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Abstract
We discuss a class of debt management problems in a stochastic environment model. We
propose a model for the debt-to-GDP (Gross Domestic Product) ratio where the government
interventions via fiscal policies affect the public debt and the GDP growth rate at the same
time. We allow for stochastic interest rate and possible correlation with the GDP growth
rate through the dependence of both the processes (interest rate and GDP growth rate) on
a stochastic factor which may represent any relevant macroeconomic variable, such as the
state of economy. We tackle the problem of a government whose goal is to determine the
fiscal policy in order to minimize a general functional cost. We prove that the value function
is a viscosity solution to the Hamilton-Jacobi-Bellman equation and provide a Verification
Theorem based on classical solutions. We investigate the form of the candidate optimal fiscal
policy in many cases of interest, providing interesting policy insights. Finally, we discuss two
applications to the debt reduction problem and debt smoothing, providing explicit expressions
of the value function and the optimal policy in some special cases.

Keywords Optimal stochastic control · Government debt management · Optimal fiscal
policy · Hamilton-Jacobi-Bellman equation

JEL Classification C02 · C61 · H63 · E62

1 Introduction

Public debt management is a wide and complex topic in Economics. On the one hand, it is
recognized the important role played by public debt in welfare improving, for example as a
tax smoothing tool (starting from the seminal paper [4]) or as savings absorber (see [11] and
[16] among others). On the other hand, the current high levels of debt in some developed
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countries has drawn the attention of many economists, especially because of possible effects
on future taxation levels (see the quoted papers [11] and [16]).

The question of debt management, in broad sense, is up for discussion essentially because
“we simply do not have a theory of the optimum debt level” (see [19]). However, in the very
recent years some authors gave a rigorous mathematical formulation of a debt management
problem, namely the optimal debt ceiling (that is the debt-to-GDP (Gross Domestic Product)
ratio level at which the government should intervene in order to reduce it), see [6–8, 13, 14].

Theseworks focus especially on the debt reduction problem of developed countries, where
the government aims at reducing the debt-to-GDP ratio through theminimization of two costs:
the cost of holding debt and the intervention cost (reducing public spending or increasing
taxes). This study is motivated by the fact that concurrently with the financial crisis started
in 2007, the debt-to-GDP ratios exploded.

In [6–8, 13] the possibility for the government to increase the level of debt ratio is precluded
(fiscal deficit is not allowed) and any possible benefit resulting from holding debt is neglected.
In practice, sometimes debt reduction policies might not be appropriate, since public invest-
ments in infrastructure, healthcare, education and research induce social and financial benefits
(see [17]). In [14] policies of debt reduction and debt expansion are accounted by modeling
controls of bounded variation and introducing, in addition to the cost of reduction policies,
a benefit associated to expansionary policies.

Moreover, it is a well known evidence (see e.g. the recent studies [2] and [1]) that policies
of debt expansion (deficit) induce also an increase of the GDP growth rate of the country
(which in turn could imply a reduction of the debt ratio) and this phenomenon is not exploited
in the existing mathematical literature on the topic. This paper wishes to be a first effort to
fill this lack.

We provide a rigorousmathematical formulation for a class of debtmanagement problems,
which are modeled as stochastic control problems. In particular, we tackle the problem of
a government whose goal is to determine the fiscal policy in order to minimize a general
functional cost, which depends on the debt-to-GDP ratio, an external driver (e.g. the state of
economy) and the fiscal policy itself.

The main improvement of our debt-to-GDP model is that the GDP growth rate depends
on the fiscal policy. In classical models, the GDP growth rate is assumed to be constant,
see for instance [6, 7] and references therein. In [8, 13, 14] it is allowed to be a stochastic
process, which may be modulated by an unobservable continuous time Markov chain as in
[8]. However, in all these models the government’s interventions via fiscal measures do not
affect the GDP growth rate, any policy of surplus decreases the debt-to-GDP ratio (see [6–8,
13]), whereas any deficit policy increases it (as in [14]). In the reality, the effects of the fiscal
policy on the debt-to-GDP ratio is more complex.

For example, we might assume that the GDP growth rate decreases when the government
increases its surplus (which is mostly the case in normal conditions). In this scenario, the
gross debt will decrease as well, but the final effect on debt-to-GDP ratio is not unidirectional,
contrary to classical models and the above quoted papers, where any surplus translates into
debt-to-GDP ratio reduction. Indeed, the economics literature recognizes the possibility of
achieving debt-to-GDP reduction via deficit policies, see for instance [10–12].

Moreover, we assume that both the interest rate on debt and the GDP growth rate are
affected by a stochastic factor Z , which may represent the state of economy, the economic
outlook, or any other macroeconomic variable. The presence of this external driver Z induces
a correlation between the GDP growth rate and the interest rate, which is a well known
phenomenon. Furthermore, we assume that Z and the GDP are driven by two correlated

123



Mathematics and Financial Economics

Brownian motion, so that we introduce an additional type of dependence. In practice, the
macroeconomic conditions describedby Z and theGDPhave a commonsource of uncertainty.

We also assume bounded intervention, so that the government is not able to generate
infinite surplus/deficit. As amatter of fact, there aremany structural constraints on the surplus
generation, for example loss of popularity, impossibility of erasing some welfare spending
and so on. Analogously, many constraints can be found for deficit policies. In [7] the authors
assumed bounded (surplus) intervention, improving the results of [6] and obtaining a bang-
bang strategy (either no intervention or maximum surplus is optimal). Differently from this
work, since we have a different model and a general objective function, we obtain a solution
with a complex structure, so that extreme policies (maximum surplus/deficit) are optimal
only in some scenarios while, in general, the government tries to balance the effects on debt
and GDP at the same time.

In this framework we solve the problem of minimizing the expected total cost over an
infinite time horizon. As mentioned above, the functional cost depends on the dynamics of
the debt-to-GDP ratio, the exogenous factor Z and the fiscal policy. This is a very flexible
and general problem formulation, which includes many debt management problems as spe-
cial cases. For instance, we explore the applications to debt reduction and, in a simplified
framework, to debt smoothing, which is the minimization of the distance between the cur-
rent debt-to-GDP and a given threshold. We highlight that our model formulation contains
a trade-off between costs and benefits in the debt-to-GDP equation, not only in the cost
functional.

The mathematical contributions of the paper are the following. We rigorously derive the
debt-to-GDP ratio dynamics, which is controlled by the government’s interventions (which
include surplus and deficit strategies) and formulate the arising stochastic control problem.
Under general assumptions on the functional cost, we prove that the value function is a
continuous viscosity solution to the Hamilton-Jacobi-Bellman (HJB) equation and provide
a Verification Theorem which applies whenever the HJB equation has a classical solution.
Next, we investigate the structure of the candidate optimal fiscal policy, discussing some
cases of interest. In particular, when the functional cost is increasing on the debt-to-GDP
ratio and does not explicitly depend by the control, we find that the optimal strategy depends
only on the effect of the fiscal policy on the GDP growth rate, not by the current level of
debt-to-GDP. A similar result was obtained in a different context by [3]. Thus it becomes
crucial understanding how the government’s interventions via fiscal policies can influence
the GDP growth rate of the country. To find more explicit solutions, we consider the example
of a linear impact. Finally, we discuss two applications, namely debt reduction and debt
smoothing and provide a numerical simulation for the latter in a simplified framework.

The paper is organized as follows. In Sect. 2 we propose and motivate our model formu-
lation. Then we illustrate the optimization problem. In Sect. 3 we provide some properties
of the value function. In Sect. 4 we prove that the value function is a solution in the viscosity
sense to theHamilton-Jacobi-Bellman equation andwe provide aVerification Theorem based
on classical solution. In Sect. 5 we discuss the minimization problem involved in the HJB
equation. Finally, some special cases of interest are discussed in Sect. 6.

2 Model formulation

We propose a stochastic model for the gross public debt and the gross domestic product
(GDP) in presence of correlation between the interest rate on debt and the economic growth.
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Moreover, the government interventions through fiscal policies affect the GDP growth rate
and the public debt at the same time.

Consider a complete probability space (�,F,Q,F) endowed with a complete and right
continuous filtration F := {Ft }t≥0. Let D = {Dt }t≥0 denote the gross public debt process
and Y = {Yt }t≥0 the gross domestic product process of a country. According to classical
models in economics literature (see [5] among others), the sovereign debt stock evolves as:

dDt = r Dt dt − dξt , D0 > 0 ,

where r > 0 denotes the real interest rate on debt and ξ is the fiscal policy, with the convention
that positive values correspond to primary surplus, while negative values represent deficit.
We extend the model by introducing a stochastic interest rate of the form rt = r(Zz

t ), with r a
positive measurable function and Z = {Zz

t }t≥0 a stochastic factor described by the following
stochastic differential equation (SDE):

dZz
t = bZ (Zz

t ) dt + σZ (Zz
t ) dW

Z
t , Zz

0 = z ∈ R , (2.1)

where WZ = {WZ
t }t≥0 is a standard Brownian motion. We assume existence and strong

uniqueness of the solution to the SDE (2.1). The process Z describes any stochastic factor,
such as underlying macroeconomic conditions, which affects the interest rate on debt of the
country.

Let u = {ut }t≥0 be the rate of the primary balance expressed in terms of the debt, that is
dξt = ut Dtdt . We assume that the real GDP growth rate at time t is of the form g(Zz

t , ut ),
with g(z, u) being a measurable function of its arguments. Precisely, the pair (D, Y ) follows{

dDt = Dt (r(Z
z
t ) − ut ) dt , D0 > 0 ,

dYt = Yt (g(Z
z
t , ut ) dt + σ dW̃t ) , Y0 > 0 ,

(2.2)

where W̃ = {W̃t }t>0 a standard Brownian motion correlated withWZ and σ > 0 is the GDP
volatility.

The debt-to-GDP ratio X = {Xt = Dt
Yt

}t≥0 dynamics can be derived by Itô’s formula:

dXt = 1

Yt

(
r(Zz

t ) − ut
)
Dtdt − Dt

Y 2
t
Yt (g(Z

z
t , ut ) dt + σ dW̃t ) + Dt

Y 3
t

σ 2Y 2
t dt

= Xt
(
r(Zz

t ) − g(Zz
t , ut ) − ut

)
dt + Xtσ(σ dt − dW̃t ) , X0 = D0

Y0
.

Now we can introduce a new measure P, equivalent to Q, such that W = {Wt }t≥0 =
{σ t − W̃t }t≥0 is a P-Brownian motion and WZ remains a P-Brownian motion.

Hence, under P, the debt-to-GDP ratio Xu,x = {Xu,x
t }t≥0 is a controlled process which

solves the following SDE:

dXu,x
t = Xu,x

t [(r(Zz
t ) − g(Zz

t , ut ) − ut ) dt + σ dWt ] , Xu,x
0 = x , (2.3)

where x > 0 is the initial debt-to-GDP ratio and the control u = {ut }t≥0 denotes the fiscal
policy (i.e. the ratio of primary surplus to gross debt).

It turns out that our state process is the couple (Xu,x , Zz):{
dXu,x

t = Xu,x
t [(r(Zz

t ) − g(Zz
t , ut ) − ut ) dt + σ dWt ] , Xu,x

0 = x ,

dZz
t = bZ (Zz

t ) dt + σZ (Zz
t ) dW

Z
t , Zz

0 = z ∈ R .

We denote by ρ ∈ [−1, 1] the correlation coefficient between W and WZ .
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We consider the problem of a government which wants to choose the fiscal policy in order
to optimally manage the sovereign debt-to-GDP. For this purpose we introduce the class of
admissible fiscal strategies.

Definition 2.1 (Admissible fiscal policies)We denote byU the family of all theF-predictable
and [−U1,U2]-valued processes u = {ut }t≥0.

The main goal will be to minimize the following objective function:

J (x, z, u) = E

[∫ +∞

0
e−λt f (Xu,x

t , Zz
t , ut ) dt

]
, (x, z) ∈ (0,+∞) × R, u ∈ U , (2.4)

where λ > 0 is the government discounting factor and f : (0,+∞) × R × [−U1,U2] →
[0,+∞) is a cost function satisfying suitable hypotheses (see Assumption 2.2 below).

Let us remark some aspects of our model, which is different from those usually introduced
in the existing literature.

1. This model extends the one considered in [6] and [7] where r and g are constant. Our
main improvement is that the GDP growth rate is now affected by the fiscal policy. For
instance, if we take a function g decreasing in u, we capture a well known effect: when the
government generates surplus, the debt stock is reduced and, at the same time, the GDP is
so. Hence the final effect on the debt-to-GDP ratio is not unidirectional as in the models
proposed in [6, 7, 13] and [8], where any surplus translates to debt-to-GDP reduction.

2. As a consequence, our model formulation contains a trade-off between costs and benefits
in the state equations, not only in the cost functional as in the previous literature.

3. Another property of our model is that the interest rate and the GDP growth rate have a
common source of uncertainty, which is modeled through the external driver Z . In many
applications Z could represent the economic environment, the state of the economy, the
economic outlook. The pathwise measurement of covariance between the interest rate
and the GDP growth rate is given by the covariation between the two processes. When
the functions r and g are sufficiently regular w.r.t. z ∈ R, from Itô’s formula it can be
computed for any fixed u:

< r(Zz
t ), g(Z

z
t , u) >=

∫ t

0

∂g

∂z
(Z Z

s , u)r ′(Zz
s )σ

2
Z (Zz

s )ds .

In particular, this implies that

E[r(Zz
t )g(Z

z
t , u)] = E

[ ∫ t

0

∂g

∂z
(Zz

s , u)r ′(Zz
s )σ

2
Z (Zz

s )ds
]

.

4. Moreover, our model takes into account possible correlation between the Brownian
motions WZ and W driving the dynamics of the environmental stochastic factor process
Z and the debt-to-GDP process X , respectively. For instance, there could be a common
source of uncertainty between debt-to-GDP and macroeconomics conditions.

We observe that the problem formulation in Eq. (2.4) is very general and flexible. The cost
function depends on the debt-to-GDP ratio, which has to be controlled, and the government
can take into account fluctuations of the stochastic factor Z . For instance, when Z represents
the state of economy, countercyclical policies are allowed. In addition to this, the fiscal
policy level can be explicitly controlled as well. Clearly, many operational problems can be
addressed in this framework, depending on the configuration that the government assigns to
the function f . We will investigate some applications in Sect. 6.

In the sequel we assume the following hypotheses.
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Assumption 2.1 The following assumptions are required in the sequel:

• r : R → (0,+∞), i.e. the interest rate on debt, is such that r(z) ≤ R ∀z ∈ R for a given
constant R > 0;

• ut , i.e. the surplus (or deficit)-to-debt ratio at time t > 0, takes values in a compact
set [−U1,U2], where U1 > 0 denotes the maximum allowed deficit-to-debt ratio and
U2 > 0 is the maximum surplus-to-debt;

• g : R × [−U1,U2] → R, which represents the GDP growth rate, is bounded by

ḡ1 ≤ g(z, u) ≤ ḡ2 ∀(z, u) ∈ R × [−U1,U2] , (2.5)

for some suitable constants ḡ1 < 0 < ḡ2.

Example 2.1 We consider the case where the fiscal policy has a linear impact on the GDP
growth rate, precisely

g(z, u) = g0(z) − α(z)u , (2.6)

with g0 : R → R, α : R → (0,+∞) measurable and bounded functions. The process
{g0(Zz

t )}t≥0 is the GDP growth rate when no intervention is considered and depends on
the environment stochastic factor Z . Any positive intervention ut > 0 leads to a reduction
of the GDP growth rate g(Zz

t , ut ). Conversely, any negative intervention ut < 0 leads
to an increase of the GDP growth rate g(Zz

t , ut ). Both the effects are modulated by the
environment stochastic factor Z via the coefficientα(Zz

t ). A simplifiedmodel can be obtained
with α(z) = α 	= 1 ∀z ∈ R, that is

g(z, u) = g0(z) − αu . (2.7)

In this special case, Eq. (2.3) reduces to

dXu,x
t = Xu,x

t [(r(Zz
t ) − g0(Z

z
t ) − (1 − α)ut ) dt + σ dWt ] , Xu,x

0 = x . (2.8)

Clearly, 0 < α < 1 means that the effect of the government fiscal policy with ut > 0
(surplus) leads to a reduction of the instantaneous debt-to-GDP growth rate, while α > 1
leads to a reduction of the instantaneous debt-to-GDP growth rate when ut < 0 (deficit).
This occurs because, for 0 < α < 1, the government fiscal policy has a smaller effect on the
GDP growth rate w.r.t. the debt growth rate (see the first equation in (2.2)), while for α > 1
the fiscal policy has a larger effect on the GDP growth rate than on debt growth rate.

Remark 2.1 Let us observe that the SDE (2.3) admits an explicit solution:

Xu,x
t = xe

∫ t
0 (r(Zz

s )−g(Zz
s ,us )−us ) ds− 1

2 σ 2t eσWt ∀t ≥ 0, P − a.s. . (2.9)

Clearly, Xu,x
t > 0 ∀t ≥ 0 for any admissible strategy. Moreover, by Assumption 2.1, for any

m > 0 we have that

xme−m(ḡ2+U2)t e−m
2 σ 2t+mσWt

≤ (Xu,x
t )m ≤ xmem(R−ḡ1+U1)t e−m

2 σ 2t+mσWt ∀t ≥ 0, P − a.s.

from which we get this estimation:

E[(Xu,x
t )m] ≤ xmeλmt ∀t ≥ 0 , (2.10)

where

λm
.= m(R − ḡ1 +U1) + m(m − 1)

σ 2

2
. (2.11)
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Remark 2.2 We can show that the condition r(z) − g(z, 0) ≥ G ∀z ∈ R, for some constant
G > 0, implies an explosive debt-to-GDP ratio when no intervention is considered. Indeed,
by Eq. (2.9) we have that

X0,x
t = xe

∫ t
0 (r(Zz

s )−g(Zz
s ,0)) dse− 1

2 σ 2t+σWt ≥ xeGt Mt (2.12)

where Mt = e− 1
2 σ 2t+σWt denotes the well known exponential martingale with E[Mt ] = 1

∀t ≥ 0. Hence

lim
t→+∞E[X0,x

t ] ≥ lim
t→+∞ xeGt = +∞ ,

which implies limt→+∞ X0,x
t = +∞P−a.s.. However, when r and g are constant functions,

the debt-to-GDP explodes if r − g > 0, which is a popular result in economics literature.

An important feature for a country is to apply fiscal policies which are sustainable. An
explosive debt-to-GDP ratio is not a problem for a country if the discounted debt-to-GDP
ratio w.r.t. the interest rate on debt converges to 0. The following definition is standard in
Economics (see e.g. [15]).

Definition 2.2 A fiscal policy u is called sustainable if it realizes

lim
t→+∞ e− ∫ t

0 r(Z
z
s ) ds Xu,x

t = 0 P − a.s. , (2.13)

see e.g. [5].

Remark 2.3 The bounds Ui , i = 1, 2, depend by structural economic and political char-
acteristics of the country, in general. It seems reasonable to choose the maximum level of
deficit-to-debt and surplus-to-debt, Ui , i = 1, 2, respectively, by imposing that the fiscal
policies identically equal to these maximum levels (i.e. u1t = −U1 and u2t = U2 ∀t ≥ 0)
turn out to be sustainable for the country, i.e.

lim
t→+∞ e− ∫ t

0 r(Z
z
s ) ds X−U1,x

t = 0 , lim
t→+∞ e− ∫ t

0 r(Z
z
s ) ds XU2,x

t = 0 P − a.s. . (2.14)

For instance, in case of linear GDP growth rate as in (2.6), we get that

E[e− ∫ t
0 r(Z

z
s ) ds X−U1,x

t ] = xE[e− ∫ t
0 (g0(Zz

s )−U1(1−α)) dsMt ]
and

E[e− ∫ t
0 r(Z

z
s ) ds XU2,x

t ] = xE[e− ∫ t
0 (g0(Zz

s )+U2(1−α)) dsMt ]
(here we recall that Mt = e− 1

2 σ 2t+σWt ). Let g
0

= minz∈R g0(z) we get

E[e− ∫ t
0 r(Z

z
s ) ds X−U1,x

t ] ≤ xe−(g
0
−U1(1−α))t

,

E[e− ∫ t
0 r(Z

z
s ) ds XU2,x

t ] ≤ xe−(g
0
+U2(1−α))t

,

which imply that if U1 and U2 satisfy

U1(1 − α) < g
0
, U2(α − 1) < g

0
,

both the fiscal policies u1t = −U1 ∀t ≥ 0 and u2t = U2 ∀t ≥ 0 are sustainable. The economic
interpretation is clear: when the maximum deficit-to-debt positive impact on GDP growth is
greater than the effect on debt, then−U1 is sustainable. Similarly, when the negative effect of
the maximum surplus-to-debt on GDP is surpassed by the positive effect on debt reduction,
then U2 becomes sustainable.
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We impose some assumptions on the cost function in Eq. (2.4).

Assumption 2.2 We assume that

• f is nonnegative;
• ∃C > 0 and m > 0 such that

f (x, z, u) ≤ C(1 + xm) ∀(x, z, u) ∈ (0,+∞) × R × [−U1,U2] ,

• λ > λm (see Eq. (2.11)).

As announced, the government problem can be formalized in this way:

v(x, z) = inf
u∈U J (x, z, u) , (x, z) ∈ (0,+∞) × R . (2.15)

Proposition 2.1 Every admissible strategy u ∈ U is such that J (x, z, u) < +∞, ∀(x, z) ∈
(0,+∞) × R.

Proof Under Assumptions 2.1 and 2.2 and recalling (2.10), we get that ∀u ∈ U , and (x, z) ∈
(0,+∞) × R

J (x, z, u) = E

[∫ +∞

0
e−λt f (Xu,x

t , Zz
t , ut ) dt

]

≤ CE

[∫ +∞

0
e−λt (Xu,x

t )m dt +
∫ +∞

0
e−λt dt

]

≤ Cxm
∫ +∞

0
e(λm−λ)t dt + C

λ

= Cxm

λ − λm
+ C

λ
< +∞ . (2.16)

��

3 Properties of the value function

In this section we explore some properties of the value function.

Proposition 3.1 The value function given in (2.15) satisfies the following properties:

• v(x, z) ≥ 0 ∀(x, z) ∈ (0,+∞) × R;
• ∃M > 0 such that v(x, z) ≤ M(1 + xm) ∀(x, z) ∈ (0,+∞) × R.

If in addition ∃C̃ > 0 such that f (x, z, 0) ≤ C̃xm ∀(x, z) ∈ (0,+∞) × R, then

• ∃M̃ > 0 such that v(x, z) ≤ M̃xm ∀(x, z) ∈ (0,+∞) × R;
• v(0+, z) = 0 ∀z ∈ R.

Proof Using Assumption 2.2, we easily obtain that v is nonnegative. Now manipulating Eq.
(2.16) we obtain that ∀u ∈ U , and (x, z) ∈ (0,+∞) × R

J (x, z, u) ≤ C

λ − λm

(
xm + λ − λm

λ

)

≤ C

λ − λm
(1 + xm) ,
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hence v(x, z) ≤ M(1+ xm) ∀(x, z) ∈ (0,+∞) ×R with M = C
λ−λm

. Now we assume that

f (x, z, 0) ≤ C̃xm ∀(x, z) ∈ (0,+∞) × R. Then

v(x, z) ≤ J (x, z, 0) ≤ M̃xm ,

choosing M̃ = C̃
λ−λm

(by imitation of the proof of Proposition 2.1). This in turn implies that

0 ≤ v(x, z) ≤ M̃xm ∀(x, z) ∈ (0,+∞) × R ⇒ v(0+, z) = 0 ∀z ∈ R .

��
Proposition 3.2 Suppose that f is increasing in x ∈ (0,+∞). Then v is increasing in x > 0,
i.e. 0 < x ≤ x ′ ⇒ v(x, z) ≤ v(x ′, z) ∀z ∈ R.

Proof Let us take 0 < x ≤ x ′. By Eq. (2.9) we see that ∀u ∈ U , Xu,x
t ≤ Xu,x ′

t ∀t ≥ 0
P − a.s.. Using the monotonicity of f we get that

E

[∫ +∞

0
e−λt f (Xu,x

t , Zz
t , ut ) dt

]
≤ E

[∫ +∞

0
e−λt f (Xu,x ′

t , Zz
t , ut ) dt

]
∀z ∈ R, u ∈ U .

Taking the infimum over U of both sides, we obtain our statement. ��
The following proposition is also useful when infinite horizon problems are studied.

Proposition 3.3 This result hold true, ∀u ∈ U , and (x, z) ∈ (0,+∞) × R

lim
T→+∞ e−λTE[v(Xu,x

T , z)] = 0 .

Proof Using Proposition 3.1 and Eq. (2.10) we find that

e−λTE[v(Xu,x
T , z)] ≤ e−λT M(1 + E[(Xu,x

T )m])
≤ e−λT M(1 + xmeλmT ) .

Taking T → +∞, this quantity converges to 0 since λ > λm . ��
Proposition 3.4 Assume that f is independent of u ∈ [−U1,U2], convex in x > 0 and g is
continuous in u ∈ [−U1,U2] uniformly in z ∈ R. Then the value function in (2.15) is convex
in x ∈ (0,+∞).

Proof Let us take z ∈ R, x, x ′ > 0, u1, u2 ∈ U and k ∈ [0, 1]. Defining xk = kx + (1−k)x ′,
we will show that there exists an admissible strategy u ∈ U such that Xu,xk

t = kXu1,x
t + (1−

k)Xu2,x ′
t solves Eq. (2.3). Precisely, we wish to find u ∈ U such that

Xu,xk
t [(r(Zz

t ) − g(Zz
t , ut ) − ut ) dt + σ dWt ]

= kXu1,x
t [(r(Zz

t ) − g(Zz
t , u

1
t ) − u1t ) dt + σ dWt ]

+ (1 − k)Xu2,x ′
t [(r(Zz

t ) − g(Zz
t , u

2
t ) − u2t ) dt + σ dWt ] .

In other words, u ∈ U must satisfy

(kXu1,x
t + (1 − k)Xu2,x ′

t )(g(Zz
t , ut ) + ut )

= kXu1,x
t (g(Zz

t , u
1
t ) + u1t ) + (1 − k)Xu2,x ′

t (g(Zz
t , u

2
t ) + u2t ) ,
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i.e.

g(Zz
t , ut ) + ut = kXu1,x

t (g(Zz
t , u

1
t ) + u1t ) + (1 − k)Xu2,x ′

t (g(Zz
t , u

2
t ) + u2t )

kXu1,x
t + (1 − k)Xu2,x ′

t

.

Clearly, when g is null or linear we can explicitly calculate u, see e.g. [18, Section 3.6]. In
our case we notice that, denoting ĝ(z, u) = g(z, u) + u, the equation above reduces to

ĝ(Zz
t , ut ) = kXu1,x

t ĝ(Zz
t , u

1
t ) + (1 − k)Xu2,x ′

t ĝ(Zz
t , u

2
t )

kXu1,x
t + (1 − k)Xu2,x ′

t

.

This is a convex combination, hence ĝ(Zz
t , ut ) falls between ĝ(Z

z
t , u

1
t ) and ĝ(Z

z
t , u

2
t ). Since

ĝ is continuous in u ∈ [−U1,U2], uniformly in z ∈ R, we can find an F-predictable,
[−U1,U2]-valued process u = {ut }t≥0 satisfying the equation above and it turns out to be
admissible.

Hence Xu,xk
t is a public debt process starting from xk with control u. The convexity of

f (x, z) w.r.t. the first variable x ∈ R implies that

f (Xu,xk
t , Zz

t ) = f (kXu1,x
t + (1 − k)Xu2,x ′

t , Zz
t )

≤ k f (Xu1,x
t , Zz

t ) + (1 − k) f (Xu2,x ′
t , Zz

t ) ∀t ≥ 0,P − a.s. ,

so that

v(xk, z) ≤ k J (x, z, u1) + (1 − k)J (x ′, z, u2) .

Since this is true for any u1, u2 ∈ U , we can conclude that

v(xk, z) ≤ kv(x, z) + (1 − k)v(x ′, z) .

��

Remark 3.1 Combining Propositions 3.2 and 3.4, when f is increasing and convex in x > 0,
independent of u, and g is continuous in u ∈ [−U1,U2] uniformly in z ∈ R, the value function
turns out to be strictly increasing and convex in x > 0,with right and left derivatives satisfying
∂v
∂x +(x, z) ≥ ∂v

∂x −(x, z) > 0 ∀(x, z) ∈ (0,+∞) × R.

Proposition 3.5 Let us assume the following hypotheses:

• bZ and σZ are Lipschitz continuous functions on z ∈ R;
• f is continuous in (x, z) ∈ (0,+∞) × R, uniformly in u ∈ [−U1,U2];
• r is continuous in z ∈ R;
• g is continuous in z ∈ R, uniformly in u ∈ [−U1,U2].

Then the value function is continuous in (x, z) ∈ (0,+∞) × R.

Proof Let us denote by (Xu,x,z, Zz) = {(Xu,x,z
t , Zz

t )}t≥0 the solution to the system of Eqs.
(2.1) and (2.3) with initial data (x, z) ∈ (0,+∞) × R. By classical results on SDE, the
process Zz depends continuously on the initial data z ∈ R, moreover by (2.9) we have that
for any u ∈ U

Xu,x,z
t = xe

∫ t
0 (r(Zz

s )−g(Zz
s ,us )−us ) ds− 1

2 σ 2t eσWt ∀t ≥ 0,P − a.s. .
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Let {(xn, zn)}n≥0 be any sequence in (0,+∞) × R converging to (x, z) ∈ (0,+∞) × R as
n → +∞, then Zzn

t → Zz
t ∀t ≥ 0, as n → +∞ and by the dominated convergence theorem

we have that ∀t ≥ 0

Xu,xn ,zn
t → Xu,x,z

t uniformly on u ∈ U , as n → +∞
and

J (xn, zn, u) → J (x, z, u) uniformly on u ∈ U , as n → +∞ ,

which finally implies continuity of v(x, z) = infu∈U J (x, z, u) in (x, z) ∈ (0,+∞) × R. ��

4 Characterization of the value function

In this section we aim to characterize the value function v given in Eq. (2.15). Precisely, we
prove that it is a viscosity solution of the Hamilton-Jacobi-Bellman equation associated to
our problem (see Eq. (4.2) below). To obtain this result only the continuity of v is required.
If, in addition, the HJB equation admits a classical solution, then it turns out to be the value
function. In this case v will satisfy some additional regularity conditions.

We begin finding the HJB equation associated to our problem.

Remark 4.1 For any (x, z) ∈ (0,+∞) ×R and any u ∈ [−U1,U2] the Markov generator of
(Xu, Z) is given by the following differential operator 1:

Luφ(x, z) = x[r(z) − g(z, u) − u]∂φ

∂x
(x, z) + 1

2
σ 2x2

∂2φ

∂x2
(x, z)

+ρσ xσZ (z)
∂2φ

∂x∂z
(x, z) + LZφ(x, z) , (4.1)

where φ : (0,+∞) × R → R is a function on C2,2((0,+∞) × R) and LZ denotes the
operator

LZφ(x, z) = bZ (z)
∂φ

∂z
(x, z) + 1

2
σZ (z)2

∂2φ

∂z2
(x, z) .

The value function in Eq. (2.15), if sufficiently regular, is expected to solve the HJB
equation, which is given by

inf
u∈[−U1,U2]

{Luv(x, z) + f (x, z, u) − λv(x, z)} = 0 . (4.2)

Before stating the main result, we briefly recall the definition of viscosity solution to Eq.
(4.2). Let us notice that, in general, one would require that a function w is locally bounded
in order to be the solution of a PDE in viscosity sense (see for instance [18, Chapter 4]).
However, under the hypotheses of Proposition 3.5 we know that v given in Eq. (2.15) is
continuous, hence we can directly refer to the special case of continuous functions.

Definition 4.1 Let w : (0,+∞) × R → [0,+∞) be continuous. We say that

• w is a viscosity subsolution of Eq. (4.2) if

inf
u∈[−U1,U2]

{Luϕ(x̄, z̄) + f (x̄, z̄, u) − λϕ(x̄, z̄)} ≥ 0 , (4.3)

1 This is a simple application of Itô’s formula.
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for all (x̄, z̄) ∈ (0,+∞) × R and for all ϕ ∈ C2,2((0,+∞) × R) such that (x̄, z̄) is a
maximum point of w − ϕ;

• w is a viscosity supersolution of Eq. (4.2) if

inf
u∈[−U1,U2]

{Luϕ(x̄, z̄) + f (x̄, z̄, u) − λϕ(x̄, z̄)} ≤ 0 , (4.4)

for all (x̄, z̄) ∈ (0,+∞) × R and for all ϕ ∈ C2,2((0,+∞) × R) such that (x̄, z̄) is a
minimum point of w − ϕ;

• w is a viscosity solution of Eq. (4.2) if it is a viscosity subsolution and a supersolution.

Theorem 4.1 Under the hypotheses of Proposition 3.5, the value function v given in Eq.
(2.15) is a viscosity solution of the HJB Eq. (4.2).

Proof See Appendix A. ��
Remark 4.2 The uniqueness of viscosity solutions received a lot of interest in the PDE liter-
ature. The reader can refer to [18] (especially Sections 4.4.1 and 4.4.2) and the references
therein for PDEs arising in stochastic control problems. Moreover, under suitable conditions
on the PDE coefficients and the cost function, one should be able to prove additional reg-
ularity properties of the value function, such as C2 with respect to x , see for instance [18,
Theorem 4.5.6]. However, these aspects are beyond our focus. Instead, we make use of a
verification argument.

Now we provide a Verification Theorem based on classical solutions to the HJB Eq. (4.2).

Theorem 4.2 Let w : (0,+∞) × R → [0,+∞) be a function in C2,2((0,+∞) × R) and
suppose that there exists a constant C1 > 0 such that

|w(x, z)| ≤ C1(1 + |x |m) ∀(x, z) ∈ (0,+∞) × R .

If

inf
u∈[−U1,U2]

{Luw(x, z) + f (x, z, u) − λw(x, z)} ≥ 0 ∀(x, z) ∈ (0,+∞) × R , (4.5)

then w(x, z) ≤ v(x, z) ∀(x, z) ∈ (0,+∞) × R.
Now suppose that there exists a [−U1,U2]-valued measurable function u∗(x, z) such that

inf
u∈[−U1,U2]

{Luw(x, z) + f (x, z, u) − λw(x, z)}
= Lu∗

w(x, z) + f (x, z, u∗(x, z)) − λw(x, z) = 0 ∀(x, z) ∈ (0,+∞) × R . (4.6)

Then w(x, z) = v(x, z) ∀(x, z) ∈ (0,+∞) ×R and u∗ = {u∗(Xu∗,x
t , Zz

t )}t≥0 is an optimal
(Markovian) control.

Proof Let w ∈ C2,2((0,+∞) × R). Let us introduce a sequence of stopping times defined
by

τn
.= inf{t ≥ 0 |

∫ t

0
e−2λs

∣∣∣∣∂w

∂x
(Xu,x

s , Zz
s )σ Xu,x

s

∣∣∣∣
2

ds ≥ n}

∧ inf{t ≥ 0 |
∫ t

0
e−2λs

∣∣∣∣∂w

∂z
(Xu,x

s , Zz
s )σZ (Zz

s )

∣∣∣∣
2

ds ≥ n} , n ∈ N .

(4.7)
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Applying Itô’s formula to e−λtw(Xu,x
t , Zz

t ) for any arbitrary u ∈ U we get

e−λT∧τnw(Xu,x
T∧τn

, Zz
T∧τn

)

= w(x, z) +
∫ T∧τn

0
e−λt [Luw(Xu,x

t , Zz
t ) − λw(Xu,x

t , Zz
t )] dt

+
∫ T∧τn

0
e−λt ∂w

∂x
(Xu,x

t , Zz
t )σ Xu,x

t dWt

+
∫ T∧τn

0
e−λt ∂w

∂z
(Xu,x

t , Zz
t )σZ (Zz

t ) dW
Z
t .

The last integrals are real martingales by definition of τn (see Eq. (4.7)), hence taking the
expectation and using the inequality (4.5) gives

E[e−λT∧τnw(Xu,x
T∧τn

, Zz
T∧τn

)] ≥ w(x, z) − E

[∫ T∧τn

0
e−λt f (Xu,x

t , Zz
t , ut ) dt

]
.

By the growth condition on w and Proposition 2.1 we can apply the dominated convergence
theorem, so that letting n → +∞ gives 2

E[e−λTw(Xu,x
T , Zz

t )] ≥ w(x, z) − E

[∫ T

0
e−λt f (Xu,x

t , Zz
t , ut ) dt

]
∀u ∈ U .

Recalling Eq. (2.10), since

lim sup
T→+∞

e−λTE[w(Xu,x
T , Zz

t )] ≤ C1 lim sup
T→+∞

e−λTE[1 + (Xu,x
T )m]

≤ 0 ∀(x, z) ∈ (0,+∞) × R,∀u ∈ U ,

we can send T → +∞ to obtain that

w(x, z) ≤ E

[∫ +∞

0
e−λt f (Xu,x

t , Zz
t , ut ) dt

]
∀u ∈ U ,

which implies the first inequality w(x, z) ≤ v(x, z) ∀(x, z) ∈ (0,+∞) × R.
Now we can repeat the same argument choosing the control {u∗

t = u∗(Xu∗,x
t , Zz

t )}t≥0,
obtaining the equality

E[e−λTw(Xu∗,x
T , Zz

t )] = w(x, z) − E

[∫ T

0
e−λt f (Xu∗,x

t , Zz
t , u

∗
t ) dt

]
.

Using the fact that

lim inf
T→+∞ e−λTE[w(Xu∗,x

T , Zz
t )] ≥ 0 ∀(x, z) ∈ (0,+∞) × R ,

sending T → +∞ we deduce

w(x, z) ≥ E

[∫ +∞

0
e−λt f (Xu∗,x

t , Zz
t , u

∗(Xu∗,x
t , Zz

t )) dt

]
,

which shows thatw(x, z) = v(x, z) ∀(x, z) ∈ (0,+∞)×R and that u∗ is an optimal control.
��

2 Notice that τn → +∞ because the integrand functions in Eq. (4.7) are continuous by our assumptions.
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5 The optimal fiscal policy

In view of the Verification Theorem in this section we aim at investigating the optimal
candidate fiscal policy and its properties. Putting the expression (4.1) into the HJB Eq. (4.2)
and gathering the terms which depend on u gives

inf
u∈[−U1,U2]

{x[−g(z, u) − u] ∂v

∂x
(x, z) + f (x, z, u)} + xr(z)

∂v

∂x
(x, z)

+ 1

2
σ 2x2

∂2v

∂x2
(x, z) + ρσ xσZ (z)

∂2v

∂x∂z
(x, z)

+ LZv(x, z) − λv(x, z) = 0 .

(5.1)

We look for a minimizer of the following function:

H(x, z, u) = −x[g(z, u) + u] ∂v

∂x
(x, z) + f (x, z, u) . (5.2)

Our candidate optimal strategy is given through a functionu∗ : (0,+∞)×R → [−U1,U2]
which solves the following minimization problem:

H(x, z, u∗(x, z)) = min
u∈[−U1,U2]

H(x, z, u) . (5.3)

To this end, we make use of the following assumptions.

Assumption 5.1 We assume that

• g is continuous and differentiable in u ∈ [−U1,U2];
• f is continuous and differentiable in u ∈ [−U1,U2];
• v ∈ C2,2((0,+∞) × R) is a classical solution of Eq. (5.1).

We first state the existence and uniqueness of the minimizer of problem (5.3), then we
give a characterization of it.

Proposition 5.1 The problem (5.3) admits a minimizer u∗(x, z) ∈ [−U1,U2] for any (x, z) ∈
(0,+∞) × R. Moreover, if H is strictly convex, the minimizer is also unique.

Proof The existence of a minimizer immediately follows by the compactness of the interval
[−U1,U2] and the Weierstrass Theorem. Moreover, the strictly convexity of H implies the
uniqueness of the minimizer by classical arguments. ��
Proposition 5.2 Suppose that ∂2H

∂u2
(x, z, u) > 0, ∀(x, z, u)(0,+∞) ×R ∈ [−U1,U2]. Then

there exists a unique minimizer u∗(x, z) for the problem (5.3). Moreover, u∗(x, z) admits the
following expression:

u∗(x, z)

=

⎧⎪⎪⎨
⎪⎪⎩

−U1 (x, z) ∈
{
(x, z) ∈ (0,+∞) × R | ∂ f

∂u (x, z,−U1) ≥ x ∂v
∂x (x, z)

[ ∂g
∂u (z,−U1) + 1

]}
U2 (x, z) ∈

{
(x, z) ∈ (0,+∞) × R | ∂ f

∂u (x, z,U2) ≤ x ∂v
∂x (x, z)

[ ∂g
∂u (z,U2) + 1

]}
û(x, z) otherwise ,

where û(x, z) denotes the solution to

x
∂v

∂x
(x, z)

[
∂g

∂u
(z, u) + 1

]
= ∂ f

∂u
(x, z, u) ∀(x, z) ∈ (0,+∞) × R . (5.4)
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Proof Existence and uniqueness of the minimizer are guaranteed by classical arguments,
since H is continuous and strictly convex in u ∈ [−U1,U2]. Observing that

∂H

∂u
(x, z, u) = ∂ f

∂u
(x, z, u) − x

∂v

∂x
(x, z)

[
∂g

∂u
(z, u) + 1

]
, (5.5)

we have only three cases.

1. If (x, z) ∈ (0,+∞) × R are such that ∂H
∂u (x, z,−U1) ≥ 0, i.e.

∂ f

∂u
(x, z,−U1) ≥ x

∂v

∂x
(x, z)

[∂g

∂u
(z,−U1) + 1

]
,

then we must have

∂H

∂u
(x, z, u) ≥ ∂H

∂u
(x, z,−U1) ≥ 0 ∀u ∈ [−U1,U2] ,

because of the convexity of H . Hence H is increasing on the whole interval [−U1,U2]
and the minimizer turns out to be u∗(x, z) = −U1.

2. If (x, z) ∈ (0,+∞) × R are such that ∂H
∂u (x, z,U2) ≤ 0, i.e.

∂ f

∂u
(x, z,U2) ≤ x

∂v

∂x
(x, z)

[∂g

∂u
(z,U2) + 1

]
,

then we have that

∂H

∂u
(x, z, u) ≤ ∂H

∂u
(x, z,U2) ≤ 0 ∀u ∈ [−U1,U2] ,

so that H is decreasing in u ∈ [−U1,U2] and therefore u∗(x, z) = U2 is the minimizer.
3. Finally, when ∂H

∂u (x, z,−U1) < 0 and ∂H
∂u (x, z,U2) > 0, since ∂H

∂u is continuous in
u ∈ [−U1,U2], there exists û(x, z) such that ∂H

∂u (x, z, û(x, z)) = 0 (see Eq. (5.4)) and
this stationary point coincides with the minimizer.

��

5.1 Some special cases

In this section we investigate some cases of interest. Let us first establish a slightly general
result, when the cost function does not depend explicitly on u.

Proposition 5.3 Suppose that the cost function f does not depend on u, i.e. f (x, z, u) =
f (x, z) and ∂2H

∂u2
(x, z, u) > 0, ∀(x, z, u)(0,+∞) × R ∈ [−U1,U2]. Then the minimizer of

(5.3) is given by

u∗(x, z) =

⎧⎪⎪⎨
⎪⎪⎩

−U1 (x, z) ∈
{
(x, z) ∈ (0,+∞) × R | 0 ≥ ∂v

∂x (x, z)
[ ∂g

∂u (z,−U1) + 1
]}

U2 (x, z) ∈
{
(x, z) ∈ (0,+∞) × R | 0 ≤ ∂v

∂x (x, z)
[ ∂g

∂u (z,U2) + 1
]}

û(z) otherwise ,

(5.6)
where û(z) is the unique solution to

∂g

∂u
(z, u) = −1 ∀z ∈ R . (5.7)
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Proof Observing that

∂H

∂u
(x, z, u) = −x

∂v

∂x
(x, z)

[
∂g

∂u
(z, u) + 1

]
, (5.8)

∂2H

∂u2
(x, z, u) = −x

∂v

∂x
(x, z)

∂2g

∂u2
(z, u) > 0 , (5.9)

hence ∂v
∂x (x, z) 	= 0, ∀(x, z) ∈ (0,+∞) × R and the proof follows the same lines of

Proposition 5.2. ��
The result of Proposition 5.3 is interesting. When the fiscal policy has a nonlinear impact

on GDP growth, the government will select the primary surplus-to-debt in order that the
effect on GDP matches that on debt, in general (see Eq. (5.7)). When this is not possible,
the extreme policies are chosen. The choice between −U1 and U2 and the corresponding
economic interpretation crucially depend on the government objective, see the comments
below Proposition 5.5.

In the case of Example 2.1, that is when the fiscal policy has a linear impact on the
GDP growth rate, (see Eq. (2.6)), Proposition 5.3 does not apply, because the condition
∂2H
∂u2

(x, z, u) > 0, ∀(x, z, u) ∈ (0,+∞) × R × [−U1,U2] is not fulfilled. In the next
proposition we discuss a tailor-made result for this special case.

Proposition 5.4 Suppose that the cost function f does not depend on u, i.e. f (x, z, u) =
f (x, z) and let the GDP growth rate given by

g(z, u) = g0(z) − α(z)u ,

with g0 : R → R and α(z) > 0, α(z) 	= 1, ∀z ∈ R. Then the minimizer of (5.3) is given by

u∗(x, z) =
{

−U1 (x, z) ∈ {
(x, z) ∈ (0,+∞) × R | ∂v

∂x (x, z)(α(z) − 1) ≥ 0
]}

U2 (x, z) ∈ {
(x, z) ∈ (0,+∞) × R | ∂v

∂x (x, z)(α(z) − 1) < 0
]}

.
(5.10)

Proof The statement follows by observing that H is a linear function on u ∈ [−U1,U2]

H(x, z, u) = −x[g0(z) + (1 − α(z))u] ∂v

∂x
(x, z) + f (x, z) .

��
In the next propositionwe discuss the casewhere the cost function f (x, z) does not depend

on u and it is increasing in x ∈ (0,+∞). This situation refers to the case where debt-to-
GDP generates a disutility for the government of the country and thus it aims to reduce the
debt-to-GDP ratio. We refer to this case as the debt reduction problem, see Sect. 6.1.

Proposition 5.5 Suppose that the cost function f does not depend on u, i.e. f (x, z, u) =
f (x, z), with f (x, z) increasing in x ∈ (0,+∞). Assuming ∂v

∂x (x, z) 	= 0 for any (x, z) ∈
(0,+∞) × R and ∂2g

∂u2
(z, u) < 0 for any (z, u) ∈ R × [−U1,U2], the unique minimizer of

(5.3) is given by

u∗(z) = −U1 ∨ û(z) ∧U2 ,

where û(z) is the unique solution to

∂g

∂u
(z, u) = −1, ∀z ∈ R .
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Precisely, u∗(z) admits the following structure:

u∗(z) =

⎧⎪⎪⎨
⎪⎪⎩

−U1 z ∈
{
z ∈ R | ∂g

∂u (z,−U1) < −1
}

U2 z ∈
{
z ∈ R | ∂g

∂u (z,U2) > −1
}

û(z) otherwise .

(5.11)

Proof By Proposition 3.2 we have that v(x, z) is increasing in x ∈ (0,+∞) for any z ∈ R,
hence ∂v

∂x (x, z) ≥ 0, ∀z ∈ R, which together with the assumptions ∂v
∂x (x, z) 	= 0, for any

(x, z) ∈ (0,+∞) × R and ∂2g
∂u2

(z, u) < 0 for any (z, u) ∈ R × [−U1,U2] imply

∂2H

∂u2
(x, z, u) = −x

∂v

∂x
(x, z)

∂2g

∂u2
(z, u) > 0 ∀(x, z, u) ∈ (0,+∞) × R × [−U1,U2] .

Recalling that

∂H

∂u
(x, z, u) = −x

∂v

∂x
(x, z)

[
∂g

∂u
(z, u) + 1

]
,

the first order condition reads as if and only if

∂g

∂u
(z, u) + 1 = 0 ,

and the proof follows the same lines of Proposition 5.2. ��
The previous result has an intermediate case as in Proposition 5.3, with the same inter-

pretation. However, as announced, now we can provide a deeper insights on extreme fiscal
policies.
The maximum surplus-to-debt will be applied only if the beneficial impact on debt more than
compensates the negative effect on GDP growth. Indeed, the marginal impact of U2 on the
GDP growth is measured by ∂g

∂u (z,U2), which is negative, while the effect on debt is unitary.
When the debt can be decreased more than the GDP growth by means of the maximum
surplus-to-debt, U2 is optimal. Similarly, the maximum deficit-to-debt is chosen when the
positive effect on GDP exceeds the negative effect on debt.

Proposition 5.5 also highlights a relevant aspect of our model: the cost-benefit trade-off is
implicit in the debt-to-GDP equation, because our model allows for effects of surplus/deficit
on GDP. Hence the presence of u in the cost functional is not needed from the mathematical
point of view.

In the case of Example 2.1, that is when the fiscal policy has a linear impact on the GDP
growth rate, (see Eq. (2.6)) we have an analogous result.

Proposition 5.6 Let the GDP growth rate given by

g(z, u) = g0(z) − α(z)u ,

with g0 : R → R and α(z) > 0, α(z) 	= 1, ∀z ∈ R. Then, for any running cost function
f (x, z) increasing in x ∈ (0,+∞) ∀z ∈ R and assuming ∂v

∂x (x, z) 	= 0 ∀(x, z) ∈ (0,+∞)×
R, the unique minimizer of (5.3) is given by

u∗(z) =
{

−U1 z ∈ {z ∈ R | α(z) > 1}
U2 z ∈ {z ∈ R | α(z) < 1} .

(5.12)

123



Mathematics and Financial Economics

Proof Observing that

H(x, z, u) = −x[g0(z) + (1 − α(z))u] ∂v

∂x
(x, z) + f (x, z) ,

we have only two cases.

1. If z ∈ {z ∈ R | α(z) > 1} then H is increasing in u ∈ [−U1,U2] thus the minimizer is
u∗(z) = −U1.

2. If z ∈ {z ∈ R | 0 < α(z) < 1} then H is decreasing in u ∈ [−U1,U2] thus the minimizer
is u∗(z) = U2.

��
In the semplified model of Eq. (2.7), that is when α(z) = α ∀z ∈ R, we have the following

result.

Corollary 5.1 Let the GDP growth rate be given by

g(z, u) = g0(z) − αu ,

with g0 : R → R and α > 0, α 	= 1. Then for any running cost function f (x, z) increasing
in x ∈ (0,+∞) ∀z ∈ R, assuming ∂v

∂x (x, z) 	= 0 for any (x, z) ∈ (0,+∞) × R, the unique
minimizer of (5.3) is constant and given by

u∗ =
{

−U1 if α > 1

U2 if 0 < α < 1 .

Proof This is a simple application of Proposition 5.6. ��
Remark 5.1 If α > 1 we get that the candidate optimal strategy is u∗ = −U1, that is the
optimal choice for the government is to generate the maximum deficit-to-debt. Indeed, the
beneficial effect on GDP exceeds the debt increase. By Remark 2.3 this strategy is sustainable
if

U1 > −minz∈R g0(z)

α − 1
.

It would be natural to assume that minz∈R g0(z) < 0, and hence the right hand side is positive.
Then u∗ = −U1 would be sustainable if the government can produce enough deficit, which
is usually the case.
Conversely, if 0 < α < 1, the candidate optimal strategy is u∗ = U2, that is the maximum
surplus-to-debt. By Remark 2.3 this strategy is sustainable if

U2 > −minz∈R g0(z)

1 − α
.

If minz∈R g0(z) < 0, the optimal policy u∗ = U2 will be sustainable only if the govern-
ment has the possibility of increasing taxes and reducing public spending more than a given
threshold. In some cases, this could be a challenging task for the government.
Clearly, when minz∈R g0(z) > 0, the optimal strategy is always sustainable.

Remark 5.2 Propositions 5.5, 5.6 and Corollary 5.1 show that in the case where f (x, z, u) =
f (x, z) is increasing in x ∈ (0,+∞),∀z ∈ R, the minimizer of (5.3) does not depend on the
form of the cost function but only on the function g(z, u) which describes the GDP growth
rate and the effect of the government policy on it. Thus, given the unitary impact of the fiscal
policy on the public debt, the debt-GDP reduction is driven by the effect on the GDP growth
rate, which should be the focus of the government attention.

123



Mathematics and Financial Economics

6 Explicit solutions for some cases of interest

In this section we discuss two examples which can be solved applying the Verification Theo-
rem. In the first example we have in mind a country with debt problems, aiming to reduce its
debt-to-GDP ratio. In the second application we discuss the debt smoothing problem, that is,
the government wishes to smooth the debt-to-GDP by flattening its deviation from a given
threshold. In the first case the running cost is increasing w.r.t. x ∈ (0,+∞), while in the
second case we do not require a monotonic condition.

6.1 The debt reduction problem

We assume that the cost function is given by

f (x, z) = C(z)xm, m ≥ 2 , (6.1)

where C : R → (0,+∞) is a bounded function. This disutility function generalizes the
quadratic function that is widely used in Economics. The parameterm represents the aversion
of the government towards holding debt and the importance of debt for the government is
modulated by the function C(z), which is a function of the values taken by the environment
stochastic factor Z .

For instance, if Z is an indicator of macroeconomic conditions and higher values corre-
spond to better conditions, assuming that C is increasing enables the government to relax
fiscal rules and debt reduction goals when a massive government intervention is needed, as
during economic crises. That is, C(z) allows for countercyclical policies.

Denoting by

G(z) = inf
u∈[−U1,U2]

{−(g(z, u) + u)} ,

the HJB Eq. (5.1) reads as

(G(z) + r(z))x
∂v

∂x
(x, z) + f (x, z) + 1

2
σ 2x2

∂2v

∂x2
(x, z)

+ ρσ xσZ (z)
∂2v

∂x∂z
(x, z) + bZ (z)

∂v

∂z
(x, z)

+ 1

2
σZ (z)2

∂2v

∂z2
(x, z) − λv(x, z) = 0 .

With the ansatz v(x, z) = φ(z)xm this equation reduces to the following ordinary differential
equation (ODE)

1

2
σ 2
Z (z)φ′′(z) + (

bZ (z) + ρσσZ (z)m
)
φ′(z)

− [λ − (G(z) + r(z))m − σ 2

2
m(m − 1)]φ(z) + C(z) = 0 .

(6.2)

Proposition 6.1 Let us assume the following hypotheses:

• bZ (z) and σZ (z) are Lipschitz continuous functions;
• r(z) is continuous;
• g(z, u) is continuous in z ∈ R, uniformly in u ∈ [−U1,U2];
• C(z) is bounded and continuous.
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Then there exists a bounded classical solution φ ∈ C2(R) to the ODE (6.2). Moreover, the
following Feynman-Kac representation holds:

φ(z) = E

[∫ +∞

0
e− ∫ t

0 λ̃(Z̃ z
s )dsC(Z̃ z

t )dt

]
∀z ∈ R, (6.3)

where λ̃(z) = λ − (G(z) + r(z))m − σ 2

2 m(m − 1) and {Z̃ z
t }t≥0 denotes the solution to the

SDE:
d Z̃ z

t = b̃(Z̃ z
t ) dt + σZ (Z̃ z

t ) dW̃t , Z̃ z
0 = z ∈ R , (6.4)

with W̃ = {W̃t }t≥0 a standard Brownian motion and b̃(z) = bZ (z) + ρσσZ (z)m.

Proof Since the coefficients of (6.2) are continuous functions and C(z) is bounded, from
classical results on linear ODEs there exists a bounded solution φ ∈ C2(R). Let us define
the process

Yt =
∫ t

0
e− ∫ s

0 λ̃(Z̃ z
v)dvC(Z̃ z

s )ds + e− ∫ t
0 λ̃(Z̃ z

s )dsφ(Z̃ z
t ), t ≥ 0, (6.5)

where {Z̃ z
t }t≥0 is the unique solution to SDE (6.4). By Itô’s formula and Eq. (6.2), we get

that

Yt = φ(z) +
∫ t

0

(1
2
σ 2
Z (Z̃ z

s )φ
′′(Z̃ z

s ) + b̃Z (Z̃ z
s )φ

′(Z̃ z
s ) − λ̃(Z̃ z

s )φ(Z̃ z
s ) + C(Z̃ z

s )
)
ds (6.6)

+
∫ t

0
e− ∫ s

0 λ̃(Z̃ z
v)dvφ′(Z̃ z

s )σZ (Z̃ z
s )dWs (6.7)

= φ(z) +
∫ t

0
e− ∫ s

0 λ̃(Z̃ z
v)dvφ′(Z̃ z

s )σZ (Z̃ z
s )dWs . (6.8)

Let us introduce a sequence of stopping times {τn}n≥1 as follows

τn = inf{s ≥ 0 | ∣∣Z̃ z
s − z

∣∣ > n} ,

then ∀t ≥ 0 we get that

E

[∫ t∧τn

0
e− ∫ t

0 λ̃(Z̃ z
s )ds(φ′(Z̃ z

t ))
2σ 2

Z (Z̃ z
t )dt

]
< ∞ ∀n ∈ N , (6.9)

because φ′ and σZ are continuous functions and λ̃(z) ≥ λ−λm > 0 ∀z ∈ R (see Eq. (2.11)).
As a consequence, {Yt∧τn }t≥0 is a martingale, hence recalling (6.5) for any n ∈ N

φ(z) = E

[∫ T∧τn

0
e− ∫ s

0 λ̃(Z̃ z
v)dvC(Z̃ z

s )ds + e− ∫ T∧τn
0 λ̃(Z̃ z

s )dsφ(Z̃ z
T∧τn

)

]
∀T > 0 . (6.10)

Letting n → +∞ and applying the dominated convergence theorem we have that

φ(z) = E

[∫ T

0
e− ∫ s

0 λ̃(Z̃ z
v)dvC(Z̃ z

s )ds + e− ∫ T
0 λ̃(Z̃ z

s )dsφ(Z̃ z
t )

]
∀T > 0 . (6.11)

Finally sending T → +∞ and observing that

lim
T→+∞E[e− ∫ T

0 λ̃(Z̃ z
s )dsφ(Z̃ z

t )] = 0 ,

because φ is bounded, we get Eq. (6.3). ��
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Remark 6.1 When the Brownian motions WZ and W driving the dynamics of the environ-
mental stochastic factor Z and the debt-to-GDP process X are uncorrelated (i.e. ρ = 0), Eq.
(6.3) reduces to

φ(z) = E

[∫ +∞

0
e− ∫ t

0 λ̃(Zz
s )dsC(Zz

t )dt

]
∀z ∈ R. (6.12)

By applying Proposition 6.1 and the Verification Theorem 4.2 we solve the debt reduction
problem in our framework.

Proposition 6.2 Under the assumptions of Proposition 6.1, the value function is v(x, z) =
φ(z)xm ∈ C2,2((0,+∞) ×R), where φ given in Eq. (6.3) is a bounded classical solution to

the ODE (6.2). Moreover, assuming ∂2g
∂u2

(z, u) < 0 ∀(z, u) ∈ R× [−U1,U2] (or g satisfying
(2.6)), we have that u∗ = {u∗(Zz

t )}t≥0 with u∗(z) given in (5.11) (or (5.12), respectively) is
an optimal strategy.

Proof First, let us observe that by Eq. (6.3) we get that φ is a strictly positive function. Then,
the statement follows by Proposition 6.1, Theorem 4.2 and Proposition 5.5 (or Proposition
5.6, respectively), observing that ∂v

∂x (x, z) = (m−1)φ(z)xm−1 > 0 ∀(x, z) ∈ (0,+∞)×R.
��

We discuss in the next example the simplified case without the presence of the stochastic
factor.

Example 6.1 Let us assume r(z) = r , g(z, u) = g(u), σZ = bZ = 0, C(z) = C > 0, hence
G(z) = G = infu∈[−U1,U2]{−(g(u) + u)} and the HJB reads as

1

2
σ 2x2v′′(x) + (G + r)xv′(x) + Cxm − λv(x) = 0 . (6.13)

It is easy to find an explicit solution to this equation and by the Verification Theorem 4.2
we get that the value function is given by v(x) = kxm , with

k = C

λ − (G + r)m − 1
2m(m − 1)σ 2

> 0 .

As observed in Remark 5.2, the optimal strategy depends only on the form of the function
g(u). We discuss three cases below.

1. If g′′(u) < 0 ∀u ∈ [−U1,U2], then by Proposition 5.5 the optimal control is u∗ =
−U1 ∨ û ∧U2 where û the unique solution to g′(u) = −1 and, precisely, it is given by

u∗ =

⎧⎪⎨
⎪⎩

−U1 if g′(−U1) < −1

U2 if g′(U2) > −1

û otherwise .

(6.14)

2. In the case of (2.7), i.e. g(u) = g0 − αu, the optimal strategy is given by

u∗ =
{

−U1 if α > 1

U2 if 0 < α < 1 .
(6.15)

The considerations in Remark 5.1 apply and the optimal strategy is sustainable in some
circumstances: when α > 1 if U1 > − g0

α−1 and when 0 < α < 1 if U2 > − g0
1−α

.
3. If g(u) = g0, that is the GDP growth rate is not influenced by the fiscal policy, then the

optimal strategy is u∗ = U2 (the government applies the maximum level of surplus) and
it is sustainable if U2 > −g0.
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6.2 Debt smoothing

In the previous section we assumed that a cost is associated to any increase of debt-to-GDP,
because the aimwas to reduce debt. However, in some cases an increase of debt could bemore
beneficial than its reduction. In [17] there is a noteworthy discussion of this topic, focusing
on the trade-off between lowering public debt and building public infrastructure. Clearly, the
latter should be the greater priority for countries with low debt and big infrastructure needs.
Also, there are some unclear cases with high debt, no plausible risk of fiscal distress and some
infrastructure needs. In these cases the optimal debt level is unclear and sometimes the benefit
from increasing debt could surpass the advantages of debt reduction. This is even more true
at the current juncture, given the very low level of real interest rates and the existence of
demand shortfalls.

Another reason for the government to not let the public debt fall down to zero is related
to the role of debt as savings absorber, see [11]. The government wishes to guarantee at any
time a given amount of bonds in order to absorb the private savings in the financial market.
Finally, it is well known that sudden and large shocks such as economic crises, wars or
pandemics might cause spikes of public debt. “In developed countries […] the aim of debt
management was to smooth as much as possible the impact of such temporary expenditure
shocks that were initially financed by raising debt” (see [9]).

Motivated by these considerations, in this section we address the debt smoothing problem.
We assume that the government wishes to smooth the public debt-to-GDP by flattening its
deviation from a given threshold x̄ > 0. Hence the cost is represented by the (quadratic)
distance between the current debt-to-GDPand the target debt-to-GDP x̄ . Formally,we assume
that the cost function is given by

f (x) = (x − x̄)2 . (6.16)

Recalling Proposition 3.1, we can derive the following properties of the value function
v(x, z):

• v(x, z) ≥ 0, ∀(x, z) ∈ (0,+∞) × R ;
• v(x, z) ≤ x2

λ−λ2
+ x̄2

λ
∀(x, z) ∈ (0,+∞) × R ;

• limx→0+ v(x, z) ≤ x̄2
λ

∀z ∈ R.

Moreover, assuming that g is continuous in u ∈ [−U1,U2] uniformly in z ∈ R, by Proposi-
tion 3.4, v(x, z) is convex w.r.t x ∈ (0,+∞) ∀z ∈ R.

In order to provide an explicit solution to the HJB equation we discuss the simpli-
fied case without the stochastic factor. Precisely, we assume σZ = bZ = 0, r(z) = r
and g(z, u) = g(u). Then we denote G1 = minu∈[−U1,U2]{−(g(u) + u)} and G2 =
maxu∈[−U1,U2]{−(g(u) + u)}, thus the HJB (5.2) reads as

1

2
σ 2x2v′′(x) + (G1 + r)xv′(x) − λv(x) + (x − x̄)2 = 0 , (6.17)

for v′(x) ≥ 0, and

1

2
σ 2x2v′′(x) + (G2 + r)xv′(x) − λv(x) + (x − x̄)2 = 0 , (6.18)

for v′(x) < 0. Recalling that v′ is increasing (because v is convex), we conjecture that there
exists a threshold x̃ > 0 such that v′(x) > 0 ∀x > x̃ and v′(x) < 0 ∀x < x̃ , so that we make
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the following ansatz:

v(x) =
{
a1x2 + b1x + c1 + d1xγ1 , if x ≥ x̃

a2x2 + b2x + c2 + d2xγ2 , if x < x̃ .
(6.19)

By substituting this expression in the Eqs. (6.17) and (6.18) above, we get that

ai = 1

λ − 2(Gi + r) − σ 2 , bi = 2x̄

Gi + r − λ
, ci = x̄2

λ
, i = 1, 2 , (6.20)

γ1 = −[2(G1 + r) − σ 2] − √[2(G1 + r) − σ 2]2 + 4λσ 2

2σ 2 < 0 , (6.21)

γ2 = −[2(G2 + r) − σ 2] + √[2(G2 + r) − σ 2]2 + 4λσ 2

2σ 2 > 0 . (6.22)

Condition (6.21) guarantees the quadratic growth, that is v(x) ≤ C(1+x2)∀x ∈ (0,+∞),

while condition (6.22) implies that limx→0+ v(x) = x̄2
λ
.

We also conjecture that v is twice continuously differentiable. Then the three constants
di , i = 1, 2 and x̃ can be found by taking the following conditions into account:

1. v(̃x+) = v(̃x−);
2. v′(̃x+) = v′(̃x−);
3. v′′(̃x+) = v′′(̃x−).

In view of (6.19) these equations read as:

1. a1 x̃2 + b1 x̃ + d1 x̃γ1 = a2 x̃2 + b2 x̃ + d2 x̃γ2 ;
2. 2a1 x̃ + b1 + γ1d1 x̃γ1−1 = 2a2 x̃ + b2 + d2γ2 x̃γ2−1 = 0;
3. 2a1 + γ1(γ1 − 1)d1 x̃γ1−2 = 2a2 + d2γ2(γ2 − 1)̃xγ2−2.

Conditions 2 and 3 are equivalent to

d1 = d1(̃x) = −2a1 x̃ + b1
γ1 x̃γ1−1 (6.23)

and

d2 = d2 (̃x) = 2(a1 − a2 )̃x − (γ1 − 1)(2a1 x̃ + b1)

γ2(γ2 − 1)̃xγ2−3 , (6.24)

respectively. Then the equation of item 1 can be rewritten as

a1 x̃
2 + b1 x̃ + d1(̃x )̃x

γ1 = a2 x̃
2 + b2 x̃ + d2 (̃x )̃x

γ2 . (6.25)

Clearly, we first need to compute x̃ by solving numerically Eq. (6.25), then we obtain d1 and
d2 by Eqs. (6.23) and (6.24), respectively.

Applying the Verification Theorem 4.2 we obtain the following result.

Proposition 6.3 Let ai , bi , ci , γi , i = 1, 2 given in Eqs. (6.20) - (6.21) - (6.22), x̃ ∈ (0,+∞)

solution to Eq. (6.25), and d1 and d2 two constants determined by (6.23) and (6.24), respec-
tively. Define

w(x) =
{
a1x2 + b1x + c1 + d1xγ1 , if x ≥ x̃

a2x2 + b2x + c2 + d2xγ2 , if x < x̃ .
(6.26)

If ∀x ∈ (0,+∞) w′′(x) > 0 and (i) g′′(u) 	= 0 ∀u ∈ [−U1,U2], or (ii) g is given by
(2.7), thenw is the value function (i.e.w = v) and u∗ = {u∗(Xu∗

t )}t≥0 is an optimal strategy,
where the function u∗(x) is given by:
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Case (i)

u∗(x) =

⎧⎪⎨
⎪⎩

−U1 x ∈ {
x ∈ (0,+∞) | 0 ≥ w′(x)(g′(−U1) + 1)

}
U2 x ∈ {

x ∈ (0,+∞) | 0 ≤ w′(x)(g′(U2) + 1)
}

û otherwise ,

(6.27)

where û is the unique solution to

g′(u) = −1 u ∈ [−U1,U2] .

Case (ii)

u∗(x) =
{

−U1 x ∈ {
x ∈ (0,+∞) | w′(x)(α − 1) ≥ 0

}
U2 x ∈ {

x ∈ (0,+∞) | w′(x)(α − 1) < 0
}

.
(6.28)

Proof It is sufficient to show that all the conditions of the Verification Theorem 4.2 are
satisfied. First we prove that w is twice continuous differentiable, by construction we have
that w(̃x+) = w(̃x−), w′′(̃x+) = w′′(̃x−) and w′(̃x+) = 0. Let us observe that w′(̃x−) =
w′(̃x+) = 0 because w is twice differentiable on (0,+∞). Since w′ is strictly increasing,
we have that w′(x) ≥ 0 for x ≥ x̃ and w′(x) < 0 for x < x̃ . w solves the HJB Eq. (5.2)
and satisfies the quadratic growth condition by construction. Then the statement follows by
Propositions 5.3, 5.4 and the Verification Theorem 4.2. ��
Remark 6.2 Let us observe that (6.28) reads as:

• for 0 < α < 1:

u∗(x) =
{
U2 if x ≥ x̃

−U1 if x < x̃ ; (6.29)

• for α > 1

u∗(x) =
{

−U1 if x ≥ x̃

U2 if x < x̃ .
(6.30)

We can distinguish two cases. When the impact of fiscal policy on GDP growth is low (i.e.
0 < α < 1), the government applies the maximum surplus-to-debt, increasing taxes and
decreasing the public spending, as long as the current debt-to-GDP ratio is over the threshold
x̃ . When Xt is below x̃ , the maximum deficit-to-debt is applied. This simple rule is reversed
when α > 1, that is when the fiscal policy is more effective on GDP growth than on debt.

In the sequel we perform some numerical simulations to further investigate the results of
Proposition 6.3. In particular, we refer to the case (ii), when the GDP growth rate takes the
form of Eq. (2.7), that is

g(z, u) = g0 − αu .

We consider the parameters in Table 1 below as a reference scenario, unless otherwise spec-
ified.

The main task is to solve numerically (6.25). Then we can investigate how the result is
sensitive to the model parameters.

For instance, given the parameters as in Table 1, we can find a solution to Eq. (6.25), that
is x̃ = 0.6194, so that the value function is well defined and it is illustrated in Fig. 1. The
reader can easily notice that it is convex, as expected.
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Table 1 Simulation parameters Parameter Value

r 0.01

g0 0.03

σ 0.2

x̄ 0.6

U1 = U2 1

α 0.9

λ 5

Fig. 1 The value function given by Eq. (6.26)

Table 2 Comparison between
strong and weak economies

Parameters Strong Economy Weak Economy

α = 0.9 x̃ = 0.6194 x̃ = 0.6241

α = 0.95 x̃ = 0.6052 x̃ = 0.5941

U1 = U2 = 0.8 x̃ = 0.6125 x̃ = 0.6068

U1 = U2 = 0.5 x̃ = 0.6052 x̃ = 0.5941

Recalling (2.12) we get that the uncontrolled debt-to-GDP ratio is given by

X0,x
t = xe(r−g0− 1

2 σ 2)t+σWt , t ≥ 0 ,

hence we call strong economy countries with parameters satisfying g0 + σ 2

2 > r and weak

economy when the opposite inequality holds, that is g0 + σ 2

2 < r (e.g. in [7] the same
definition is used).

InTable 2weperforma comparison between countrieswith different economyparameters;
precisely, we consider the parameters r = 0.01, g0 = 0.03, σ = 0.2 corresponding to a
strong economy and r = 0.07, g0 = 0.015, σ = 0.3 for a weak economy.

First, we noticed that the solution x̃ is symmetric with respect to α = 1, i.e. x̃ for α = 0.9
and α = 0.95 is the same as for α = 1.1 and α = 1.05, respectively. We can observe
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Fig. 2 A simulation of the debt-to-GDP ratio (left y axis) with the corresponding optimal strategy (right y
axis). Here x̃ = 61.94% and x̄ = 0.60%. The solid line represents the controlled process, while the dotted
line is the debt-to-GDP ratio without intervention

that when the effect of fiscal policy on GDP, which is measured by α, is closer to the
effect on debt, which is a unitary, then the threshold x̃ decreases. In particular, for the weak
economy this phenomenon is more evident and x̃ becomes lower than the target debt-to-GDP
x̄ . Moreover, when the fiscal margin is reduced (U1 andU2 go from 1 to 0.8 and 0.5) we can
see that x̃ decreases, becoming closer to x̄ . Hence, when the fiscal policy is less effective, the
government should intervene even when minimal deviations from the target are observed.

To clarify the government behavior and give a deeper insight into Remark 6.2, we simulate
a trajectory of debt-to-GDP ratio with the corresponding optimal strategy.

Figure 2 illustrates a trajectory of the (optimally) controlled debt-to-GDP. Recall that
in this case 0 < α < 1, hence the optimal strategy follows Eq. (6.29). Let us recall that
here we have x̃ = 61.94%, while our target is x̄ = 60%. For instance, let us comment the
first two months as illustrated in the picture. Starting from a debt-to-GDP ratio of 70%, the
government applies the maximum surplus-to-debt U2 according to the optimal strategy. We
observe the debt-to-GDP decreasing and after 51 days the debt-to-GDP hits the threshold x̃ ,
so that the maximum deficit-to-debt −U1 is applied. Then the debt-to-GDP increases again
and the government will stop spending when the threshold is hit again.

Conclusions

The present article introduces a new dynamic stochastic model for the debt-to-GDP ratio,
see Eq. (2.3), trying to fill the gap between the economic theory and the mathematical model
formulation. In particular, the expansionary/recessionary role of the fiscal policy on the GDP
were not fully recognized by some recent research papers, while this phenomenon is well
known in Economics. In this general framework, the Debt-to-GDP dynamics has an internal
trade-off in addition to that induced by the objective function.

Our results give many interesting insights on the government interventions for managing
public debt issues. When the cost function is independent of the fiscal policy u and the
surplus/deficit has a nonlinear impact on the GDP growth, the government will select the
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primary balance in order that the effect on GDP equals that on debt, as shown in Proposition
5.3. That is, the internal trade-off induced by the Debt-to-GDP dynamics prevails over the
cost function, if the latter does not explicitly depend on the fiscal policy.
However, in some circumstances the effect of the fiscal policy on GDP would not match
that on debt, because the room for maneuvre is limited, i.e. the interval [−U1,U2] does
not include the stationary point. In this case, the extreme policies (maximum deficit-to-debt
or maximum surplus-to-debt) are chosen. In particular, when the cost functional does not
depend on u and it is also increasing in x (e.g. for debt reduction), we proved in Proposition
5.5 that the maximum surplus-to-debt U2 is applied only when its marginal negative effect
on GDP is lower than the positive effect on debt reduction. Similarly, the maximum deficit-
to-debt is optimal when its marginal beneficial effect on GDP surpasses the negative effect
of increasing debt.
In Propositions 5.4 and 5.6 we show that when the effect of u on GDP is linear, a bang-bang
strategy is obtained.

In general, it turns out that the impact of the fiscal policy on GDP is crucial to determine
the optimal taxation/spending level and the corresponding optimal debt-to-GDP ratio. In
particular, depending on the macroeconomic conditions (described by Z in our model) and
the magnitude of the impact of the fiscal policy on GDP, the optimal debt management can
be achieved by deficit policies in some circumstances. This is still true when the government
goal is debt reduction, as shown in Sect. 6.1.

Since public debt management is a large and urgent topic, we expected an increasing inter-
est on this field in the next years. In particular, we recognize at least two different directions
for future researches. On the one hand, the model formulation could be further improved,
taking into account the presence of more agents, e.g. a Central Bank, other countries, finan-
cial institutions or investors. On the other, starting from the model presented in this article,
the study of specific debt management problems is of great interest. As a matter of fact, any
specific form of the functional cost has peculiar properties and it can be associated to a spe-
cific economic problem, like those investigated in the last section of this paper in simplified
frameworks.
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A Proofs of secondary results

Proof of Theorem 4.1 We adapt the proof of [18, Chapter 4.3] to our framework. Proposition
3.5 ensures the continuity of v. Let (x̄, z̄) ∈ (0,+∞) × R and take a test function ϕ ∈
C2,2((0,+∞) × R) such that

0 = (v − ϕ)(x̄, z̄) = max
(x,z)∈(0,+∞)×R

(v − ϕ)(x, z) .

Let us observe that v ≤ ϕ by construction. Since v is continuous, there exists a sequence
{(xn, zn)}n≥1 such that

(xn, zn) → (x̄, z̄) and v(xn, zn) → v(x̄, z̄) as n → +∞ .

Correspondingly, we must have that

γn
.= v(xn, zn) − ϕ(xn, zn) → 0 as n → +∞ .

Now let us consider a control ūt = ū ∀t > 0, for some arbitrary constant ū ∈ [−U1,U2].
Moreover, let introduce a sequence of stopping times {τn}n≥0 as follows:

τn = inf
{
s ≥ 0 | max

{∣∣∣Xū,xn
s − xn

∣∣∣ , ∣∣Zzn
s − zn

∣∣} > ε
}

∧ hn n ≥ 1 ,

for some fixed ε > 0 and {hn}n≥1 such that

hn → 0 ,
γn

hn
→ 0 as n → +∞ .

Here {Zzn
t }t≥0 denotes the solution of the SDE (2.1) with initial condition Zzn

0 = zn . By the
dynamic programming principle (see e.g. [18, Theorem 3.3.1]) for any n ≥ 1 we have that

v(xn, zn) ≤ E

[∫ τn

0
e−λt f (Xū,xn

t , Zzn
t , ū) dt + e−λτnv(Xū,xn

τn
, Zzn

τn
)

]
,

hence

ϕ(xn, zn) + γn ≤ E

[∫ τn

0
e−λt f (Xū,xn

t , Zzn
t , ū) dt + e−λτnϕ(Xū,xn

τn
, Zzn

τn
)

]
.

Applying Itô’s formula we get that

e−λτnϕ(Xū,xn
τn

, Zzn
τn

) = ϕ(xn, zn) +
∫ τn

0
e−λt [Lūϕ(Xū,xn

t , Zzn
t )

−λϕ(Xū,xn
t , Zzn

t )] dt + Mτn , (A.1)

where

Mt =
∫ t

0
e−λs ∂ϕ

∂x
(Xū,xn

s , Zzn
s )σ Xū,xn

s dWs

+
∫ t

0
e−λs ∂ϕ

∂z
(Xū,xn

s , Zzn
s )σZ (Zzn

s ) dW Z
s .

Clearly {Mt }t≥0 is a local martingale (having {τn}n≥0 as localizing sequence of stopping
times) because the integrand functions are continuous and hence bounded on the compact
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sets. Taking expectations in Eq. (A.1) and using the previous inequality yields

γn + ϕ(xn, zn)

= γn − E

[∫ τn

0
e−λt [Lūϕ(Xū,xn

t , Zzn
t ) − λϕ(Xū,xn

t , Zzn
t )] dt

]

+ E

[
e−λτnϕ(Xū,xn

τn
, Zzn

τn
)

]

≤ E

[∫ τn

0
e−λt f (Xū,xn

t , Zzn
t , ū) dt

]
+ E

[
e−λτnϕ(Xū,xn

τn
, Zzn

τn
)

]
,

that is, dividing by hn (using that τn ≤ hn),

γn

hn
≤ E

[
1

hn

∫ τn

0
e−λt [Lūϕ(Xū,xn

t , Zzn
t ) + f (Xū,xn

t , Zzn
t , ū) − λϕ(Xū,xn

t , Zzn
t )] dt

]
.

Letting n → +∞ we have that Xū,xn
t → Xū,x̄

t and Zzn
t → Z z̄

t , ∀t ≥ 0 P − a.s. and the
right-hand side converges to Lūϕ(x̄, z̄) + f (x̄, z̄, ū) − λϕ(x̄, z̄) by the mean value theorem
for integrals. Hence

Lūϕ(x̄, z̄) + f (x̄, z̄, ū) − λϕ(x̄, z̄) ≥ 0 .

Since ū is arbitrary, taking the infimum we obtain that v is a viscosity subsolution of Eq.
(4.2) (see Eq. (4.3)).

Now we prove that v is a viscosity supersolution. To this end, we take a test function
ϕ ∈ C2,2((0,+∞) × R) such that

0 = (v − ϕ)(x̄, z̄) = min
(x,z)∈(0,+∞)×R

(v − ϕ)(x, z) .

By definition of the value function, we can find a strategy {ût }t≥0 ∈ U such that

v(xn, zn) + h2n ≥ E

[∫ τn

0
e−λt f (Xû,xn

t , Zzn
t , ût ) dt + e−λτnv(Xû,xn

τn
, Zzn

τn
)

]
,

and hence

ϕ(xn, zn) + γn + h2n ≥ E

[∫ τn

0
e−λt f (Xû,xn

t , Zzn
t , ût ) dt + e−λτnv(Xû,xn

τn
, Zzn

τn
)

]
.

Using Eq. (A.1) and v ≥ ϕ we obtain that

γn + h2n + E

[
e−λτnϕ(Xû,xn

τn
, Zzn

τn
)

]
− E

[∫ τn

0
e−λt [Lûϕ(Xû,xn

t , Zzn
t ) − λϕ(Xû,xn

t , Zzn
t )] dt

]

≥ E

[∫ τn

0
e−λt f (Xû,xn

t , Zzn
t , ût ) dt

]
+ E

[
e−λτnϕ(Xû,xn

τn
, Zzn

τn
)

]
,

and dividing by hn we get
γn

hn
+ hn ≥ E

[
1

hn

∫ τn

0
e−λt [Lûϕ(Xû,xn

t , Zzn
t ) + f (Xû,xn

t , Zzn
t , ût ) − λϕ(Xû,xn

t , Zzn
t )] dt

]

≥ E

[
1

hn

∫ τn

0
inf

u∈[−U1,U2]
{Luϕ(Xu,xn

t , Zzn
t ) + f (Xu,xn

t , Zzn
t , u) − λϕ(Xu,xn

t , Zzn
t )} dt

]
.

Observing that

lim
n→+∞

τn

hn
= min

⎧⎨
⎩ lim

n→+∞
inf

{
s ≥ 0 | max

{∣∣∣Xū,xn
s − xn

∣∣∣ , ∣∣Zzn
s − zn

∣∣} ≥ ε
}

hn
, 1

⎫⎬
⎭ = 1 ,
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using the mean value theorem for integrals again, we finally get the inequality

inf
u∈[−U1,U2]

{Luϕ(x̄, z̄) + f (x̄, z̄, u) − λϕ(x̄, z̄)} ≤ 0 ,

and hence v is a viscosity supersolution of Eq. (4.2) (see Eq. (4.4)).
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