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Abstract: Optical rangefinders based on Self-Mixing Interferometry are widely described in literature,
but not yet on the market as commercial instruments. The main reason is that it is relatively easy
to propose new elaboration techniques and get results in controlled conditions, while it is very
difficult to develop a reliable instrument. In this paper, we propose a laser distance sensor with
improved reliability, realized through a wavelength modulation at a different frequency, able to
decorrelate single measurement errors and obtain improvement by averages. A dedicated software
is implemented to automatically calculate the modulation pre-emphasis, needed to linearize the
wavelength modulation. Finally, data selection algorithms allow to overcome signal fading problems
due to the speckle effect. A prototype demonstrates the approach with about 0.1 mm accuracy up to
2 m of distance at 200 measurements per second.

Keywords: optical rangefinder; self-mixing interferometry; laser sensors; distance measurement

1. Introduction

Due to high resolution and non-invasive features, optical distance sensors are one of
the most used techniques for accurately estimating the absolute distance of a remote target.
Depending on the application, these rangefinders can be divided in three main techniques,
known as laser triangulation, Time-of-Flight (ToF), and absolute interferometry. In laser
triangulators, the absolute distance is determined by measuring the viewing angle between
a source and a receiver [1]. Such triangulators are more suitable for short distance measure-
ments and they can reach micrometer resolution over a few millimeters [2]. However, they
are limited for sensing inside objects through narrow openings. This is mainly because
of triangular geometry which implies the minimum width of the sensor to provide the
distance between its transmitter and receiver. For long distances, instruments based on the
Time-of-Flight technique show reliable performance with resolution between 1 mm and
1 cm [3,4] and are extensively employed for commercial and consumer applications. Dis-
tance measurement systems based on interferometric techniques have been studied ex-
tensively, due to demanding higher resolution in industrial and scientific environments.
Despite high accuracy, costly and complicated optical setup limits the industrial appli-
cations of such techniques [2]. Alternatively, self-mixing interference effect in a laser
diode [5–7] has led to widespread applications of this technique for measuring relatively
short distances with high resolution while remaining very small in size and cost-effective.
Due to its advantages, the application of sensors based on the self-mixing technique are
not limited only to absolute distance measurement. Various applications are reported in
literature, including displacement [8–12], speed [13,14] vibrations [15–20], angles [21], imag-
ing [22], liquid flow and level [23–27], biomedical applications [28–30], in addition to laser
parameters measurements [31,32] and measurement for laser ablation [33,34]. Self-Mixing
Interferometry (SMI) takes advantage of the optical back-injection inside the laser cavity. It
occurs when a fraction of light emitted by the laser diode is reflected by an external target
back to the laser cavity, and mixes with the internal lasing field. Consequently, it causes
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modulation of both laser frequency and emitted power, which gives information about the
target position [5–7]. Figure 1 shows a very-simple setup for SMI: it consists of the laser
diode, photodiode inside the laser cavity (known as monitor photodiode, normally inside
the laser case), a collimating lens, and target. The monitor photodiode directly measures
the power emitted by the laser diode, P(φ) which is a periodic function of the back-injected
phase, φ = 4π·s/λ, where λ is wavelength of the laser and s is the distance from the laser to
the target [5].
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Figure 1. Standard setup for a self-mixing interferometer.

For estimating absolute distance from the target, the standard approach consists in
modulating the laser wavelength and measuring the fringes period. The very-first signal
processing was a simple fringes-counting [35]. A more effective approach to estimate the
absolute distance is to measure the fringes period in the frequency domain [36]. Consid-
ering the approximate linear relationship between beat frequency and distance, different
techniques can be applied to calculate beat frequency of fringes and then estimate the
distance. In terms of the tradeoff between accuracy and elaboration time, interpolated
Fast Fourier Transform (FFT) [37] provides a good approach to calculate beat frequency of
fringes and consequently estimate the distance [38]. However, interpolated FFT exhibits
limits if signals are not perfectly sinusoidal, in that case, the interpolation formula is not
valid anymore. The interpolation errors have the strong disadvantage of being systematic
and therefore they cannot be reduced by averaging operations. Different approaches are
proposed in literature to improve the accuracy in fringe frequency estimation. A direct
evolution of interpolated FFT is all-phase FFT [39], proposed to reduce the influence of
spectrum leakage and signal noise, at the expense, however, of a longer processing window
and a consequent increase in execution time. Furthermore, this technique is incapable of
compensating for error due to the lack of perfectly constant frequency as in real self-mixing
signals. An algorithm based on MUltiple SIgnal Classification (MUSIC) is also proposed for
frequency estimation in the SMI-based distance and velocity sensing system [40]. In general,
the MUSIC method assumes that a signal vector consists of a known number of complex
exponentials, whose frequencies are unknown. The proposed MUSIC algorithm-based
SMI distance sensing system achieved a better Signal-to-Noise Ratio (SNR), with respect to
FFT in a range from 20 to 100 cm. Although the performance advantages of MUSIC are
remarkable, such technique requires extensive computation effort to be executed in real
time. Another approach, based on the Genetic Algorithm (GA) is proposed in [41]. Cost
function is established based on emitted power variation from the linearly modulated laser
diode. To overcome premature convergence and time complexity of the GA, an improved
GA algorithm based on the father–offspring combined selection method [42], in addition
to a shrinking exploration range approach [43], is proposed in [41]. Using an 850 nm
vertical cavity surface emitting laser (VCSEL), the absolute distance is estimated in the
range from 2.4 cm to 20.4 cm with 10 µm resolution. Despite high resolution in the distance
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measurement and improvement in selection and exploration range shrinking compared
with the original GA, the speckle effect is neglected by assuming greater longitudinal
speckle size to compare with an equivalent displacement in the whole measuring range.
The random phase superposition of the back-reflected light arising from diffusive targets,
known as speckle effect, causes amplitude fading of the SMI signal. This deteriorates
robustness of the GA-based SMI sensing system since the self-mixing signal, which exhibits
amplitude fading, strongly affects the cost function and leads to wrong convergence of the
distance value.

In this paper, a technique based on interpolated FFT with multiple modulation is
proposed to overcome limits in self-mixing rangefinders, by decorrelating determinist error
sources. A software able to automatically calculate the optimum modulation pre-emphasis
is developed, and an algorithm based on amplitude of lateral bins is applied in addition,
to reduce the error induced by the speckle effect. A real-time prototype demonstrates the
effectiveness of the proposed approach. The realized distance sensor is characterized up to
2 m using a grating ruler, getting a maximum nonlinearity error lower than 0.4 mm and
standard deviation limited to 0.1 mm.

The rest of the paper is organized as follows: In Section 2, the SMI distance mea-
surement and non-linearity in modulation are discussed. Section 3 describes the realized
prototype and Section 4 investigates possible solutions to address deterministic errors and
introduces the proposed multiple modulation technique. Experimental results as well
as the performance evaluation are reported in Section 5 for both distance and vibration
measurements. Finally, the conclusion and final marks are presented in Section 6.

2. Distance Measurement with Self-Mixing Interferometry

The measurement of absolute distance with self-mixing interferometry is commonly
realized through a wavelength modulation [38]. When the target is at rest, the laser
wavelength modulation induces a shift of the interferometric phase φ = 4π·s/λ, proportional
to the distance s:

∂ϕ

∂λ
= −4π

s
λ2 (1)

The easiest way for modulating the laser wavelength is acting on the pump current I.
The evaluation of the fringe frequency ftone, during the modulation, provides a measurement
of the target distance:

s = − λ2

2 ·
(

∂λ
∂I

)
·
(

∂I
∂t

) ftone (2)

The standard modulation shape is triangular [23], and the distance value is obtained
by averaging the frequencies of the ascendant and descendant phases of the triangular
wave. This average improves the accuracy and cancels the contribution of a possible target
motion [44]. Function (2) is linear with ftone only for small modulation amplitude and for
low-frequency modulation, because the factor (∂λ/∂I) is not constant with I and should be
compensated. Indeed, there are two reasons for non-linearity: the dependence of (∂λ/∂I)
on I [45] and its frequency dependence [46], mainly due to the thermal behavior of the laser
diode. Figure 2 shows the measurement of (∂λ/∂I) for the DFB laser at 1550 nm which will
be used in the realized prototype (model WSLD-1550-020m-1-PD).
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pump current.

In telecommunications, pre-emphasis refers to a system process designed to emphasize
high-frequency signal components and improve the overall Signal-to-Noise Ratio (SNR)
to therefore minimize the adverse effects of attenuation distortion. A pre-emphasis of the
modulation curve could compensate for the non-linearity, but the correct distortion shape
cannot be retrieved by a simple analytic model, because it is a function both of modulation
amplitude and frequency, and of repetition rate of the modulating curve. The reasons are
the particular behavior of the non-linearity (Figure 2, as example), and the thermal response
of the LD, which is described in frequency by several poles-zeros and involves a long-time
behavior [46].

3. Realized Prototype

A prototype of a self-mixing rangefinder was developed, composed of two parts: the
analog electronics necessary to adapt the fringes signal and to inject a particular current
waveform into the laser diode, and a commercial data acquisition card (DAQ, Analog
Discovery II, from Digilent, Seattle, WA, USA) for generating the modulating wave and
acquiring the signal (the conceptual scheme is the same as in [38]). The block scheme of
the instrument is shown in Figure 3. The laser driver was realized by a standard current
generator, composed of an Operational Amplifier (OPA) and a MOSFET transistor with
feedback on the tail resistor. The OPA bandwidth was 20 MHz and the modulation signal
was limited by a second-order low pass filter, to filter out DAC spurious harmonicas.
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Analog Discovery 2 includes a 14-bit, 30 MHz Analog-to-Digital Converter (ADC),
and a 14-bit 10 MHz Digital-to-Analog Converter (DAC), both with a maximum rate
(acquisition/generation) of 100 MSPS. Through the DAQ, it is possible to generate an
arbitrary waveform for the laser modulation and acquire synchronously the interferometric
signal. As expected, a pure triangular modulation induces fringes with variable frequency,
even on a target at rest. In order to accurately evaluate the wavelength modulation non-
linearity, we developed a real-time software able to locally measure the fringe frequency.
It is based on interpolated FFT calculated on a sliding window of 32 samples, following
the approach proposed in [47]. Considering the sampling frequency of 10 MSPS, 32 points
are enough to acquire some fringes to elaborate the tone estimation, without losing too
much resolution on the local frequency measurement. We repeat this operation 10 times on
different acquisitions and we take the average of all obtained traces. Figure 4 shows the
interferometric signal before and after the pre-distortion. Figure 5 shows the corresponding
measurements of the fringes period: for a pure triangular modulation at 10 kHz, and for
the pre-distorted wave.
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Due to edge effects at the beginning of the triangular wave, the fringes period cannot
be made constant throughout the whole modulation period, but it is enough for the next
elaboration to realize a flat interval of sufficient length. Great care should be taken to set
the interval size, in order to get a useful number of samples, for example, 256 or 512, for
optimizing FFT elaboration and measurement speed.

Once the modulation shape has been optimized through pre-distortion, the frequency
of the fringes remains constant during the modulation, also at different target positions,
and increases linearly with the distance, as expected. Figure 6 shows some examples of self-
mixing signals for different target distances (25 cm, 60 cm, and 100 cm). The upper panel
also reports the corresponding modulating wave at 10 kHz with respect to a triangular
wave: it is evident that the non-linearity is different on the two fronts. This is due to the
sum of two effects, nonlinearity and frequency response, which add up in one phase and
subtract in the other. The signal under elaboration is given by the self-mixing signal after
the subtraction of the modulating wave [38] and high-pass filtering. It should be noted
that the signal amplitude is not constant: as expected it is a function of the laser current
(higher at higher pump current). Even after having linearized the wavelength modulation
very well, better than 10−3, there are still periodic systematic errors with distance, also
depending on the Signal-to-Noise Ratio. This kind of error is deterministic and cannot be
reduced by averaging.
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4. Methods to Overcome Deterministic Errors

A deep study of the error sources found that they are mainly due to the limit of the
interpolated FFT for signals not perfectly sinusoidal and with noise, as reported in [39]
and further described in [48]. In order to fix this problem, we studied a more complex
modulation scheme, composed of multiple modulating waveforms, at slightly different
frequencies. The modulating waves are designed in order to realize different fringes
frequencies. In particular, it is relevant to have different frequencies positions with respect to
the FFT bins, because the interpolated-FFT technique shows deterministic errors depending
on that position. When one waveform induces a fringes frequency exactly over a bin,
the others modulating waveforms generate frequencies between bins. In this way, the
deterministic errors due to interpolated FFT are different for every waveform and, more
importantly, they are not correlated to each other. In this way, we get three frequency
measurements, uncorrelated, with also the possibility of discarding one if coming from
a bad position in frequency, where the interpolated FFT error is maximum. The worst
position is exactly over a bin of the FFT, because in that position, the two-bin interpolated
FFT on a real signal shows the maximum error.

The proposed technique is a good way to decorrelate single measurements, obtaining
improvement from an average procedure. The limit, however, of this approach is the very
long procedure to generate the correct distortion manually, because individual waveforms
influence each other: a distortion applied on the first modulating wave (at 10 kHz) changes
the frequency measurement also for the following waveforms. Furthermore, once the optimal
distortion has been found for one waveform (for example, at 10 kHz), it cannot be used for
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the others modulating waves through a simple re-sizing. For this reason, the pre-emphasis
procedure must be carried out simultaneously on the entire modulating signal.

To speed up the process, we implemented a recursive algorithm on LabVIEW, able to
automatically optimize the modulation shape. In a first approximation, the modulating
curve should be proportional to the integral of the measured fringes period (Figure 4),
given by a pure triangular modulation. Experimental evidence demonstrates that the curve
thus obtained provides overcompensation, and it is impossible to find a closed formula
for getting the correct pre-emphasis, because the thermal response depends also on the
previous modulating waves. Our solution consists in implementing an iterative procedure
for generating the modulating wave. It starts with a pure triangular modulation, and
measurement of fringes period. The next modulation wave is obtained by the first one,
adding a corrective wave (a pre-emphasis). The pre-emphasis is calculated as 90% of the
theoretical one, given by the integral of the measured fringes period minus the target value.
In the second step, the system applies the new modulating wave and measures again the
resulting fringes period. A third modulating curve is then calculated by adding again the
new pre-emphasis calculated as in the previous step. That operation is repeated for a few
times (typically 5–10), until reaching a relative maximum error in fringes frequency lower
than 10−3. The factor “90%” was evaluated empirically, finding the faster convergence to
stable flat values for the fringes period. The typical duration of the whole pre-emphasis
procedure is about 2 s in the automated procedure. This procedure is required only one
time when the instrument is realized (once in the instrument’s life), there is no need to
repeat it. During this procedure, the target should be at rest, because a target movement
induces an error in the local frequency measurement.

Figure 7 shows a screenshot of the LabVIEW software able to automatically calculate
the distortion of three triangular waves at different frequencies (10 kHz, 9.5 kHz, and 9 kHz),
in order to linearize the fringe frequency in the measurement intervals. Figure 7 shows
the self-mixing signal, the measured fringe frequency, and the original fringe frequency
(before compensation), and also the intervals where the interpolated FFT is evaluated
(vertical lines). Figure 8 shows the corresponding modulating wave, realized by this
procedure, compared with the initial triangular wave. This modulating wave drives the
laser current generator.
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quency (dash-dotted line). Vertical lines indicate the intervals for interpolated FFT execution (elab-
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Figure 8. Output of the DAC, controlling the laser current generator, composed of waveforms at 
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Figure 8. Output of the DAC, controlling the laser current generator, composed of waveforms at three
frequencies (10 kHz, 9.5 kHz, and 9 kHz), after the pre-emphasis procedure (thick line) for getting a
linear wavelength modulation, in comparison with the initial triangular modulation (thin line).

5. Measurement Results

For the metrological characterization of the proposed instrument, a mechanical setup
was realized with a slit and a grating ruler (YH-5 um-1000), used as reference for distance
measurements as shown in Figure 9. Three triangular waveforms at different frequencies
(10 kHz, 9.5 kHz, and 9 kHz) with peak-to-peak amplitude of 20 mA are generated by DAC,
with an update rate of 10 MSPS. This modulation signal is applied to the bias current of
70 mA. For each signal, 1000 samples are acquired at 10 MSPS. The DAQ card that manages
the interferometer also acquires in real time the position of the target from the grating ruler,
with an accuracy of 10 µm. This performance is adequate for the application because the
target accuracy of the interferometer is one order of magnitude higher. It should be noted
that all the measurements have been performed at room temperature when the laser diode
reached its thermally stable regime.
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5.1. Absolute Distance Measurement

A measurement campaign was conducted in order to evaluate instrument standard
deviation and non-linearity. Figure 10 shows the measured frequency for each edge of the
three modulating waves, at 9 kHz, 9.5 kHz, and 10 kHz, as a function of target distance.
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Figure 10. Frequency of the self-mixing signal as a function of the target distance, for rising and
falling edges of the three modulation waves.

For every single ramp, ascending or descending, the fringes frequency shows linear
dependence with distance, with slope proportional to the waveform frequency. This
confirms a good optimization of the instrument response, realized by the modulation
pre-distortion. By a linear combination of the measurements from the three different
modulating waves, we get the absolute target distance: a regression curve is calculated
for every curve of Figure 10, and the final results are given by the average of the six
measurements, with the possibility to discard single data for improving the final accuracy.
The causes of exclusion implemented are two: (i) too low tone amplitude (close to the
noise floor); (ii) amplitude of the second highest bin of the interpolated FFT too low with
respect to the highest one. Condition (i) is quite obvious, because a measurement point
confused in the noise floor adds just errors; while condition (ii) is useful for discarding the
measurement values in correspondence with the maximum error of the interpolated FFT.
As explained in [37,38], the interpolation in frequency is realized between the two bins with
higher amplitude in the FFT. When the tone is close to a bin, the second bin becomes very
low, and can be covered by the noise floor. In this case, the lower the Signal-to-Noise Ratio,
the more error the interpolation procedure adds, with respect to the real tone frequency.

The final prototype is able to measure up to 4 m of distance, with a native measurement
rate of 2 kHz, realized through three modulating waves around 10 kHz. It was characterized
by measuring different distances on the grating ruler, up to 2 m of distance. For every
distance, the characterization software acquires the measurement of the grating ruler, and
200 measurements of the optical prototype, in native format (measurement rate 2 kHz) and
after 10 averages (measurement rate 200 Hz). The double measurement, with and without
averages, helps to understand the behavior of the instrument, in terms of repeatability. In
the case of additive random noise, not correlated, we expect a factor

√
10 of improvement

in standard deviation for the average on 10 samples. If the improvement is higher than the
square root of the average number, typically some disturbances are present.
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The laser beam is focused at about 4 m; therefore, it is close to be collimated in the
measurement range, considering the collimating lens diameter of 11 mm.

Figure 11 shows the linear behavior of the calibrated optical instrument over all tested
ranges, without changing the optical condition (no autofocus or speckle-tracking techniques
are applied [49]).
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Figures 12 and 13 show the relative and absolute standard deviation, evaluated over
200 data, for the output at 2 kHz (no averages) and 200 Hz (10 averages). As expected,
there is an improvement of about a factor of 3 for the averaged measurements.
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In order to estimate the accuracy of the laser sensor, the absolute error of the mean
distance (averaged over 200 data) has been evaluated as a difference with respect to the
grating ruler measurement. This difference is an estimation of the nonlinearity of the optical
sensor, in the hypotheses that the ruler has a better accuracy and that the target does not
shift on the ruler. It should be considered that the average over 200 data still includes
some tens of micrometers of variability due to the native standard deviation. In conclusion,
Figure 14 shows a worst-case non-linearity of the laser sensor as a function of the distance.
It is worth to note that, to our knowledge, an absolute accuracy has never been reported for
a self-mixing range finder working in real-time on such a large measurement range.
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There is an improvement also with respect to speckle effect, due to the possibility
of discarding wrong measurements (with too low signal) in the repeated measurement,
but also inside a single measurement composed by three modulating waves. We have
experimentally seen that on a real aluminum target, the measurement is practically always
running, for target distances up to 2 m.
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5.2. Vibration Measurement

The prototype is also able to measure target vibration, by calculating the Doppler shift
between the rising and falling edges of every modulating wave, as proposed in [44]. The
sensitivity of the vibrometer is three orders of magnitude better with respect to absolute
distance measurement: the measurement resolution becomes about 100 nm, with respect
to 0.1 mm of the distance measurement. The Doppler effect allows to measure vibration
with micrometric amplitude, as shown by an example of measurement reported in Figure 15.
The target is a loudspeaker vibrating at 25 Hz with an amplitude of about 4 µm, placed at a
distance of about 46 cm. The main limit in vibration measurements are the vibration frequency
and the target speed. The limit in vibration frequency is given by the measurement rate of
the instrument, 2 kHz, therefore we can reconstruct up to 1 kHz. The second limit is the
target speed, which should not overcome the equivalent modulation speed: on one side of the
modulation wave, we get a reduction in the number of fringes, while on the other side, we get
an increase. For example, at 40 cm of target distance, we get fringes frequency f ∼= 1 MHz
(Figure 10). In that case, the maximum measurable target speed is f × λ/2 ∼= 77 cm/s.
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Figure 15. Example of vibration measurement. Upper trace is the absolute distance measurement;
middle trace is the measured target speed (Doppler shift); lower trace is the reconstructed target
vibration, by integration of the speed measurement.

Additionally, this measurement is obtained from the average of the three modulations
at different frequencies. The error correction procedure of the interpolated FFT is absolutely
relevant for this type of measurement, especially for low-speed movements. In vibration
measurements, a minimum imbalance error between the ascent and descent phases of
the modulating wave results in a constant speed offset, hence, in a drift of the measured
displacement. Moreover, for small vibration amplitudes, the slightest error in the interpo-
lated FFT, especially while the target direction changes, leads to steps in the displacement
measurement. Experimentally, there has been a notable improvement in the quality of the
vibration measurement obtained with this technique, following the techniques described
in Section 4. For example, in [44], the same technique was used for measuring target
speed, with good results. However, in that case, the target was moving at a quite high
constant speed (it was a rotating cylinder at about 40 cm/s), not vibrating, and in that
condition, a small error in the frequency estimation does not lead to a relevant relative
error on speed measurement.

6. Conclusions

In this work, we presented a novel approach to the laser self-mixing rangefinder, in
order to overcome the limits that until now have not allowed this technique to become com-
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mercial. The requirements are: ability to work easily on a diffusing surface; good absolute
accuracy (not just resolution or standard deviation); good reliability; high measurement
speed; simple setup and automatic optimization, without requiring a dedicated researcher
for the calibration. The proposed approach is based on multiple current modulation, with
automatic setup of the pre-emphasis needed to linearize the wavelength modulation. This
technique allows to obtain, over a range of 2 m, a nonlinearity comparable to the standard
deviation of the measurement at 200 Hz (about 0.1 mm). In addition, there is the possibility
to discard wrong measurements from the average (too low signal level or wrong position
for the interpolated FFT), improving accuracy and robustness against local signal fading.
These features make it possible to pass from a proposal in scientific literature to a real
commercial tool, for several applications, such as 3D dimensional measurements, also
through holes, or object localization.

The actual work in progress is the development of a prototype entirely realized
in embedded electronics, easy to reproduce in series, with some improvements: laser
thermostat, for long-term stability; autofocus and/or speckle-tracking system for improving
the probability of the useful signal for the measurement.
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F.C.; validation, F.C. and P.E.; writing—original draft preparation, P.E. and M.N.; writing—review
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version of the manuscript.
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