance of the proposed model.
The test rig is illustrated in Figure 16. To confirm the consistency of the proposed simulator
and the actual EMA, time-domain and frequency-domain analysis are conducted. Figure 17
presents the tracking responses to a 1 Hz sinusoidal signal of both simulated and actual
EMAs, with a tracking error within 0.1 mm. According to the bode diagram of Figure 18,
the similarity between the two EMAs reaches 95%, which demonstrates the efficiency of
the EMA simulator in fault data generation.
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Figure 16. The test rig.

The velocity sensor is embedded into the EMA structure.
According to the simulation-based outcomes, no-load working state has a sinusoidal

signal as the control command with a 2 mm amplitude and 0.6 Hz to 1.8 Hz frequencies
and an interval of 0.3 Hz. Under this condition, a spring is further taken to apply a
500 N external load to the EMA. The failures can be regenerated by disconnecting the
sensing cables of the displacement sensor. The normal state and the sensor malfunction are
performed with a total number of 20 working conditions. For each working condition, the
data sequence contains 1024 sets of three-phase currents of the motor, that are collected as
test samples and sent to the fault diagnosis method.
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Figure 17. Time domain analysis of simulated and actual EMA. (a) Response to a 1 Hz sinusoidal
signal; (b) response error.
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Figure 18. Frequency domain analysis of simulated and actual EMA. (a) Amplitude margin;
(b) phase margin.

The testing results are presented in Figure 19. The average classification accuracy of
the proposed model is 89.4%, where 90.7% are for normal state and 88.1% for sensor mal-
function. When a failure occurs in the actual system, the current signals variation is of the
same property with that of the simulation data. In addition, only if multiple data sequences
representing a fault are simultaneously detected, the working state can be determined as a
fault. Consequently, a satisfying fault diagnosis accuracy is still accessible. The proposed
model fails to retain the performance of the simulating experimental outcomes. This is due
to the fact that the three-phase current of the motor in the actual system contains noise,
which can introduce measurement errors into the signals. Notably, the variation of input
signals merely results in a marginal drop of the classification accuracy, which indicates the
stability of the proposed model. Since the proposed model is able to classify faults on actual
working systems by simulated data training, it is reasonable to expect better performance
in practical use.
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5.4. Discussion

The data detected from an actual EMA system is also sent to more fault diagnosis
methods for working performance comparison. To be specific, the recurrent neural network
(RNN) and the long short-term memory (LSTM) are taken to substitute the GRU in the
proposed model. The fault classification results are given in Table 3.

Table 3. Fault classification accuracy of different algorithm.

Model RNN LSTM GRU

Average 87.53% 90.76% 89.4%
Normal state 91.58% 92.47% 90.7%

Sensor malfunction 84.39% 89.20% 88.1%

Apparently, our model outperforms RNN on the average classification accuracy. By
contrast, the application of LSTM has a slightly better performance than our model. Both
LSTM and GRU are the variants of basic RNN. Thus, it is acceptable that the outcomes
of LSTM- and GRU-based models are comparable. With more training data detected, the
model can be developed in a more effective way, as it is the case.

6. Conclusions

This paper proposed a methodology on the task of EMA fault diagnosis. A virtual
model of EMA which is in line with the actual EMA, is first developed to simulate its
working states. The fault data corresponding to the actual failures in EMA are then
injected into the EMA simulator to generate fault signals for processing. Moreover, a
deep-learning-based approach is developed for the diagnosis of faults based on working
states classification. In this fault diagnosis model, the GRU cells are used to capture
the characteristics of different states while a co-attention network is used to remove the
unrelated features and integrate the discriminative information. The performance of the
proposed model is validated on three categories of working states. The experimental results
demonstrate that the proposed model achieves a higher accuracy (by 95.0%) for all the
evaluation settings. Furthermore, the verification of the fault diagnosis model on actual
EMA is also performed, which further confirms the efficiency in practical use.
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Since the collection of all the failures of EMA is too complicated, it is impossible to
detect faults of all the categories. The diagnosis of an increasing number of faults requires
further studies. Although the proposed model can classify the working state of EMA due
to the current simulation model and laboratory condition, the possibility of further accurate
identification of more faults is still an open question.
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