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1. Introduction

Since the discovery of neutrino oscillations at the end of the last century [1, 2] which demon-
strated neutrinos are massive particles, significant progress has been made in determining their
properties [3]. In order to describe 3 flavor neutrino oscillations, 6 independent parameters are
required in total: 2 mass squared differences (Δ𝑚221, and Δ𝑚

2
32 or Δ𝑚

2
31)1, 3 mixing angles (𝜃12,

𝜃13, and 𝜃23), and a CP-violating phase (𝛿CP). At this moment, most of these parameters have been
measured to a . 5% precision with the exception of the sign of Δ𝑚232 and the value of 𝛿CP [4, 5].
The unknown sign of Δ𝑚232 creates two possible different neutrino mass orderings (NMOs), which
are named “normal ordering” (when 𝑚1 < 𝑚2 < 𝑚3, with 𝑚𝑖 being the mass associated with
the neutrino mass eigenstate 𝜈𝑖) and “inverted ordering” (when 𝑚3 < 𝑚1 < 𝑚2). The “inverted”
name refers to the fact that in this case the 𝜈𝑒 effective mass is not the smallest, as would have
been normally expected given the masses of the other fermions of the Standard Model of Particle
Physics.

With the discovery of a rather large 𝜃13 value in 2012 [6], it became possible to consider
using medium baseline reactor experiments to determine the NMO. The Jiangmen Underground
Neutrino Observatory (JUNO) was born of this idea, and then developed to cover a broad physics
program including studying neutrinos from natural sources sources such as solar, supernova, and
atmospheric neutrinos, and to search for physics beyond the Standard Model of Particle Physics.

This document relies heavily on Refs. [7, 8]. After an initial description of JUNO in Sec. 2,
this proceedings will focus on the NMO measurement in Sec. 3, the precision measurement of
oscillation parameters in Sec. 4, and on studies using atmospheric neutrinos in Sec. 5. Studies with
JUNO involving supernova neutrinos, the diffuse supernova background, and solar neutrinos are
also covered in separate proceedings of this conference [9–11].

2. JUNO

The JUNO detector is located in the south-east of China at a distance of 53 km from the
Yangjiang andTaishanNuclear Power Plants (NPP). This locationwas selected to optimize theNMO
sensitivity using reactor neutrinos, requiring the detector to be placed at the first 𝜈̄𝑒 disappearance
maximum that is driven by Δ𝑚221 while measuring simultaneously the oscillation pattern from both
Δ𝑚232 and Δ𝑚

2
21. JUNO is currently being constructed and is expected to start taking data in 2022.

The JUNO detector is composed of three main parts, as shown in Fig. 1: the Central Detector
(CD), the Water Cherenkov Detector (WCD) and the Top Tracker (TT). The CD is composed of a
35.4 m diameter acrylic sphere containing 20 kton of liquid scintillator. This sphere is monitored
by 18k 20” and 26k 3” photomultiplier tubes (PMT) that surround the acrylic sphere. High PMT
coverage and high light yield liquid scintillator are required for the JUNO CD to reach a 3% energy
resolution at 1 MeV, required for the NMO determination. The WCD is a cylinder of diameter
43.5 m and height 44 m surrounding the CD. This volume is filled with 35 kton of ultra-pure water
and instrumented with 2.4k 20” PMTs with the goal of tracking atmospheric muons entering the
detector and protecting the CD from external radioactivity. The TT, located on top of the WCD,

1Δ𝑚232 and Δ𝑚
2
31 are not independent as Δ𝑚

2
31 = Δ𝑚232 + Δ𝑚221

2
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Jiangmen Underground Neutrino Observatory

2

Huge mass: ~20 kton Liquid Scintillator (LS)

Underground: ~700 m overburden
Unprecedented energy resolution: 3% / √E (MeV)
Energy scale precision: < 1%

arXiv:2104.02565

JPG 43 (2016) 030401

arXiv:1508.07166

Main physics goal:

ν Mass Ordering determination

↳ rich physics possibilities

Top Tracker (TT)

Water Cherenkov Detector (WCD)

Central Detector (CD)

Figure 1: The JUNO detector.

is made of 3 layers of plastic scintillator used to precisely track some of the atmospheric muons
entering the detector. The TT covers about 60% of the surface above the WCD.

In JUNO, reactor electron anti-neutrinos will be detected using the inverse beta decay (IBD)
reaction: 𝜈̄e + p → n + e+. The positron produced in this reaction, which will keep most of the
electron anti-neutrino energy, will quickly deposit most of its energy and annihilate with electrons
in the medium producing a pair of 511 keV gamma-rays. The neutron produced in this reaction,
will be captured by a proton after a mean time of about 200 µs, and its de-excitation will produce
a 2.2 MeV gamma-ray. The temporal and spatial coincidence signature created by these prompt
(positron) and delayed (neutron) signals is characteristic of the IBD and is essential to suppress a
large fraction of the background. Given in the IBD the positron keeps most of the neutrino energy,
the reconstructed prompt energy is used to determine the electron anti-neutrino energy required for
oscillation studies.

Due to the lack of a reference reactor electron anti-neutrino spectrum with a similar resolution
to the JUNO detector, the JUNO-TAO detector [12], shown in Fig. 2, was added to the project. The
JUNO-TAO detector is located 30 m from one of the Taishan NPP reactor cores. With a surface
10 m2 of silicon photomultipliers panels operated at -50◦C monitoring a 1 ton fiducial volume
containing Gd-loaded liquid scintillator, JUNO-TAO will provide an energy spectrum for reactor
neutrinos with an energy resolution of less than 2% at 1 MeV which is better than that of JUNO.
This reference spectrum will effectively reduce the impact of possible unknown fine-structures in
this spectrum [13] on the measurement of neutrino oscillations.

3. Measuring the Neutrino Mass Ordering

The neutrino flux from the Taishan and Yangjiang NPPs will be detected in the JUNO detector
as shown in Fig. 3, as a function of the true neutrino energy. In this figure the different oscillation
patterns, arising from the Δ𝑚221 and Δ𝑚

2
32 oscillation frequencies, can be clearly identified. The

slow oscillation, tied to Δ𝑚221, shows a single large deficit in the spectrum with a maximum around
3 MeV, but that spans the entire energy range. The fast oscillation, tied to Δ𝑚232, produces wiggles
in the spectrum over the entire range, but with a much smaller amplitude. The position of these
wiggles depends on the neutrino mass ordering and it is trough their measurement that JUNO
determines the NMO. It is worth noting that in Fig. 3 the true neutrino energy spectra are shown.

3
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Executive Summary

The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experi-
ment of the Jiangmen Underground Neutrino Observatory (JUNO) [1]. TAO consists of a ton-level
liquid scintillator (LS) detector at ∼ 30 meters from a reactor core of the Taishan Nuclear Power
Plant in Guangdong, China. About 4500 photoelectrons per MeV could be observed by instru-
menting with almost full coverage (∼ 10 m2) of Silicon Photomultipliers (SiPMs) of > 50% photon
detection efficiency, resulting in an unprecedented energy resolution approaching to the limit of LS
detectors. The detector operates at -50◦C to lower the dark noise of SiPM to an acceptable level.
The TAO experiment is expected to start operation in 2022.

The main purposes of the TAO experiment are 1) to provide a reference spectrum for JUNO,
eliminating the possible model dependence due to fine structure in the reactor antineutrino spec-
trum in determining the neutrino mass ordering [2]; 2) to provide a benchmark measurement to test
nuclear databases, by comparing the measurement with the predictions of the summation method;
3) to provide increased reliability in measured isotopic antineutrino yields due to a larger sampled
range of fission fractions; 4) to provide an opportunity to improve nuclear physics knowledge of
neutron-rich isotopes [3]; 5) to search for light sterile neutrinos with a mass scale around 1 eV;
6) to provide increased reliability and verification of the technology for reactor monitoring and
safeguard.

Figure 1: Schematic view of the TAO detector, which consists of a Central Detector (CD) and
an outer shielding and veto system. The CD consists of 2.8 ton gadolinium-doped LS filled in a
spherical acrylic vessel and viewed by 10 m2 SiPMs, a spherical copper shell that supports the
SiPMs, 3.45 ton buffer liquid, and a cylindrical stainless steel tank insulated with 20 cm thick
Polyurethane (PU). The outer shielding includes 1.2 m thick water in the surrounding tanks, 1 m
High Density Polyethylene (HDPE) on the top, and 10 cm lead at the bottom. The water tanks,
instrumented with Photomultipliers (shown by red circles), and the Plastic Scintillator (PS) on the
top comprise the active muon veto system. The dimensions are displayed in mm.

The schematic drawing of the TAO detector is shown in Figure 1. The Central Detector (CD)

7

Figure 2: The JUNO-TAO detector.
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Figure 1: The expected antineutrino energy spectrum weighted by IBD cross-section with and without
oscillation at the JUNO experiment for normal ordering and inverted ordering assuming 2000 days of
data-taking. Dependence on the four oscillation parameters is shown.

example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc (kiloparsec )
would lead to ∼ 5000 inverse-beta-decay events and ∼ 2000 all-flavor neutrino-proton elastic scatter-
ing events in JUNO, which are of crucial importance for understanding the mechanism of supernova
explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of 1–2
neutrinos per year from all past core-collapse supernova explosions in the visible universe can further
provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino
energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in
the Earth can be detected in JUNO with a rate of ∼ 400 events per year, significantly improving the
statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can
provide independent inputs for determining the mass ordering and the octant of the θ23 mixing angle.
Detection of the 7Be and 8B solar neutrino events at JUNO would shed new light on the solar metal-
licity problem and examine the spectral transition region between the vacuum and matter-dominated
neutrino oscillations.

The JUNO detector provides sensitivity to physics searches beyond the Standard Model. As exam-
ples, we highlight the searches for proton decay via the p→ K+ + ν̄ decay channel, neutrinos resulting
from dark-matter annihilation in the Sun, violation of Lorentz invariance via the sidereal modulation
of the reactor neutrino event rate, and the effects of non-standard neutrino interactions.

JUNO was first conceived in 2008 [6, 7]. It was approved in 2013 after Daya Bay [17], Double
Chooz [18], and RENO [19] measured an unexpectedly large value of θ13, which meant that the NMO
could be determined with current technologies. The civil construction started in 2015. The detector is
expected to be ready in 2022, and data-taking is expected in 2023.

In 2018, the Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) was proposed as
a satellite experiment of JUNO to measure the reactor antineutrino spectrum with sub-percent energy
resolution [20]. Since Daya Bay [21], Double Chooz [22], and RENO [23], among others, have found
that the model prediction on the reactor antineutrino spectrum [24, 25] has large discrepancies with
data, TAO will provide a reference spectrum for JUNO, and also provide a benchmark measurement
to test nuclear databases. TAO will be a ton-level liquid scintillator detector at ∼ 30 meters from a

5

Figure 3: Reactor electron anti-neutrino spectra in JUNO as a function of the neutrino energy. From Ref. [8].

Once the energy resolution of the detector is taken into account the fast wiggles at the lower part
of the energy spectrum will no longer be distinguishable, and the measurement will rely mainly on
those at higher energies. This is the reason why the detector energy resolution is one of the key
parameters towards the measurement of the NMO.

Since Ref. [7], several changes impacted the project with opposing impacts to the NMO
analysis [8]. On one hand, only 2 of the 4 originally planned Taishan NPP reactor cores were built.
The plans to build the other 2 cores are currently uncertain. On the other hand, the PMT quantum
efficiency and the measured light scintillator light yield were higher than considered in Ref. [7]. In
addition to these changes, the unoscillated reactor spectrum will now be better constrained than was
expected in Ref. [7] thanks to JUNO-TAO. These changes both increase and decrease the JUNO
NMO sensitivity and are expected in the end to have a small net impact in the final JUNO sensitivity.
Detailed analyses are currently ongoing to provide updated sensitivities, taking into account not
only the aforementioned changes but also a more realistic description of the detector and calibration
based on measurements done by the collaboration. The discussion on the remainder of this section
and on the next section will be done based on Ref. [7].

The sensitivity of JUNO to the NMO is calculated using an Asimov sample. Fits to both

4
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Figure 4: JUNO sensitivity to the NMO (Δ𝜒2 contours) as a function of the JUNO lifetime scaled from
6 years and the energy resolution at 1 MeV. From Ref. [7].

orderings are performed and the difference between minimum 𝜒2 in the true and false orderings
is calculated and noted as Δ𝜒2. For 6 years of data taking, a Δ𝜒2 = 16 is expected considering
only statistical errors assuming all reactors cores are located at exactly the same optimal distance
of ∼52.5 km. After taking into account the real distances to each reactor cores2 along with adding
systematic errors on the signal and background, the JUNONMO sensitivity is reduced to Δ𝜒2 = 10.
In Fig. 4 is shown the dependency of the Δ𝜒2 value obtained as a function of the luminosity, scaled
from the 6 years baseline, and the energy resolution at 1 MeV. It highlights the importance of
achieving the previously discussed 3% energy resolution as even increasing by 50% the amount of
data, JUNO is not able to reach 3𝜎 sensitivity (ie, Δ𝜒2 = 9) for a 3.5% energy resolution. To reach
this goal, the JUNO detector uses 4 complementary calibration systems. A detailed calibration
strategy for JUNO is presented in Ref. [14], where a (3.02 ± 0.01)% energy resolution at 1 MeV
and a (0.03 ± 0.01)% energy bias are achieved in the baseline detector configuration.

In the previously discussed JUNO sensitivity, no external data is used to constrain the Δ𝑚232
value fitted by JUNO. By using an external 1% constraint from 𝜈𝜇 disappearance measurements, the
NMO sensitivity can be improved to 4𝜎 [7]. This is possible thanks to the intrinsic difference in the
𝜈̄𝑒 → 𝜈̄𝑒 and 𝜈𝜇 → 𝜈𝜇 oscillations which lead to different best-fit values for Δ𝑚232 when fitting the
wrong ordering. In addition to simply adding a prior from 𝜈𝜇 disappearance measurements, several
analysis performed combining JUNO with accelerator [15] and atmospheric [16–18] neutrino
experiments have highlighted the possibility of boosting the NMO sensitivity to 5𝜎.

4. Precision Measurement of Oscillation Parameters

Using the same sample used for the NMO measurement, it is also possible to determine the
values of 4 of the oscillation parameters. The JUNO baseline is ideal for precision measurements of
the Δ𝑚221 and 𝜃12 parameters being located in the first 𝜈̄𝑒 disappearance peak from Δ𝑚221. Addition-
ally, the 3% energy resolution will make it possible to measure several Δ𝑚232 oscillations, enabling
JUNO to achieve sub-percent precision on this parameter. While JUNO can also measure 𝜃13, it is

2Including also the Daya-Bay and Huizhou NPP cores which are located at significantly longer baselines.

5
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not expected to achieve the precision of current reactor experiments. Fig. 5 shows JUNO’s expected
precision on Δ𝑚221, Δ𝑚

2
𝑒𝑒, and sin2 𝜃12 as a function of the energy resolution. The Δ𝑚2𝑒𝑒 parameter

used in this study is a proxy for Δ𝑚232 and is defined as: Δ𝑚
2
𝑒𝑒 = cos2 𝜃12Δ𝑚231 + sin

2 𝜃12Δ𝑚
2
32. For

the precision measurement of the neutrino oscillation parameters, the energy resolution requirement
has a significantly smaller impact, and for all studied energy resolutions JUNO is expected to reach
a better than 0.6% precision on these 3 parameters. The changes since Ref. [7] that impacted the
NMO analysis will also have an impact in these precision measurements. Taking into account these
changes, a reassessment of JUNO’s precision to measure these 3 parameters is in progress, although
the results are not expected to change significantly.

5. Atmospheric Neutrinos

As discussed previously, besides measuring reactor neutrinos JUNO will also measure neutri-
nos from other sources. Among these sources are neutrinos produced in the showers originated by
cosmic-rays interacting in the Earth’s atmosphere. Atmospheric neutrinos have a long history of be-
ing used to study neutrino oscillations, since their discovery in 1998 bySuper-Kamiokande [1]. More
recently, atmospheric neutrino experiments have also been proposed to determine the NMO [19, 20]
using matter effects during the neutrino propagation through the Earth. While the JUNO detector is
not optimized to measure atmospheric neutrinos, the JUNO sensitivity to NMO using atmospheric
neutrinos is expected to be between 0.9𝜎 and 1.8𝜎 with 10 years of data, depending on the as-
sumptions regarding the detector capability to identify and reconstruct atmospheric neutrinos [7].
Besides a direct NMO measurement, studies are also ongoing to combine the sensitivity to the
NMO using reactor and atmospheric neutrinos within JUNO.

In addition to being used to study neutrino oscillations, JUNO will also be able to measure the
𝜈𝑒 + 𝜈̄𝑒 and 𝜈𝜇 + 𝜈̄𝜇 spectrum between 100 MeV and 10 GeV, as shown in Fig. 6. In this analysis,
the different hit time patterns of electron and muon neutrinos, caused by the creation of an electron
or muon in the neutrino charged current interaction, are used to discriminate the flavor of the
detected neutrinos. Given the higher energy of these neutrinos in comparison to reactor neutrinos,

Energy resolution @ 1 MeV (%)

Figure 5: Expected precision on Δ𝑚221, Δ𝑚
2
𝑒𝑒 (used as a proxy for Δ𝑚232), and sin

2 𝜃12 as a function of the
energy resolution. From Ref. [7].

6
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evaluated. A Monte Carlo sample of the atmospheric neutrinos has been generated, the simulated
spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the
detector in the atmospheric low energy region. The different hit time patterns caused by final-state
electrons and muons allow discriminating the flavor of the primary νe and νµ neutrinos. To reconstruct
the time pattern of events, the signals of 3-inch PMTs have been used, which will be operated in digital
mode due to their small area. Furthermore, the Transit Time Spread (TTS) of 3-inch PMTs is of the
order of the nanosecond, while the 20-inch PMTs one is larger, for most of them. By use of a probabilistic
unfolding method, we have reconstructed separately the primary νe and νµ spectra as shown in Fig. 8.
To remove low-quality events, preliminary cuts have been applied to the neutrino sample. A cut on
the interaction vertex position is applied, to remove events that release their energy near the edge of
the acrylic vessel. Furthermore, an additional cut on the total number of hits seen by the water pool
veto PMTs has been used in the analysis to discard PC events and suppress the atmospheric muon
background. The resulting νe and νµ populations have been passed through the analysis procedure.
The total uncertainty on the atmospheric neutrino spectrum reconstruction is evaluated in each energy
bin, including both contributions from statistics and systematic effects, and it is reported in Fig. 8.
The effects from oscillation parameters and cross-section uncertainties, sample selection and unfolding
procedure have been included in estimating the systematics. The total uncertainty ranges between 10%
and 25%, with the best performance obtained at around 1 GeV.
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Figure 8: Atmospheric neutrino energy spectra reconstructed by the JUNO detector for νµ (blue color)
and νe (red color), compared with present Super-Kamiokande [102] and Fréjus [103] measurements in
the same energy region. The HKKM14 [104] model predictions are also reported, both at the source
and including oscillation effects. The fluxes are multiplied by E2 to give a better picture.

2.7 Geoneutrinos
Geoneutrinos, antineutrinos from the decays of long-lived radioactive elements inside the Earth, are a
unique tool to study our planet, particularly its radiogenic power, and bring insights into its formation
and chemical composition. The inverse beta decay on protons with 1.8 MeV threshold makes it possible

22

Figure 6: Atmospheric neutrino energy spectra reconstructed for JUNO for 𝜈𝜇 (blue) and 𝜈𝑒 (red). From
Ref. [8].

the 3” PMT system was used primarily to measure these time patterns as its Transit Time Spread
of the order of the nanosecond is smaller than that for most 20” PMTs in JUNO. To guarantee
a good quality of the energy reconstruction, events close to the detector boundary and partially
contained events are rejected. An unfolding method is then used in a Monte Carlo sample to obtain
the atmospheric neutrino spectra shown in Fig. 6. The final uncertainties in these unfolded spectra
are between 10% and 25% with 5 years of data, showing a great potential of the detector in the
atmospheric low energy region. More details about this analysis can be found in Ref. [21].

6. Other Physics Topics in JUNO

In addition to other topics covered in other proceedings in this conference, such as supernova
neutrinos [9], diffuse supernova background neutrinos [10], and solar neutrinos [11], JUNO has
the potential to address other open questions in a wide range of domains. For example, JUNO
will be able to measure the geo-neutrino flux to about 5% precision in 10 years, which can then be
compared to the expectation from geological surveys and used to test geological models. In these
models, geo-neutrino measurements estimate the abundance of U and Th in the Earth, and, with
that, the Earth’s heat flow coming from radioactive sources. JUNO will be able to probe Beyond
Standard Model physics by looking for nucleon decay, in particular, via the channel p → K+ + 𝜈̄.
In this particular channel, JUNO would observe a triple coincidence signature that significantly
helps to reject background, and makes it possible for JUNO’s sensitivity to reach 8.3 × 1033 years
(90% C.L.) with 10 years of data. More details on these studies are available in Refs. [7, 8].
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