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Over the past several years, electromyography (EMG) signals have been used

as a natural interface to interact with computers and machines. Recently,

deep learning algorithms such as Convolutional Neural Networks (CNNs)

have gained interest for decoding the hand movement intention from EMG

signals. However, deep networks require a large dataset to train appropriately.

Creating such a database for a single subject could be very time-consuming.

In this study, we addressed this issue from two perspectives: (i) we proposed a

subject-transfer framework to use the knowledge learned from other subjects

to compensate for a target subject’s limited data; (ii) we proposed a task-

transfer framework in which the knowledge learned from a set of basic hand

movements is used to classify more complex movements, which include a

combination of mentioned basic movements. We introduced two CNN-based

architectures for hand movement intention detection and a subject-transfer

learning approach. Classifiers are tested on the Nearlab dataset, a sEMG

hand/wrist movement dataset including 8 movements and 11 subjects, along

with their combination, and on open-source hand sEMG dataset “NinaPro

DataBase 2 (DB2).” For the Nearlab database, the subject-transfer learning

approach improved the average classification accuracy of the proposed deep

classifier from 92.60 to 93.30% when classifier was utilizing 10 other subjects’

data via our proposed framework. For Ninapro DB2 exercise B (17 hand

movement classes), this improvement was from 81.43 to 82.87%. Moreover,

three stages of analysis in task-transfer approach proved that it is possible

to classify combination hand movements using the knowledge learned from

a set of basic hand movements with zero, few samples and few seconds of

data from the target movement classes. First stage takes advantage of shared

muscle synergies to classify combined movements, while second and third

stages take advantage of novel algorithms using few-shot learning and fine-
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tuning to use samples from target domain to further train the classifier trained

on the source database. The use of information learned from basic hand

movements improved classification accuracy of combined hand movements

by 10%.

KEYWORDS

convolutional neural networks, deep learning, prosthetic hand, hand gesture
recognition, neural prostheses, surface electromyography, transfer learning, few-
shot learning

Introduction

Over the past several years, electromyography (EMG)
signals have been used as a natural interface to interact with
several sorts of external devices (Oskoei and Hu, 2007) such as
myo-controlled limb prosthetics (Össur, 2022; Ottobock, 2022;
Steeper Group, 2022; Vincent Systems, 2020), exoskeletons
(Kiguchi and Hayashi, 2012; Myomo, 2022), rehabilitation
devices (Leonardis et al., 2015; Gandolla et al., 2016a),
wheelchair (Jang et al., 2016), and speech synthesizers (Niu et al.,
2015). Although myo-controlled devices hold great promise,
there still exist many challenges to use EMG signals for a smooth
control. The first challenge is to detect the exact hand movement
intention from the hand’s EMG signal.

Traditionally, surface EMG (sEMG) signals were pre-
processed and segmented into windows; then, signal features
were calculated over each window and fed to a classifier
(Abbaspour et al., 2019). A significant challenge in this
approach is choosing the right combination of features. Many
researchers have tackled this issue by analyzing different feature
combinations and evaluating their performance in terms of
accuracy, time efficiency, and robustness (Hudgins et al., 1993;
Englehart et al., 1999; Phinyomark et al., 2013; Atzori et al., 2014;
Abbaspour et al., 2019). However, discovering the best feature
set remains an open problem (Khushaba and Kodagoda, 2012;
Phinyomark et al., 2013). Recently, researchers proposed deep
learning approaches in order to distinguish hand movement
classes using sEMG signals, shifting the methodology from
feature engineering to feature learning (Atzori et al., 2016; Park
and Lee, 2016; Cote-Allard et al., 2019). Although the approach
is different, the goals remain the same: improving accuracy, time
efficiency, and robustness of classification. A systematic review
on deep learning techniques for sEMG-based hand gesture
classification published in 2019 (considering papers published
from 2014 to 2019) (Buongiorno et al., 2019) stated that
the most widely used deep learning method is Convolutional
Neural Network (CNN) (Atzori et al., 2016). In a recent article
about classifying sEMG data (Rehman et al., 2018), it was
also shown that CNNs show better performance compared to
Linear Discriminant Analysis (LDA) with handcrafted features

in terms of robustness over time. An important factor when
using deep learning algorithms is that obtaining acceptable
results is highly dependent on the size of the training database
(Cote-Allard et al., 2019), where more data corresponds to better
classification accuracy. However, in hand gesture recognition
based on sEMG signals, creating a sufficiently large and reliable
EMG dataset for each individual is not practical, especially if
the number of movement classes is high. One way to approach
the mentioned challenge is by utilizing Transfer Learning (TL).
To facilitate the training process of deep networks in the
targeted domain, transfer learning algorithms take advantage
of available labeled data in another similar domain (Bengio,
2012; Yosinski et al., 2014). TL can transfer knowledge between
similar domains such as (i) multiple subjects or (ii) multiple
tasks. When coming to multiple subjects TL, while it is true that
inter-subject variability is always present in multi-user sEMG
classification problems, there are also undeniable similarities
between users’ data. TL could leverage these similarities using
the source model pre-trained on source domain dataset to a
new subject-specific model (target model) by adding a small
number of labeled person-specific data (Du et al., 2017; Sosin
et al., 2018; Cote-Allard et al., 2019; Kim et al., 2020; Tam et al.,
2021; Hoshino et al., 2022). When coming to multiple tasks
TL, certain hand movements, which include multiple muscle
groups and a combination of different functions, referred to
as “combined hand movements” (e.g., rotating a key in key
hole), can be decomposed to a combination of simpler hand
movements, which involve smaller set of muscle groups, referred
to as “basic hand movements” (e.g., pinching the key or rotating
the wrist). Thus, the patterns in EMG recordings of basic
hand movements could be useful for distinguishing combined
hand movements. The idea of task-transferability between two
different groups of movements was tested by two previous
studies (Cote-Allard et al., 2019; Chen et al., 2021). However,
none of these studies considered the relation between EMG
patterns of two basic gestures and their combined movement.
It has been seen in muscle synergy studies that a multiphasic
movement can be reconstructed by the combination of different
muscle synergies (Weiss and Flanders, 2004; d’Avella and
Lacquaniti, 2013). Hence, a sufficiently large database with few
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basic hand movement classes could be employed to classify
simultaneous hand movements in a task-transfer framework.
An interesting TL approach introduced for image recognition
when the number of training samples of target dataset is limited,
is few-shot learning, i.e., the task to learn novel concepts from
only a few examples for each category (Fe-Fei et al., 2003; Koch
et al., 2015; Qiao et al., 2018). Few-shot learning has recently
been implemented in EMG classification (Rahimian et al., 2021)
with promising results.

This work aims to explore data transferability in sEMG
hand gesture classification and to design algorithms to be
used by myo-controlled upper limb devices. To this aim,
the contributions of this paper are the following. (i) The
development of a new subject-transfer framework to be used
when a limited amount of data is available for every single
subject. In this regard, the effect of different database sizes
for each subject and the number of subjects which we borrow
knowledge from, on the performance of the proposed novel
TL algorithm is explored. (ii) The investigation of valuable
shared information between two different movement groups
and the design of a mechanism to take advantage of this
shared information. To the best of authors’ knowledge, sEMG
data transferability between complex movements and their
associated basic movements have not been explored in a TL
study using a Deep Leaning approach. It is important to
mention that all the proposed classifiers are designed with the
consideration of real-time execution. (iii) The introduction of a
new sEMG-based hand gesture database referred to as “Nearlab
dataset.” The main reasons to create a dedicated sEMG database
for this paper was first to add combined movements, suitable
for task-transfer experiments, which are not present in other
public databases. Second, to include certain sEMG variabilities
present in real-life applications. Indeed, one of the sources of
EMG variability is the orientation of hand when performing
the hand gestures. By considering 3 hand orientations when
executing each hand gesture, this variability was accounted
for in the proposed database. The proposed approaches are
tested on Nearlab dataset and on an open-source sEMG dataset
(Ninapro database 2) (Atzori et al., 2014). Nearlab dataset
and proposed algorithms are made available (github.com/Rahil-
Soroush/Nearlab_sEMG_dataset).

Data preparation

Surface EMG datasets

Nearlab dataset
We acquired sEMG-based hand/wrist movement dataset to

compose the Nearlab Dataset, which we made available to the
scientific community, as one of the main contributions of this
work. This database includes hand muscles’ electrical activities
detected by surface electrodes when performing 8 basic hand
movements and 6 combined movements. To the best of our

knowledge, this is the only published dataset which includes two
sets of basic and combined tasks from same subjects, and it is
our hope that it will become a useful tool to compare different
task-transfer strategies. The Nearlab dataset comprises sEMG
signals of 11 able-body subjects (6 males, age 25 ± 3 years).
The only inclusion criterion was the absence of a history of
neuromuscular disorders. The ethical research committee of
Politecnico di Milano approved the data acquisition protocol on
October 16th, 2019. All participants had been briefed about the
experiments and gave informed written consent.

Acquisition Setup - SEMG signals have been acquired by
10 differential channels using passive Ag/AgCl electrodes with
conductive gel and were sampled at the rate of 2,048 Hz
with “Porti” polygraph from TMSi (TMSi, 2022). A Matlab
interface was used to visualize and store the acquired signals
simultaneously. A trigger input of the acquisition system was
utilized to synchronize data with a video containing movement
instructions. A micro-controller board (Arduino board) was
used to send a pulse to the trigger channel upon receiving the
PC’s instruction through a serial connection. The computer
would start the video and send the serial command at the same
time. The exact positions of bipolar electrodes were determined
according to SENIAM guidelines (Figure 1) (Hermens et al.,
1999): 6 electrodes pairs around the upper forearm equally
spaced along the forearm circumference, and 4 pairs 3 cm distal
to the previous electrodes. The reference electrode was placed
on the back of the wrist (Hermens et al., 1999). Skin preparation
and electrode placement procedures took 20–25 min.

Experimental Protocol - The experimental protocol was
composed of two phases, with instructions presented to
subjects through a video cue. Phase 1—each participant was
required to perform 15 repetitions of each of the 8 classes of
basic movements (Figure 2). In order to consider robustness
concerning hand positioning, the total of 15 repetitions per
movement accounted for 5 repetitions in each of the following
hand postures:

1. Upward starting position, where the palm is faced upward;
2. Sideway starting position, where the palm is faced

medially;
3. Downward starting position, where the hand palm is faced

to ground.

Movement instructions were presented in random
order. Each movement was performed and held for
5 s following 3 s rest and 2 s preparation windows.
Phase 2—each participant was required to perform
4 repetitions of each of the 6 classes of combined
movements (pronation + pinch, pronation + lateral pinch,
pronation + grip, supination + pinch, supination + lateral
pinch, supination + grip) with sideway starting position. As
before, the order of movements was random. Each movement
was performed and held for 7 s following 3 s rest and 2 s
preparation windows. Incorrect basic or combined movements
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FIGURE 1

Electrode placement on back (top of the picture) and front (bottom of the picture) of a right-handed subject in the Nearlab dataset. In total, 10
channels were used, 6 around the forearm, and 4 channels 3 cm distal to the previous ones. Electrodes 6 and 10 are not visible in this picture.

FIGURE 2

Included movements. 8 Basic hand movements included in the Nearlab dataset.

were discarded based on operators’ observations at the end of
each experimental session, before any processing.

Ninapro dataset
Atzori in 2014 (Atzori et al., 2014) published 3 open-source

datasets, including several hand and wrist movements, named
“Ninapro.” In this study, we used DataBase 2 (DB2) with data
from 40 able-body participants. DB2 is collected using 12 active
double–differential wireless electrodes with a Delsys Trigno
Wireless EMG system (Delsys, 2020), at 2 kHz sample rate. This
database includes 3 sets of exercises. The first exercise (called
exercise B), which includes 17 basic movements of hand and

wrist is used as a reference in this work due to its similarity to
movement classes in the Nearlab dataset. Each movement lasts
for 5 s and is repeated 6 times. More details on acquisition setup,
protocol and movement classes included in exercise B can be
found in the original papers (Atzori et al., 2012; Leonardis et al.,
2015).

Preprocessing

Nearlab dataset
Nearlab raw data were filtered using a 10–500 Hz band-

pass filter (Butterworth 4th order) and a 50 Hz Notch filter
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(Butterworth 2nd order) (Wang et al., 2013). Filtered data
were then divided into labeled movement windows using the
video cue time markers. Moreover, windows were further
trimmed using a threshold-based onset detection algorithm.
This threshold was based on baseline EMG activity during
the rest period, obtained by averaging the smoothed rectified
signals of 10 channels. In some studies (Gandolla et al.,
2016b), the transient part of the signal corresponding to
the electromechanical delay is investigated to classify hand
movements; however, in this study, the steady-state signal
is targeted. Therefore, a small part (100 ms) from the
beginning and end of windows were removed to eliminate
the transient part of the movement signal (Oskoei and Hu,
2007). The labeled trimmed windows were further segmented
to be fed to the network. Considering that for real-time
applications, window length plus the processing time to
generate classified control commands is suggested to be less
than 300 ms (Oskoei and Hu, 2007), a window size of 250
ms (512 samples) was selected. To increase the database
size, overlapped windows are extracted from the continuous
signal. As suggested in literature (Cote-Allard et al., 2019),
we used a sliding window approach with windows of 250
ms (512 samples) and strides of 62.5 ms (128 samples),
creating 187.5 ms (384 samples) overlap. Data acquired in
phase 1 have been separated into train and test sets. For
each hand orientation, 3/5 of each movement’s repetitions
were added to the training set, while the remaining were
included in the testing set. The data acquired in phase 2
(combined movements) have been kept for testing in task-
transfer tests.

Ninapro dataset
Ninapro data was already preprocessed by the creators

of the database using notch filter (Hampel) to remove
power-line interference (50 Hz and harmonics). In the
present study the pre-processed data were segmented
into windows of 250 ms (512 samples) length and 62.5
ms (128 samples) stride. Repetitions 1, 3, 4, and 6 were
included in the training set, and the two remaining
repetitions were considered as the test set, as suggested by
the introducers of the Ninapro dataset (Atzori et al., 2014,
2016).

Classification methodology

Reference classical machine learning
algorithms

In order to compare the performance of proposed deep
networks, classical classifiers with few selected common
features were tested.

Feature selection
Based on the available literature on feature selection for

sEMG classification (Englehart and Hudgins, 2003; Khushaba
and Kodagoda, 2012; Phinyomark et al., 2013) and dataset
exploration, 15 time and frequency features were used to create
4 feature sets listed in Table 1. The real-time constraints on
feature extraction were considered when selecting the best
features. Outlier removal and scaling (using mean and standard
deviation) (Vercellis, 2010) were the measures taken to improve
the classifier performance.

Classifiers
We selected (i) K-Nearest Neighbors (KNN) with 40

neighbors and Euclidean distance metric, (ii) Support Vector
Machine (SVM) with linear kernel and regularization parameter
equal to one, (iii) Multilayer Perceptron (MLP) with 300
neurons in the single hidden layer, tanh as activation function
and 0.0001 learning rate and (iv) LDA as reference classifiers,
given that they have shown promising results in many studies
in sEMG classification, including (Alkan and Günay, 2012; Al-
Timemy et al., 2013; Zhai et al., 2016; Abbaspour et al., 2019).
The optimized hyperparameters were chosen based on grid
search results.

Deep learning methods

Two baseline CNN s are proposed in this article.
Both architectures can be divided into 2 parts. The first
part is an inter-connected network of convolutional blocks
working as a “feature extractor” and the second part consists
of few fully connected layers serving as the “classifier.”
The mentioned networks are implemented using Keras (v
2.1.0) (Keras Team, 2022), Python library with Tensorflow
(TensorFlow, 2022) backend. Each classifier’s inputs are
configured as a 10 × 512 matrix (number of channels
× data points in one window). The activation function
used in this study is randomized rectified linear unit
(RReLU), which was introduced in a recent Kaggle National
Data Science Bowl (NDSB) competition (Kaggle, 2022). The
following 3 pre-cautions have been taken to prevent over-
fitting.

Drop out: Srivastava et al. (2014) presented the dropout
technique, in which a group of random neurons with the
probability of p (e.g., 0.3) are eliminated from hidden layers.
As a result, complex coadaptation of features between neurons
can be prevented during training, leading to a reduction of
over-fitting.

Batch normalization: Introduced by Ioffe and Szegedy
(2015), Batch Normalization (BN) was aimed to solve the need
for low learning rate and careful parameter initialization in the
training of deep neural networks. It is a type of regularization
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TABLE 1 Selected feature sets and their containing features.

Name Features Number of features

Time domain (TD) MAV, ZC, SSC, WL 4

Improved time domain (ITD) MAV, ZC, SSC, WL, RMS, IEMG, HP_A, HP_M, HP_C 9

Correlation based (CB) CC1, ZC, SSC, WL, HP_M, HP_C and SampEn 7

Full feature set (Full) MAV, ZC, SSC, WL, HP_A, HP_M, HP_C, SampEn, CC1-4, RMS, IEMG, SKEW 15

MAV, Mean Absolute Value; ZC, Zero Crossing; SSC, Slope Sign Change; WL, Waveform Length; RMS, Root Mean Square; IEMG, Integrated EMG; HP_A/HP_M/HP_C, Hjorth
Parameters; SampEn, Sample Entropy; CC1-4, Cepstral Coefficients order 4; SKEW, Skewness.

FIGURE 3

Schematic of Cnet2D and Cnet1D architecture (filter sizes are one dimensional in the case of Cnet1D).

technique that performs input normalization in each training
mini-batch.

Early stopping: This regularization technique monitors the
validation error in each update during training. When it
reaches a minimum, the learner continues training only for a
certain number of iterations and then stops the training. This
mentioned number of iterations is referred to as Patience and is
set by the user.

Deep learning architecture 1: Cnet2D
This architecture includes 3 consecutive convolution blocks

constructing the feature extractor part, followed by 2 fully
connected blocks as the classifier part (Figure 3). Each
convolutional block consists of a convolution layer with a 2D
filter shape, BN, RReLU activation layer, max-pooling, and
dropout. Filter sizes of convolutional layers are (3,13), (3,9),
(3,5), respectively. The first fully connected block includes
a dense layer, BN, RReLU, and dropout, while the second
fully connected block does not include dropout. In the

end, a Softmax layer is added to create the output of the
classifier. Adam optimizer (Kingma and Ba, 2015) is used as
the optimization method. During training, the model with
minimum validation loss (20% of training data is randomly
selected as validation set) is saved and used for testing. The
same approach has been used for all proposed networks.
Cnet2D’s classification performance is dependent on electrode
positioning due to its 2-dimensional filter shapes. This fact
should be considered when applying this network to different
databases.

Deep learning architecture 2: Cnet1D
The architecture of Cnet1D is similar to that of Cnet2D.

However, the filter’s shape is such that it does not exploit
the relations between channels in the feature extraction
part. Filter sizes of convolutional layers are (1,13), (1,9),
(1,5), respectively. Similar to Cnet2D, Adam optimizer is
used. Excluding filter sizes, this network’s architecture is
the same as Cnet2D depicted in Figure 3. Due to the
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TABLE 2 Learning parameters of Cnet1D and Cnet2D for Nearlab and
Ninapro DB2 datasets.

Parameters Nearlab Ninapro DB2

Learning rate 0.001 Reduced from 0.001 to 0.0000005

Epochs 400 600

Early stopping 100 –

Batch size 128 128

difference in number of repetitions per movement in the
two databases, max-pooling layer parameters are selected
differently. These parameters are adjusted based on the
validation set (20% of the training set) of each database’s
randomly chosen subject. The max-pooling size for Nearlab
is (1,4), while for Ninapro is (1,3). Learning parameters of
Cnet1D and Cnet2D for Nearlab and Ninapro are reported in
Table 2.

Transfer learning frameworks

Two transfer learning frameworks are defined, which are
applied exclusively to previously defined deep neural networks.

Transfer learning approach 1: Subject-transfer
(PFCnet)

In order to apply the subject-transfer framework to Nearlab
subjects, one deep network (Cnet1D or Cnet2D) is trained on
the target subject’s database (referred to as “Target Network”).
Another network (referred to as “Source Network”) is trained
on all subjects except the target subject (10 subjects). The
features extracted by the mentioned networks are concatenated.
Their classifier parts are disregarded, and a new classifier part
is added after the feature layer, completing the architecture
of “Final Network.” Parameters of the two parallel feature
extractors are then frozen (except batch normalization layers),
and the classifier part (fully connected layers) is trained using
the target subject’s database (with random initialization). Thus,
in the process of the proposed transfer learning method, target
subject’s data is used two times at two different training stages.
This parallel feature architecture is referred to as “PFCnet.”
Figure 4 illustrates the final model when Cnet1D is the base
deep network. Like Nearlab, in Ninapro, the source network
of PFCnet is trained with almost 10 subjects’ EMG data
(using more subjects for training the source network was
not leading to significant improvement as mentioned in the
Results section). To this end, Ninapro subjects are divided
into 3 groups: from subject 1 to 15, from 16 to 30, and
from 31 to 40. Then the source network is trained within the
group containing the target subject. The learning parameters
of networks used in PFCnet for Nearlab and Ninapro are
mentioned in Table 3. Learning parameters for training target

network is the same as parameters mentioned in the previous
section (Table 2).

Transfer learning approach 2: Task-transfer
The task-transfer framework aims to transfer knowledge

learned from the database including 8 basic movements,
to another classification problem containing 6 combined
movements. Each combined movement is associated with two
basic movements which are always a wrist rotation (pronation
or supination) and a hand function (pinch, lateral pinch,
or grip). Task-transfer experiments are introduced in three
stages. In the first stage, the following question is targeted:
is there any valuable shared information to be transferred
between source (8 basic movement) and target domain (6
combination movements)? Here we propose a method which
uses the classifiers trained on source domain to classify the
target domain movement classes with zero labeled target domain
samples. This method is relying on the fact that a combined
movement can be reconstructed by a combination of muscle
synergies used in basic hand movements. An accuracy higher
than chance level would imply that source domain data has
valuable shared information with target domain data. In the
second stage, a few-shot learning approach (Fe-Fei et al., 2003)
has been proposed as a transfer learning mechanism to classify
the target domain movement classes. Here, only a few samples
from each target domain class are needed to implement the
proposed few-shot learning algorithm. This stage provides a
very general framework, applicable to any other task transfer
problem. A significant increase in accuracy from stage one,
would mean few-shot learning is a good family of methods
to be used in this specific task-transfer problem. In the third
and final stage, assuming that at least few seconds of labeled
target domain data per class is available, a final framework is
proposed. In this framework, the target labeled data is used
to train and fine-tune a modified version of classifiers trained
on basic movements (source data). While the first stage is
designed around the muscle synergy principle, the second and
third stages are designed with the following characteristics.
(1) Scalable to any choice of movement groups; thus, we
did not use ideas that are restricted to our choice of hand
gestures. (2) Use minimum amount data from target domain for
training.

In the first stage, no training data are used from the
combined movement dataset, and the classifiers are only trained
with the basic movement dataset. The output layer of the
networks is then used to extract more than one intended
basic movement. When a combined movement is given to
the network, the rotation is first determined by extracting
the more probable class between pronation and supination
according to associated neurons in the final layer. The hand
function is then determined by extracting the most probable
class between pinch, lateral pinch, and grip. Thus, six movement
classes are recognized based on outputs of 8-neuron final
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FIGURE 4

Architecture of the proposed transfer learning method with Cnet1D as base model. The gray layers are pre-trained (top blocks are pre-trained
with target subject data, and lower blocks are pre-trained with data from all other subjects), and their parameters will be frozen while the blue
layers are trained with the target subject database. Thus, in the process of the proposed transfer learning method, target subject’s data is used
two times at two different stages.

layer. This network is referred to as “Syn0net,” highlighting the
fact that combined muscle synergies of basic movements was
the main idea behind this network while 0 samples of target
domain data was used to train it. An additional experiment
is designed to examine the activation function penalization
when there is uncertainty in classification. Hence, last layer
activation function is replaced with Sigmoid function, trained
on the basic movements dataset and tested as described before
with combination movements (please see section “Task-transfer
experiments” for details). The results from this stage will
determine if the information contained in basic movement
group is useful by their own to classify the target domain
movements (6 combination movement).

In the second stage a 2-branch Siamese network (Koch
et al., 2015) is implemented using the classifiers trained on basic
hand movement dataset. Each branch of the Siamese network
is constructed by removing the last dense layers of the already
trained Cnet1D network. For this purpose, the 8-neuron layer
and 50-neuron layer are removed revealing the 300- neuron
layer as the feature output of each branch. The two branches of
Siamese network are then joined with a L1 (absolute difference

of each neuron pair) distance layer which provides 300 outputs.
Finally, a sigmoid activated neuron is added in the end to
generate the similarity score between the two inputs. Same-
class input pairs would generate a 0 output while not-same-class
input pairs would generate 1 in the output neuron. All network
weights of the previously trained networks are locked leaving
301 parameters (300 weights + 1 bias) to be trained. These
parameters are then trained with input sample pairs (consisting
of same-class and not-same-class pairs) from the source domain
data (basic hand movements). To train, 100 epochs are used
with decaying learning rate (starting from 0.001 to 0.00005)
and batch size of 32. One of the significant advantages of this
approach is that, the source domain pairs could be generated
in such way that Siamese network could potentially master
separating certain classes while not emphasizing on separating
other classes. In our specific case we wanted the network
to be able to strongly separate hand functions (pinch, lateral
pinch and grip) from each other as well as hand rotations
(supination and pronation) from each other. At the same time,
separating a hand rotation from a hand function would not
be as important since all combined movement classes include
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TABLE 3 Learning parameters of PFCnet for Nearlab and
Ninapro DB2 databases.

Parameters Nearlab Ninapro DB2

Source Final Source Final

Learning rate 0.003 0.001 0.0003 Reduced from 0.001
to 0.000001

Epochs 100 200 200 400

Early stopping – 80 80 –

Batch size 128 128 128 128

both a rotation and a hand function. Finally, to generate
predictions with this network, the sample to be classified is
presented to one of the inputs while a query labeled sample
from each class of target domain is presented to the other
input. The sample is then classified based on the similarity
scores generated for each movement class. Additionally, if few
samples from each target class is available a majority voting
approach could be used to determine the class. For our Siamese
network we have used 5 query samples from each of the
6 combination classes, hence this network is referred to as
“Sia5net.”

In the third stage, the network trained with basic movements
is modified to adapt to the target domain specification. The last
layer which previously had 8 neurons with Sigmoid/Softmax
activation function is replaced with a layer with 6-neuron with
Sigmoid activation function to meet the number of classes in the
target domain (6 combination movement). To train the newly
added layer, only 1 repetition of the combination movements
(7s of movement per class) is used. Thus, the new layer (which
is after a fully connected layer with 50 neurons) with 306 new
parameters (50 × 6 = 300 weights and 6 bias parameters) is
trained with only approximately 430 samples. It’s important to
mention that the parameters from the previous layers are locked
(non-trainable). To train, 400 epochs with learning rate 0.01
reduced to 0.000002 and batch size 128 are used. Next, the
parameters from the 50-neuron fully connected block before
the 6-neuron layer are unlocked. Then 50-neuron block and 6-
neuron block are fine-tuned with low learning rate with the same
limited training data mentioned before. 15,456 parameters are
fine-tuned in this stage. This network is referred to as “FTnet.”
To fine-tune, 300 epochs with learning rate 0.0001 and batch
size 128 are used. Going further back in the network exposed
too many parameters to be trained with small training data and
worsened the performance of the network.

Performance evaluation and statistical
analyses

The most common performance measure in a classification
problem is “accuracy,” namely the number of correct

classifications over the total number of classifications of
testing samples. Moreover, it is necessary to ensure that the
proposed methods can satisfy the time constraints of real-time
applications. In order to do so, one random subject is selected,
and the time needed for producing prediction related to
each network is calculated by averaging this time over 1,000
repetitions of the procedure. Pairwise Wilcoxon signed-rank test
is used to determine if two methods have significant statistical
difference in their classification accuracy. Wilcoxon signed-rank
test is a non-parametric statistical hypothesis test suitable for
a repeated measure design where two different conditions are
applied to the same subjects (Scheff, 2016). It is also beneficial
when normality in data cannot be assumed (McDonald, 2009),
as in our case. For performance comparison of more than
two methods (i.e., comparing all classical classifiers and deep
networks) simultaneously, a Friedman rank test is employed,
followed by a post hoc pairwise test with the Wilcoxon signed-
rank test. Finally, Holm’s method is applied to significance
thresholds (alpha) to control the group comparisons’ family
wise error rate.

Results

Ninapro dataset

Reference classical classifiers
All combinations of 4 selected classical classifiers with 4

feature sets were employed. The average testing classification
accuracy and standard deviation over all subjects for Ninapro
DB2 exercise B (17 movements) are shown in Figure 5A. In
addition, Cnet1D and Cnet2D networks were tested on DB2
subjects, yielding the average accuracy of 80.23 and 81.43%,
respectively. All classical classifiers performed the best when
using Full feature set.

Subject-transfer experiments
The PFCnet method was applied only to Cnet2D, which

had higher testing classification accuracy. The need for transfer
learning is more evident when the training data is limited. We
simulated this situation by training the networks with portions
(1/4, 2/4, and 3/4) of the training data of the target subject,
removing one entire repetition at a time. The average accuracy
over all subjects is shown in Figure 5B. To further investigate
the effect of the subject-transfer framework, the improvement
in accuracy when transfer learning is applied to Cnet2D is
presented in Figure 5C. The reported numbers are the average
improvement over different training database sizes (1/4, 2/4,
3/4, and 4/4) for all subjects of Ninapro DB2. Table 4 shows
transfer learning applied to Cnet2D (trained on whole training
dataset) compared with reference classical classifiers combined
with their best feature set. A statistically significant difference
was observed using the Friedman test in average accuracy,
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FIGURE 5

Ninapro dataset results with 17 classes (chance accuracy level = 5.88%). (A) Comparison between reference classical classifiers with 4 features
sets and the proposed deep networks for Ninapro DB2 database. (B) Effect of subject-transfer (PFCnet applied to Cnet2D) for Ninapro DB2
database when training with a limited amount of data (**Corresponds to p < 0.01). (C) Accuracy improvement when subject-transfer learning is
applied to Cnet2D for each Ninapro DB2 subject.
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TABLE 4 Comparison between classical classifiers, deep network, and proposed transfer learning method, when the whole training dataset is used
for training for Ninapro DB2 dataset (N = 40) with 17 movement classes (chance accuracy level = 5.88%).

KNN (Full) LDA (Full) MLP (Full) SVM (Full) Cnet2D PFCnet applied to Cnet2D

Average accuracy 75.17 79.95 80.97 79.50 81.43 82.87

Std 6.52 5.73 5.44 6.25 5.94 5.90

P-value 0 (<0.00001) 0 (<0.00001) 0 (<0.00001) 0 (<0.00001) 0 (<0.00001) –

Alpha (Adjusted threshold) 0.01 0.025 0.05 0.0125 0.01667 –

The p-values are acquired by the pairwise Wilcoxon test when PFCnet applied to Cnet2D is compared with other options. Holm’s method was applied to significance thresholds to
calculate alpha.

depending on the classification method (p < 0.0001) with
PFCnet applied to Cnet2D achieving the highest accuracy. The
p-values mentioned in Table 4 were acquired by the pairwise
Wilcoxon test when PFCnet applied to Cnet2D was compared
with other options (e.g., the p-value of PFCnet applied to
Cnet2D vs. KNN is < 0.00001).

Nearlab dataset

Reference classical classifiers
Combinations of 4 feature sets and 4 classical classifiers

were tested on all subjects of the Nearlab database (Figure 6A).
Also, the results of the classification accuracy of two proposed
deep networks are reported. All classical classifiers except LDA
performed best when the ITD feature set was given as input.
LDA, combined with the Full feature set, was the best classical
classifier for the Nearlab database with 92.55% average accuracy.
Cnet1D with 92.6% testing classification accuracy, performed
slightly better than LDA and Cnet2D.

Subject-transfer experiments
The PFCnet architecture was applied to Cnet1D and

Cnet2D. The average testing accuracy over all subjects using
1/3, 2/3, and 3/3 of the target subject training dataset (1/3
portion includes one entire repetition for each movement
class starting from all 3 hand orientations and 2/3 include
two repetitions) is shown in Figure 6B. The improvement in
accuracy when transfer learning was applied to Cnet2D and
Cnet1D for all subjects of the Nearlab dataset is presented in
Figure 6C. The reported numbers are the average improvement
in classification accuracy when 1/3, 2/3, and 3/3 of the target
subject’s training data was used. Moreover, classical classifiers
with their best feature sets, were trained with different database
sizes (1/3, 2/3, 3/3 of the full training data) of the target subject.
The comparison between classical classifiers and the proposed
transfer learning method applied to Cnet1D are shown in
Table 5. Since, according to Figure 6A there was no statistically
significant difference between Cnet1D and Cnet2D (p = 0.27,
pairwise Wilcoxon test), only the results related to Cnet1D,
which produced higher accuracy, are reported. In Table 5, a
statistically significant difference in average accuracies of the

classification methods (KNN, SVM, LDA, MLP, Cnet1D, and
PFCnet) was observed using the Friedman test. When 1/3, 2/3,
and 3/3 of the training data were considered, the corresponding
p-values were 0.00022, < 0.00001, 0.00015, respectively. The
p-values mentioned in Table 5 were acquired by the pairwise
Wilcoxon test when PFCnet applied to Cnet1D was compared
with other options. To analyze the effect of number of subjects
involved in the subject transfer framework, the proposed
TL algorithm was re-implemented using increasing number
of source-subjects. Figure 6D is displaying the performance
of PFCnet when used with 1–10 source-subjects (selected
randomly). The accuracies are averaged among all Nearlab
subjects selected as target subject. This analysis is done with
a variety of training data sizes including 1/3, 2/3 and 3/3
of the available target subject’s training data and reported
in Figure 6D. Classifiers’ performance in terms of the time
needed to produce a prediction are 4.81, 4.97, and 4.21 ms for
Cnet1D, Cnet2D, and PFCnet, respectively. The GPU used for
classifications was NVIDIA Tesla P100-PCIE-16GB. It can be
inferred that the transfer learning method provides the sample
prediction fast enough to meet the time requirements of online
applications.

Task-transfer experiments
Figure 7A displays the experimental results for stage 1,

2, and 3. In Syn0net (stage 1), Sia5net (stage 2), and FTnet
(stage 3), zero, few samples and few seconds of labeled
target domain data is used for training, respectively and
this panel shows this transition. In Syn0net, classification
accuracy of combined movements (combination of a hand
function and a wrist rotation) is reported for the Nearlab
database when Cnet1D was trained only with data of basic
movements. Further investigation revealed that most of the
classification errors were associated with detecting hand
function rather than detecting its wrist rotation (having
average hand function classification accuracy of 71.51%
and average rotation classification accuracy of 90.24%
among Nearlab subjects). It is important to mention that,
having Softmax as the final layer activation function may
penalize the prediction uncertainties between classes (through
increasing loss value). At Syn0net, this is not an issue since
the training data only contains basic movements (for which
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FIGURE 6

Nearlab dataset results with 8 classes (chance accuracy level = 12.5%). (A) Comparison between reference classical classifiers with 4 feature sets
and the proposed deep networks for Nearlab database. (B) Effect of subject-transfer for Nearlab database when training with different training
database sizes. Left is when PFCnet was applied to Cnet2D, and right is the result for applying PFCnet to Cnet1D (∗Corresponds to p < 0.05 and
∗∗Means p < 0.01). (C) Accuracy improvement when subject-transfer learning is applied to Cnet1D and Cnet2D for each individual of the
Nearlab dataset. (D) Average accuracy of PFCnet using increasing number of source subjects (selected randomly), across all Nearlab subjects
when using 1/3, 2/3, and 3/3 of the target subject’s training data. The red line represents the mean over average accuracies when 1/3, 2/3, and
3/3 are used. In order to better visualize the differences in accuracies, ranges were adjusted to present a zoomed in version of average accuracy
in panels (A,B,D).
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TABLE 5 Comparison between classical classifiers and proposed transfer learning method combined with Cnet1D, when different sizes of target’s
training subset are used for training for Nearlab dataset (N = 11) with 8 movement classes (chance accuracy level = 12.5%).

Portion of the
training data

KNN (ITD) LDA (Full) MLP (ITD) SVM (ITD) Cnet1D PFCnet applied
to Cnet1D

1/3 Average accuracy 82.76 86.42 84.90 85.88 86.55 88.43

Std 6.27 7.11 6.018 6.18 6.18 5.95

P-value 0 (0.00335) 0 (0.03666) 0 (0.01637) 0 (0.00992) 0 (0.00335) –

Alpha (adjusted threshold) 0.0125 0.05 0.025 0.01667 0.01 –

2/3 Average accuracy 84.55 87.74 86.68 86.73 89.68 91.23

Std 6.21 7.10 5.70 5.92 4.77 4.47

P-value 0 (0.00335) 0 (0.00335) 0 (0.00444) 0 (0.00333) 0 (0.01279) –

Alpha (adjusted threshold) 0.0125 0.01667 0.025 0.01 0.05 –

3/3 Average accuracy 89.20 92.55 91.45 91.72 92.60 93.30

Std 4.35 4.23 2.97 3.60 3.26 3.41

P-value 0 (0.00585) 1 0 (0.00764) 0 (0.00334) 0 (0.00992) –

Alpha (adjusted threshold) 0.0125 0.05 0.01667 0.01 0.025 –

The p-values are acquired by the pairwise Wilcoxon test when PFCnet applied to Cnet1D is compared with other options. Holm’s method was applied to significance thresholds to
calculate alpha.

the network should not produce any doubts). Nevertheless,
a new set of classifiers with Sigmoid as their final layer
activation function, were trained and tested with the same
procedure. The results revealed similar performance having
6-movement average accuracy of 63.27%. Classification
accuracy of Sia5net using the proposed few-shot learning
Siamese network revealed a noteworthy improvement in
the performance, yielding 67.19% average accuracy across
Nearlab subjects. Average accuracy for FTnet was 75.97%
showing more than 10% improvement in accuracy when
compared with Syn0net, using only around 430 samples
(approximately 5 s of movement) from target domain
(combination movements). This improvement was statistically
significant with p = 0.0097.

Figure 7B is provided as a response to the following
question: Assuming there is shared information between basic
and combined movements, does knowledge learned from basic
movement improve the performance of a classifier trained
on the combined movement? To answer this question, the
best performing classifier (Cnet1D) is trained using the one
repetition of combined movement dataset, referred to as
Cnet1D + Combo. The classification accuracy of this network
was compared with FTnet. As a reminder, FTnet was pre-trained
with basic movement data and fine-tuned with one repetition
of combined movement data (same repetition used for training
Cnet1D + Combo). Hence comparing Cnet1D + Combo and
FTnet shows the effect of pre-training on source domain.
The Cnet1D + Combo, Cnet1D network trained only with
target domain data, yielded 64.21% average accuracy. In the
Figure 7B a 10% improvement in accuracy is observed when the
information learned from basic movement dataset is transferred
using the framework discussed in stage 3. This improvement was
statistically significant with p = 0.0097.

FIGURE 7

Task-Transfer Experiments results. (A) Comparison of
classification accuracy of combined movements database
including 6 movement classes (Chance level = 16.67%) averaged
over all Nearlab subjects using the three stages of task-transfer
analysis. Syn0net leverages the synergies found in basic
movements utilizing no samples from target domain. Sia5net, a
few-shot learning method, uses 5 query samples of each class
of target domain. FTnet, employs fine-tuning method with few
seconds of target domain data. (B) Comparison of classification
accuracy of Cnet1D network trained only on combined
movements dataset (Cnet1D + Combo) and FTnet framework
which leverages the information learned from basic hand
movements (source domain), when tested on combined
movement dataset (chance level = 16.67%) and averaged over all
subjects. This panel highlights the effect of pre-training on
source domain. **Corresponds to p < 0.01.

Discussion

The study aimed to apply transfer learning approaches
for hand movement intention detection based on sEMG
signals as a solution for training deep learning algorithms
with limited EMG data. These algorithms can be used in
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EMG-controlled devices for human-computer interaction, with
possible repercussions on hand prosthesis. We proposed two
deep learning architectures as the base classifiers and two
transfer learning algorithms with two different perspectives,
taking advantage of similarities found in EMG patterns of
different subjects or different tasks.

The following discussed results are related to Nearlab and
Ninapro DB2 databases. The number of movement classes for
Nearlab, and Ninapro databases are 8 and 17, respectively.
Also, the number of repetitions per movement class is higher
in Nearlab comparing to Ninapro DB2. Consequently, the
average accuracy of Nearlab is higher than Ninapro DB2 in
all experiments. Another notable difference between the two
databases is the addition of combined movements in the
Nearlab dataset.

The proposed deep network approaches can perform equally
or more accurate comparing to reference classical classifiers
for both tested databases (Figures 5A, 6A). We have shown
that when subject-transfer learning is applied to these deep
networks, they can achieve the highest accuracy comparing to
classical and deep learning approaches (Tables 4, 5). Hence,
it can be concluded that other subjects’ data can be used to
enhance the performance of the deep network for the target
subject. Figures 5B, 6B exhibit the particular application of
transfer learning when the available data for training is limited
for Nearlab and Ninapro, respectively. These figures show
that in any case of training data size, the PFCnet improves
the classification accuracy. Wilcoxon pairwise ranked test also
reveals the statistically significant difference between the deep
network and PFCnet. It can be concluded that generally, the
improvement induced by PFCnet is more when the dataset size
is less.

Based on Figures 5C, 6C, it can be inferred that the
proposed transfer learning approach can be beneficial to
enhance the classification accuracy in all subjects of the Nearlab
database and Ninapro DB2. In the Nearlab dataset, subject 10
has the biggest improvement of 4.02% when applying TL to
Cnet2D, and subject 2 has the biggest improvement of 2.80%
when applying TL to Cnet1D. The biggest improvement for
Ninapro subjects is for subject 14, with an 8.89% improvement,
and the lowest improvement is 0.83% related to subject 34,
according to Figure 5C.

Figure 6C shows the performance of PFCnet in Nearlab
dataset, when trained with increasing number of source-
subjects. In order to be able to draw more general conclusions,
the experiment is repeated with different training data sizes.
All trends indicate that using up to 8 subjects can lead to
visible improvement of classification performance. Whereas,
higher number of source-subjects do not reveal significant
improvement in performance of the proposed subject-transfer
framework.

Between the two proposed CNN networks, Cnet1D for the
Nearlab dataset and Cnet2D for the Ninapro dataset achieved

TABLE 6 Comparison of performance of proposed methods with
state-of-the-art on Ninapro DB2 database with 17 movement classes
(chance accuracy level = 5.88%).

Method Classification accuracy

SVM+ spectrogram+ PCA
(Zhai et al., 2016)

75.74%

SVM+ spectrogram+ PCA
(Zhai et al., 2017)

81.07%

CNN+ spectrogram+ PCA
(Zhai et al., 2017)

82.22%

CNN-LSTM+ spectrogram
(Huang and Chen, 2019)

80.929%

Cnet2D+ raw signal 81.43%

PFCnet+ raw signal 82.87%

Bold values represent results obtained with the proposed approaches.

the higher average accuracy. Cnet2D classifier is exploiting the
relationship among adjacent channels in the feature extraction
part. Since the electrode placement is different in Ninapro and
Nearlab datasets, Cnet2D is expected to behave differently.

In 2016, Zhai et al. (2016) achieved 75.74% average accuracy
over Ninapro database 2 exercise B. To extract features from
EMG data, they converted raw EMG to spectrograms and
then applied principal component analysis; finally, they fed
spectrograms to SVM. Later in 2017 (Zhai et al., 2017),
they improved their results to 81.07%. They also proposed a
CNN classifier which obtained 82.22% average accuracy for
17 movements of exercise B. Moreover, they implemented
a self-recalibrating method, which was trained on a single
repetition (as opposed to 4 repetitions, which was used in
their previous reported accuracies); thus, this result is not
comparable with the results of this study. Another recent
work (Huang and Chen, 2019), which have proposed a hybrid
classifier and again have used spectrogram representations
of sEMG signals as the input of their classifiers, reported
80.929% for average accuracy over DB2 subjects for exercise
B. A summary of state-of-the-art results is presented in
Table 6. As it can be observed, our proposed deep network
augmented with subject-transfer learning achieves the average
accuracy of 82.87% for Ninapro DB2 subjects exercise B,
which is higher than the presented results. In contrast to
the literature, the input of our classifier is raw EMG data;
hence no steps prior to giving the data to the classifier are
required.

The idea of leveraging the other subjects’ sEMG data has
been previously studied (Cote-Allard et al., 2019; Kim et al.,
2020; Hoshino et al., 2022). Cote-Allard et al. (2019) have
tested their proposed transfer learning method on a self-
developed database and Ninapro DB5. They suggested three
different data representations to be used with their classifiers:
raw, spectrogram, and continuous wavelet transform (CWT),
from which CWT representation had the best performance.
The improvement gained by their subject-transfer learning
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method on Ninapro DB5 when trained with four first trials
and tested on two remaining trials using CWT was 3.68%, and
using raw data was 2.66%. In comparison, we have improved
the classification accuracy of Ninapro DB2 using raw data by
1.44% when trained with four trials and tested with two. It
should be noted that the range of accuracies differs in the
two databases (60–70% in the case of DB5 and 75–85% in the
case of DB2). Kim et al. (2020) have tested their CNN-based
transfer learning method on Ninapro DB2 all 50 movements,
hence the direct comparison of results is not possible. The
improvement in accuracy when their network was trained only
with the first repetition of data is 2.76%, while our proposed
method improved the result of Cnet2D by 5.48%. However,
their network was tested on the five remaining repetitions, but
our network was tested only on repetitions 2 and 5. From
reported results, it can be inferred that the proposed PFCnet
subject-transfer framework can increase the performance of a
deep classifier using other subjects’ data. Moreover, authors of
Hoshino et al. (2022) have compared application of transfer
learning on classical classifiers and deep neural networks,
reporting that combination of transfer learning with deep
neural network achieves highest accuracy. This confirms our
results, supporting the move from feature engineering to feature
learning.

The novelty of this study in comparison with the mentioned
TL studies, in addition to a new subject-transfer framework,
is exploring and designing/testing new mechanisms for task-
transferability in different movement groups. A further element
is the inclusion of the sEMG variability introduced by
different hand orientations in the created dataset. An additional
consideration, which makes the results of this paper closer to
hardware implementation, is its consideration on execution
time in accordance with real-time criteria.

According to Figure 7A Syn0net is able to achieve an average
accuracy of 63.27% when trained with 8 basic movements and
tested on 6 combined movements. Such a procedure (stage
1 of task-transfer framework) could be used to increase the
number of output movement classes without the need to
increase the size of the training database. The same approach
might be exploited to improve EMG-based personalized devices
setting in both assistance and rehabilitation fields (Gandolla
et al., 2018). This investigation reveals that there is valuable
shared knowledge between the two movement groups (basic
and combined movement groups) and muscle synergies can be
taken into account when designing frameworks to transfer the
information between the two movement groups. Furthermore,
few-shot learning (as implemented in Sia5net) is proven to be
a viable solution for adding new movement classes using as few
as 5 new samples per class. The use of 5 query samples from
new classes have shown to increase the accuracy of the classifier
about 4% when compared to Syn0net. The advantage of such
method is that it is applicable to any set of source and target hand
movements. Meanwhile, this approach provides an opportunity

for the user prioritize distinguishing desired movement classes
above others. This feature becomes specifically relevant when
combined movements are considered, since we don’t want
the two classes that are combined to be distinguished by the
classifier. Finally, employing FTnet, it has been shown that
using few seconds of movement for each new class (around 1
repetition) the performance of the classifier can be significantly
improved when compared to the first two stages.

Figure 7B provides a direct comparison between a classifier
only trained on the target domain data and another classifier
using the same target domain data alongside information
learned from source domain. The statistically significant
improvement proves the applicability and effectiveness of our
proposed FTnet. Thus, it can be concluded that not only there
is shared information between the basic and combined hand
movements, but this information can be translated effectively
to improve the classification performance on the combined
movements.

Task-transfer learning has been previously examined by
Cote-Allard et al. (2019), Chen et al. (2021), and Rahimian
et al. (2021). The proposed method of Cote-Allard et al.
(2019) have improved the classification accuracy of their target
domain movement classes (11 classes) from 46.06 to 49.41%
using a source domain with 18 movement classes. Authors
of Chen et al. (2021) performed task-transfer on two HD-
EMG databases from different subjects, the training dataset had
30 gestures and testing dataset included 10 different gestures.
They showed that with one repetition of training data their
proposed TL algorithm can increase the classification accuracy
from 55.63 to 93.32%. This amount of increase is explained
by the variety of source gesture set (30) and the number of
electrodes (128). However, none of these studies considered
the possibility of existing common patterns between basic and
combined movements. Moreover, this study confirms results
reported by Rahimian et al. (2021) regarding effectiveness of
few-shot learning in task-transfer learning. Additionally, this
study has provided a specific application of this method for
classifying target domain classes that could be a combination
of source domain classes. This work’s main limitations were the
absence of experiments on end-users (amputees or subjects with
movement disorders) and multi-day analysis. In the former case,
the most anticipated challenge is the electrode placement due
to the fact that the available muscles for EMG acquisition are
limited and could be different from subject to subject. In the
case of multi-day analysis, variations in electrode positioning,
and skin impedance in different sessions could affect the
classification’s robustness.

Conclusion and future work

In this paper, two methods of transfer learning for hand
movement classification were investigated. A subject-transfer
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framework was proposed, which took advantage of shared
information among all subject’s sEMG data. A CNN-based
network was pre-trained on the target subject while another
network was pre-trained on all subjects except the target subject.
Feature extractor parts of these two networks were frozen and
concatenated at the final layer. Finally, a classifier part was added
to complete the final network. The subject-transfer framework
was tested on the Ninapro DB2 dataset and a dataset developed
on purpose for this paper. Experimental results proved that the
proposed framework could enhance the classification accuracy
using other subject data and act as a feasible solution when the
target subject’s data is not sufficient.

Moreover, three task-transfer frameworks were proposed
to classify combined hand movements in 3 stages. Initially,
the network trained only with basic movement’s sEMG
data (Syn0net) was used to classify combined movements.
In the later stages, task-transfer mechanisms including few-
shot learning (Sia5net) and fine-tuning using minimum
training data from target domain (FTnet) were implemented
to classify the combined hand movements. According to
experimental results, these frameworks were able to transfer
knowledge from basic tasks to combined tasks significantly
increasing classification accuracy with minimum training data
for combined movements. The proposed method could be
beneficial when the aim is to increase the number of movement
classes without acquiring a big training dataset. Therefore, these
three frameworks could be employed to avoid acquiring large
databases from each individual.

In the future, the performance of proposed methods will
be further evaluated using databases containing multi-session
recordings and end users. Moreover, the application of the
proposed frameworks will be investigated in online experiments.
The pre-processing steps and classification method will be
modified to meet the conditions of real-time classifications, and
the effect of visual feedback will be investigated. Additionally,
the effect of cross-subject variability in our database can be
further investigated with the methods inspired from recent
literature (Zancanaro et al., 2021).
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