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I. Introduction
To achieve high-precision attitude control, vibration suppression is required for large spacecraft. The actuators

for attitude control and/or vibration suppression can be installed centralized or distributed. In the former case, some

vibration suppression methods are based on trajectory planning [1, 2], while others are integrated in attitude control

law [3]. The capabilities of these methods for vibration suppression are limited due to their open-loop design-based

attribution or lack of dedicated actuators for vibration suppression. Hence, attitude control and vibration suppression

based on distributed actuators are becoming a research hotspot.

Various types of actuator have been scattered across the spacecraft for vibration suppression, including piezoelectric

actuators (PZTs) [4, 5] and control moment gyroscopes (CMGs) [6–13]. The concept of angular momentum being

studied as a distributed parameter was first introduced by D’Eleuterio and Hughes [6, 7]. By importing infinitesimal

angular momentum devices to the elastic body, the frequencies, coupled modes, and damping can be controlled. To

facilitate engineering application, Hu et al. [10–13] proposed a practical methodology for active vibration suppression

and attitude control of flexible structures by CMGs. In Hu’s studies, the angular momentum is discretely distributed

in the structure rather than continuously [6, 7]. According to the model in [11], Guo et al. proposed a modal force

compensator method [14] and a null-motion based method [15] to suppress vibration. Different from the idea of

designing the control law and the steering law of actuators together [10–15], Hu et al. [16, 17] proposed two control law

design methods for attitude control and vibration suppression. The advantage is that the proposed methods can be used

for systems with different kinds of actuators.

The aforementioned methods are all centralized. Even in [17] the proposed control allocation based method can be

implemented in a distributed way, it still needs a central unit to calculate the ideal torque. The same distribution also

appeared in [18] and [19]. This distribution is not thorough in some senses. Moreover, many of the methods mentioned
∗Ph.D candidate, Research Center of Satellite Technology; huyabo@hit.edu.cn.
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above only realize the attitude control and vibration suppression functions of flexible spacecraft, and do not achieve the

optimization of certain objectives [10–16]. These design methods are relatively conservative.

Motivated by [20] and [21], a distributed optimization method for flexible spacecraft attitude control and vibration

suppression is proposed. Firstly, it is necessary to formulate the problem into a standard optimization problem. In this

process, the design methods of attitude control law and objective function of the optimization problem are proposed. To

realize thoroughly distributed computing, the main idea here is to assume that each actuator node adopts the same form

of control law, and the parameters of the control law at each node are obtained by a distributed optimization method.

The dynamic and steady-state performance of the system is characterized by equality constraints including parameters

of all actuators. To meet these global equality constraints, surplus variables are introduced to each actuator. In this

way, each actuator solves the KKT (Karush-Kuhn-Tucker) conditions related to the surplus variables. When all surplus

variables converge to zero, all actuators obtain the optimal solution. This is the core difference of distribution between

the proposed method here and the methods in previous [17–19]. Ideal control torque by central calculation unit is not

needed in the method proposed in this paper. In addition, we also give a method to deal with the coupling constraints of

local variables, which can not be handled by the methods in [19] and [21].

II. System Description
The system considered here is a free-flying flexible structure with distributed angular momentum exchange actuators

(reaction wheels and/or CMGs), as shown in Fig.1. �8 , 8 = 1, · · · , = represent the actuator mounting nodes.
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Fig. 1 Model of flexible spacecraft with distributed actuators.

Since the modeling of the rotational and elastic dynamics of the unconstrained flexible spacecraft with momentum

exchange actuators has been well studied in the previous literature [10–13], the dynamics equations are directly stated

here as follows, where the elastic motion of the structure is assumed to be small [11].

P ¤8 + 8 × P8 + S ¥( −
=∑
8=1

h8 × 8 −
=∑
8=1

h8 × ¤#8 = Z2 + Z3 (1a)

¥( + K ¤( + Q( + ST ¤8 −
=∑
8=1

XT
8 h8 ×

(
8 + ¤#8

)
= Z4 (1b)
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where 8 ∈ R3 denotes the body angular velocity of the spacecraft with respect to the inertial frame F� and is

expressed in the body frame F1. P ∈ R3×3 represents the total moment of inertia of the undeformed spacecraft;

S ∈ R3×< represents the modal angular momentum coefficient matrix and < is the number of the considered elastic

modes. h8 denotes the total angular momentum of each actuator mounting node �8 , respectively. ( ∈ R< is the

generalized coordinate vector for the elastic displacement. K = diag(2b8w8), 8 = 1, · · · , <, denotes the damping matrix;

Q = diag(w2
8
), 8 = 1, · · · , <, represents the stiffness matrix; b8 and w8 represent damping coefficients and natural

frequencies, respectively. #8 = X8(, 8 = 1, · · · , =, is the rotational displacement of the node �8 , and X8 denotes the

rotational modal matrix, which is obtained from the finite element method in engineering. Note that ¤#8 = 88 − 8

is measurable, in which 88 is the inertial angular velocity of the node �8 with respect to the inertial frame F� and

expressed in the body frame F1. Z3 is the vector of external disturbances. The quantities representing the attitude

control torques Z2 and modal forces Z4 generated by all actuators can be expressed as

Z2 =
=∑
8=1

Z8; Z4 =
=∑
8=1

XT
8 Z8 (2)

where Z8 is the total torque produced at node �8 .

The quaternion parameter is employed to describe the attitude kinematics of spacecraft

¤@0 = −1
2
qT8 (3a)

¤q =
1
2

(
@0O3 + q×

)
8 (3b)

where
[
@0, q

T]T is the quaternion vector from the body frame F1 to the inertial frame F� satisfying normalization

contraint @2
0 + q

Tq = 1, @0 ∈ R and q = [@1, @2, @3]T ∈ R3 denote the scalar and vector components of the quaternion

vector, respectively. O3 is 3 × 3 identity matrix. q× ∈ R3×3 is a skew-symmetric matrix satisfying a × b = a×b for

vectors a, b ∈ R3.

III. Design of Control Law
To facilitate the design of control law and the analysis of its stability, the above dynamics model Eq.(1) can be

rewritten in a compact form [15]

S̄ ¥v +
(
M̄ + K̄

)
¤v + Q̄v = f (4)

where

S̄ =


P S

ST O

 , M̄ =


MAA MA4

−MT
A4 M44

 , K̄ =


0 0

0 K

 , Q̄ =


0 0

0 Q

 (5)
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v =


)

(

 , f =


Z2 + Z3 − 8 × P8

Z4

 (6)

in which MAA = −
∑=
8=1 h

×
8
and M44 = −

∑=
8=1 X

T
8
h×
8
X8 are skew-symmetric matrices, MA4 = −

∑=
8=1 h

×
8
X8 . Thus, M̄ is a

skew-symmetric matrix too; ) is defined as ¤) = 8.

Since the main focus of this paper is the distributed design and implementation of algorithm among the actuators, a

simple form of control law is chosen for each actuator

Z8 = −: ?8q − :3888 , 8 = 1, · · · , = (7)

where : ?8 and :38 are positive control gains. The following Lyapunov function is chosen for stability analysis, in which

the external disturbances Z3 is omitted [15]

+ =

=∑
8=1

: ?8
[
(1 − @0)2 + qTq

]
+ 1

2
¤vTS̄ ¤v + 1

2
vTQ̄v ≥ 0 (8)

The time derivation of Eq.(8) can be written as

¤+ =

=∑
8=1

: ?8q
T8 + ¤vT [

−
(
M̄ + K̄

)
¤v + f

]
=

=∑
8=1

: ?8q
T8 − ¤(TK ¤( + 8TZ2 + ¤(TZ4

(9)

Substituting Eq.(2) and Eq.(7) into the above equation yields

¤+ =

=∑
8=1

: ?8q
T8 +

=∑
8=1

8T
8 (−: ?8q − :3888) − ¤(TK ¤(

= −
=∑
8=1

: ?8 ¤#T
8 q −

=∑
8=1

:388
T
8 88 − ¤(TK ¤(

(10)

According to the Young’s inequality with n , −: ?8 ¤#T
8
q ≤ : ?8 ¤#T

8
¤#8qTqn8/2 + : ?8/(2n8), where n8 is the parameter in the

Young’s inequality. The inequality is valid for every n8 > 0. Then,

¤+ ≤
=∑
8=1

: ?8

¤#T
8
¤#8qTqn8

2
−

=∑
8=1

:388
T
8 88 − ¤(TK ¤( +

=∑
8=1

: ?8

2n8

= − ¤(T

(
K −

=∑
8=1

4n 8X
T
8 X8

)
¤( −

=∑
8=1

:388
T
8 88 +

=∑
8=1

: ?8

2n8

(11)

where 4n 8 = : ?8q2n8/2. We can always find = n8 such that the matrix (K −∑=
8=1 4n 8X

T
8
X8) is positive definite. Thus, the
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system Eq.(1) and Eq.(3) is ultimately uniformly bounded with the control law Eq.(7). Obviously, when the disturbance

Z3 is bounded, following the above derivation can also prove that the system is ultimately uniformly bounded.

It can be seen that when : ?8 and :38 are determined, attitude control and vibration suppression can be performed.

Substituting Eq.(7) into the former equation of Eq.(2) yields

Z2 = −
=∑
8=1

: ?8q −
=∑
8=1

:388 −
=∑
8=1

(
:38 ¤#8

)
(12)

With the above form, the actual meaning of each part of the control law can be roughly explained as follows: the first

two parts are the proportional-derivative control law to stabilize the attitude motion of spacecraft, and the last part is the

angular velocity damping used to attenuate the vibration at the mounting nodes of actuators. However, Z8 acts on both

the attitude dynamics Eq.(1a) and elastic dynamics Eq.(1b). How to design : ?8 and :38 will be explained in section IV.

IV. Distributed Optimization Method
In this section, firstly, the attitude control and vibration suppression of flexible spacecraft is formulated as a

distributed optimization problem about obtaining the parameters : ?8 and :38 . Then, a method to deal with the output

saturation of actuators is proposed. Thereafter a distributed optimization method based on surplus idea is elaborated.

Finally, the convergence of the proposed method is analyzed.

A. Problem Formulation

In the discussion in the previous section, the constraints on control gains : ?8 and :38 are only to be positive. To

meet the specific dynamic and steady-state performance of spacecraft control, : ?8 and :38 are required to satisfy the

following equality constraints 
∑=
8=1 : ?8 = : ?;∑=
8=1 :38 = :3 .

(13)

where : ? and :3 are parameters designed according to specific missions. It can be seen that the Eq.(13) are global

constraints on : ?8 and :38 . Note that if the actuators use another kind of control law, there can be some global constraints

on the parameters of that control law. We focus on considering how to deal with global equality constraints like these.

Besides, the output torques of the actuators should satisfy certain saturation constraints

u
8
� Z8 � u8 , 8 = 1, · · · , =. (14)

where u
8
= [D

81, D82, D83]T ∈ R3 and u8 = [D81, D82, D83]T ∈ R3 represent the lower and upper bounds of the three-axis

torque output at the actuator mounting node �8 , respectively. For any a, b ∈ R<×=, we say a � b if all the entries of
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a − b are nonpositive and a � b if all the entries of a − b are nonnegative. The inequality constraints in Eq.(14) are

local since they contain only undetermined parameters at node �8 .

From the perspective of vibration suppression, it is desired to make
∑=
8=1
¤#T
8
Z8 as negative as possible, as this can

provide as much damping as possible [17]. Nevertheless, since
∑=
8=1
¤#T
8
Z8 is a linear function with respect to : ?8 and

:38 , the optimal solution about it will be obtained at the boundary of the feasible set. When the attitude is in a small

neighborhood of the stable point, it is not desirable for the torque Z8 to take saturated values frequently. Therefore,

a quadratic objective function for vibration suppression is proposed here. To obtain the quadratic form, considering

control law Eq.(7) to expand
∑=
8=1
¤#T
8
Z8 , we have

=∑
8=1

¤#T
8 Z8 =

=∑
8=1

[
: ?8 (− ¤#T

8 q) + :38 (− ¤#T
8 88)

]
(15)

where − ¤#T
8
q and − ¤#T

8
88 can be used to construct a weight matrix. To avoid the singularity in calculation process, a

“sigmoid” operation is proposed to map − ¤#T
8
q and − ¤#T

8
88 into interval (0, 1). Thus, the objective function for vibration

suppression can be

�B =
1
2

=∑
8=1

kT
8 V8k8 (16)

where k8 = [: ?8 , :38]T, and V = diag(%81, %82) with the following specific definition

V8 =


5 (− ¤#T

8
q) 0

0 5 (− ¤#T
8
88)

 (17)

in which 5 (·) denotes a sigmoid function

5 (G) = 1
1 + 0 exp(−1G) (18)

with 0, 1 > 0 are design parameters.

Obviously, minimizing Eq.(16) will obtain a different results from minimizing
∑=
8=1
¤#T
8
Z8 . However, minimizing

Eq.(16) also reduces
∑=
8=1
¤#T
8
Z8 , which increases the damping of the system without frequently taking boundary values.

In this sense, minimizing Eq.(16) enables vibration suppression. To realize the energy regulation, following term is

considered

�4 =
1
2

=∑
8=1

ZT
8 Y8Z8 (19)

where Y8 = diag((81, (82, (83) are diagonal positive definite matrices to be designed.

So far, we can formulate the attitude control and vibration suppression of flexible spacecraft to a standard optimization

problem as follows. To avoid confusing, these notations are used hereinafter: G?8 ≡ : ?8 , G38 ≡ :38 , G? ≡ : ? , G3 ≡

6



:3 , x8 ≡ k8 .

min � (x1, · · · , x=) = �B + �4 =
1
2

=∑
8=1

xT
8 V8x8 +

1
2

=∑
8=1

ZT
8 Y8Z8

s.t.



u
8
� −qG?8 − 88G38 � u8

0 ≤ G?8 ≤ G?8

0 ≤ G38 ≤ G38∑=
8=1 G?8 = G?∑=
8=1 G38 = G3

8 = 1, · · · , =.
(20)

where G?8 and G38 are the upper bounds for G?8 and G38 . From Eq.(20), it can be seen that the performance of attitude

control is formulated into the constraints, and the index of vibration suppression is arranged as the objective function of

the optimization problem. This complies with the desire to keep vibration as small as possible while achieving attitude

control goals.

B. Problem Solution

It is not easy to solve the problem Eq.(20) directly due to the coupling constraints between G?8 and G38 (saturation

constraints). Therefore, consider introducing another local variable y8 = −G?8q − G3888 for node �8 and transform the

problem Eq.(20) into the following equivalent problem

min
1
2

=∑
8=1

xT
8 V8x8 +

1
2

=∑
8=1

yT
8 Y8 y8

s.t.



u
8
� y8 � u8

y8 = −qG?8 − 88G38

0 ≤ G?8 ≤ G?8

0 ≤ G38 ≤ G38∑=
8=1 G?8 = G?∑=
8=1 G38 = G3

8 = 1, · · · , =.
(21)

It can be seen that the variable y8 and the torque generated at node �8 , Z8 have the same form. However, with this form,

solving G?8 , G38 and y8 becomes two relatively independent processes, as will be seen later. This is an effective way to

handle the local coupling constraints. Note that the problem Eq.(21) is a convex optimization problem and satisfies the

Slater condition, which guarantees zero duality gap and the existence of a dual optimal solution [22].
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The Lagrangian function of the problem Eq.(21) can be written as

! =

=∑
8=1

!8 + a2?

(
G? −

=∑
8=1

G?8

)
+ a23

(
G3 −

=∑
8=1

G38

)
(22)

in which,

!8 =
1
2

=∑
8=1

xT
8 V8x8 +

1
2
yT
8 Y8 y8 + ,T

HD8 (y8 − u8) + ,T
H;8 (u8 − y8) + _?D8 (G?8 − G?8)

+ _?;8 (−G?8) + _3D8 (G?8 − G38) + _3;8 (−G38) + .T
8 (−y8 − qG?8 − 88G38)

(23)

where ,HD8 � 0, ,H;8 � 0, _?D8 ≥ 0, _3D8 ≥ 0, _?;8 ≥ 0, _3;8 ≥ 0, .8 , a2? and a23 are Lagrange multipliers of

appropriate dimensions. According to the KKT optimal conditions, the globally optimal solution y∗
8
and the optimal

Lagrange multiplier .∗
8
should satisfy



(8 9 H
∗
8 9
≤ a∗

8 9
for H∗

8 9
= D8 9

(8 9 H
∗
8 9
= a∗

8 9
for D

8 9
< H∗

8 9
< D8 9

(8 9 H
∗
8 9
≥ a∗

8 9
for H∗

8 9
= D

8 9

, 9 = 1, 2, 3. (24)

where .8 = [a81, a82, a83]T. The above condition Eq.(24) can also be written in the following equivalent form

H∗8 9 = kH8 (a∗8 9 ) =



D8 9 if a∗
8 9
> (8 9D8 9

(−1
8 9
a∗
8 9

if (8 9D8 9 ≤ a∗8 9 ≤ (8 9D8 9

D
8 9

if a∗
8 9
< (8 9D8 9

, 9 = 1, 2, 3. (25)

Similarly, the globally optimal solution G∗
?8
and G∗

38
and the optimal Lagrange multipliers .∗

8
, a∗2? and a∗23 should

satisfy

G∗?8 = k?8 (.∗8 , a∗2?) =



G?8 if a∗2? + qT.∗
8
> %81G?8

%−1
81 (a

∗
2? + qT.∗

8
) if 0 ≤ a∗2? + qT.∗

8
≤ %81G?8

0 if a∗2? + qT.∗
8
< 0

(26)

and

G∗38 = k38 (.
∗
8 , a
∗
23) =



G38 if a∗
23
+ 8T

8
.∗
8
> %82G38

%−1
82 (a

∗
23
+ 8T

8
.∗
8
) if 0 ≤ a∗

23
+ 8T

8
.∗
8
≤ %82G38

0 if a∗
23
+ 8T

8
.∗
8
< 0

(27)
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The process of solving the above KKT conditions can of course be completed in a central calculation unit, and then

the solutions can be distributed to different actuators. But what we are interested in is how to implement this process in

a distributed way. When considering the actuator mounting node �8 , if it can obtain the global Lagrange multipliers a∗2?

and a∗
23
, the globally optimal solution can be gained by solving a equation set. In the next subsection, the method of

obtaining the global Lagrange multipliers a∗2? and a∗23 for every actuator mounting node �8 in a distributed way will be

discussed in detail.

C. Distributed Optimization Method

Distributed here means that each actuator can only exchange data with its neighboring actuators, and the entire

process does not require a central processor to participate. To describe the communication topology of the actuators,

graph is an efficient tool. An undirected graph G = (V, E) consists of a nonempty finite set V = {1, 2, · · · , =} of

elements called vertices and a finite set E ⊆ V ×V of pairs of vertices called edges. An edge denoted by (8, 9) ∈ E

means vertices 8 and 9 are connected directly with each other. In the problem we consider, all indices 8 of the

actuator mounting node �8 constitute the vertex set V of the graph. The neighbors of the 8th vertex is denoted by

N8 = { 9 ∈ V|(8, 9) ∈ E}. Physically, the actuator mounting node �8 can only exchange data with the vertices in its

neighbors. For the convenience of subsequent discussion, we assume that each vertex belongs to its neighbors, namely

(8, 8) ∈ N8 . This is reasonable since it means that the vertex 8 can obtain its own state information. The degree of vertex

8 is defined as 38 = |N8 |, where | · | denotes the cardinality of a set. It is obvious that 38 ≠ 0 in a connected graph.

To obtain the global Lagrange multipliers a∗2? and a∗
23
, our main idea is to let each node �8 have its own copy

of the Lagrange multipliers, say 28 = [f?8 , f38]T ∈ R2, and update 28 in a distributed manner such that all 28 reach

consensus at .∗2 = [a∗2? , a∗23]
T ∈ R2. At this time, for each node �8 , if .∗2 is replaced by 28 to solve the equations

Eq.(30), the equality constraints
∑=
8=1 G?8 = G? and

∑=
8=1 G38 = G3 (Eq.(13)) may not be satisfied. To overcome this

challenge, a surplus variable s8 = [B?8 , B38]T is introduced for each node to temporarily store the bias. By a smart

consensus algorithm the bias will vanish asymptotically.

At this point, we are ready to state the distributed optimization algorithm. The initialization conditions are

=∑
8=1

x8 (0) +
=∑
8=1

s8 (0) = [G? , G3]T, x8 (0) � 0

y8 (0) = W8x8 (0), u8 � y8 � u8 , .8 (0) = Y8 y8 (0)

28 (0) = V8x8 (0) + WT
8 .8 (0), 8 = 1, · · · , =

(28)

Then, for node �8 ,

9



(1) Update 28

28 (: + 1) =
∑
9∈N8

18, 929 (:) + rs8 (:) (29)

(2) Solve the following equation set



G?8 (: + 1) = k?8 (.8 (: + 1), f?8 (: + 1))

G38 (: + 1) = k38 (.8 (: + 1), f38 (: + 1))

H8 9 (: + 1) = kH8 (a8 9 (: + 1)), 9 ∈ 1, 2, 3

W8x8 (: + 1) = y8 (: + 1)

(30)

(3) Update surplus variable s8

s8 (: + 1) =
∑
9∈N8

28, 9 s 9 (:) − (x8 (: + 1) − x8 (:)) (31)

where W8 = [−q,−88] is a matrix associated with the attitude of spacecraft and the angular velocity at node �8 , which

is a constant matrix in each control period. : ≥ 0 denotes the number of iterations. r is a sufficiently small positive

constant. 18, 9 and 28, 9 are defined as follows:

18, 9 =


1
38

if 9 ∈ N8

0 otherwise
,∀8, 9 ∈ V (32)

and

28, 9 =


1
3 9

if 8 ∈ N9

0 otherwise
,∀8, 9 ∈ V (33)

Eq.(30) is a eight-dimensional equation group that contains eight unknowns. It is not easy to solve it directly due to

the nonlinearity involved. Motivated by the idea from [22], the Eq.(30) can be solved by gradient method as follows

. (A+1)
8
(: + 1) = . (A )

8
(: + 1) + U8

[
−y (A )

8
(: + 1) + W8x (A )8 (: + 1)

]
(34a)

H
(A+1)
8 9
(: + 1) = kH8 (a (A+1)8 9

(: + 1)), 9 ∈ 1, 2, 3 (34b)

G
(A+1)
?8
(: + 1) = k?8 (. (A+1)8

(: + 1), f?8 (: + 1)) (34c)

G
(A+1)
38
(: + 1) = k38 (. (A+1)8

(: + 1), f38 (: + 1)) (34d)

where U8 > 0 is a constant stepsize of the gradient method; A > 0 is the number of iterations of the gradient method.
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The implementation process of the proposed distributed optimization algorithm is shown in Fig.2. When all 28 (:)

reach to .∗2 and all s8 (:) converge to 0, the proposed algorithm will solve the KKT conditions of the problem Eq.(21) in

a distributed way, which means all actuator mounting nodes will gain the globally optimal solution. The convergence of

the algorithm will be analyzed in the next subsection.

Fig. 2 Schematic of the proposed distributed optimization algorithm.

D. Convergence Analysis

In this subsection, the convergence analysis of the proposed algorithm is divided into two steps: first, analyze the

case where neither x8 nor y8 is saturated; then the above method is extended to the case where the saturation constraints

are considered.

If x8 and y8 are not saturated, referring to Eqs.(25)−(27) and y8 = W8x8 , .8 can be derived as

.8 = (Y−1
8 + W8V−1

8 WT
8 )−1W8V

−1
8 28 (35)

Then,

x8 = W?828 (36)

where W?8 = V−1
8
− V−1

8
WT
8
(Y−1
8
+ W8V−1

8
WT
8
)−1W8V

T
8
∈ R2×2. The algorithm Eqs.(29)-(31) can be rewritten as

2(: + 1) = H2(:) + rs(:) (37a)

x(: + 1) = W?2(: + 1) (37b)

s(: + 1) = Is(:) − (x(: + 1) − x(:)) (37c)

11



where W? = diag(W?1, · · · ,W?=) ∈ R2=×2=, 2 = [2T
1 , · · · ,2

T
= ]T, s = [sT

1 , · · · , s
T
=]T, x(:) = [xT

1 , · · · , x
T
=]T. H =

H ⊗ O2 and I = I ⊗ O2 where the entries of H and I are defined by Eqs.(32) and (33), respectively. ⊗ denotes Kronecker

product about two matrices. From the definition of H and I, it is not difficult to verify that H is row stochastic, and I is

column stochastic. That is, H12= = 12= and 1T
2=I = 1T

2=, where 12= ∈ R2= is a column vector with all its entries being

1. Thereafter, Eq.(37c) preserves the summation of
∑=
8=1 G?8 (:) +

∑=
8=1 B?8 (:) and

∑=
8=1 G38 (:) +

∑=
8=1 B38 (:) overV.

Premultiplying both sides of Eq.(37c) by (1T
= ⊗ [1, 0]T) we can obtain

(1T
= ⊗ [1, 0]T)s(: + 1) = (1T

= ⊗ [1, 0]T)Is(:) − (1T
= ⊗ [1, 0]T) (x(: + 1) − x(:))

= (1T
= ⊗ [1, 0]T)s(:) − (1T

= ⊗ [1, 0]T) (x(: + 1) − x(:))
(38)

that is,
=∑
8=1

G?8 (: + 1) +
=∑
8=1

B?8 (: + 1) =
=∑
8=1

G?8 (:) +
=∑
8=1

B?8 (:) (39)

Similarly, we can get
∑=
8=1 G38 (: + 1) +∑=

8=1 B38 (: + 1) = ∑=
8=1 G38 (:) +

∑=
8=1 B38 (:) by premultiplying both sides of

Eq.(37c) by 1T
= ⊗ [0, 1]T. Recalling the initialization of x8 (0) and s8 (0), it is obvious that

∑=
8=1 G?8 (:) +

∑=
8=1 B?8 (:) =

G? ,
∑=
8=1 G38 (:) +

∑=
8=1 B38 (:) = G3 , ∀: > 0.

Replacing x in Eq.(37c) with 2 by using Eqs.(37a) and (37b) yields

s(: + 1) = W? (O2= − H)2(:) + [I − rW?]s(:) (40)

where O2= is the 2=-order identity matrix. Writing Eqs.(37a) and (40) in matrix form, we get


2(: + 1)

s(: + 1)

 =


H rO2=

W? (O2= − H) I − rW?



2(:)

s(:)

 (41)

Define

� =


H 0

W? (O2= − H) I

 , � =


0 O2=

0 −W?

 . (42)

The system matrix of Eq.(41) can be regarded as � perturbed by r�. Since � is a lower block triangular matrix, the

eigenvalues of � is the union of the eigenvalues of H and I. According to the eigenvalue properties of Kronecker

product and the definitions of H and I, each eigenvalue of H corresponds to two identical eigenvalues of H, as do of

I and I. Thus, � has four eigenvalues W8 = 1, 8 = 1, 2, 3, 4, and the rest eigenvalues lie in the open unit disk on the

complex plane. Next, the matrix perturbation theory is applied to analyze the behavior of W8 under perturbation r�.

12



Construct eigenvector sets[ and \T as follows

[ =


0 51

52 −52>
T
2W51

 , \
T =


>T

2W >T
2

>T
1 0T

 . (43)

where

51 = 1= ⊗ O2, >
T
1 = ;T ⊗ O2 (44)

are linearly independent right and left eigenvectors corresponding to the two unit eigenvalues of H, in which, ; ∈ R=

satisfies 1T
=; = 1 and ; � 0.

52 = - ⊗ O2, >
T
2 = 1T

= ⊗ O2 (45)

are linearly independent right and left eigenvectors corresponding to the two unit eigenvalues of I, in which, - ∈ R=

satisfies 1T
=- = 1 and - � 0.

It can be proved that[ and \T are the four linearly independent right and left eigenvectors of � corresponding to

the eigenvalues W8 . Furthermore, \T[ = O4=. If r is small, the variation of W8 perturbed by r� can be quantified by the

eigenvalues of \T�[. Since

\T�[ =


0 0

(;T-)O2 −>T
152>

T
2W51

 (46)

two of the eigenvalues of \T�[ are 0. Thus, (dW1)/(dr) = (dW2)/(dr) = 0, which means W1 and W2 do not change

against r. Recalling the definition of W and Eqs.(44) and (45), we have

− >T
152>

T
2W51 = −(;T-1T

= ⊗ O2)W(1T
= ⊗ O2)

= −;T- [O2, · · · , O2] diag(W?1, · · · ,W?=) [O2, · · · , O2]T

= −;T-
=∑
8=1

W?8

(47)

It can be verified that all leading principal minors of the matrix
∑=
8=1 W?8 are positive. Thus, all the eigenvalues of∑=

8=1 W?8 are positive, which results in (dW3)/(dr) < 0 and (dW4)/(dr) < 0. If r > 0, W3 and W4 become smaller.

Let r1 be the upper bound of r such that when r < r1, |W3 | < 1 and |W4 | < 1. In addition, since eigenvalues are

continuous function of matrix entries, there must exist an upper bound r2 such that when r < r2, the rest eigenvalues

of (� + r�), |W8 | < 1, 8 = 5, 6, · · · , 4=. Thus for any sufficiently small r ∈ (0,min{r1, r2}), the spectral radius of

� + r�, d(� + r�) = 1 and |W8 | < 1, 8 = 3, 4, · · · , 4=.

Since [(1= ⊗ O2)T, 0T]T is the eigenvectors associated with W1 = W2 = 1 of the system matrix (� + r�) in Eq.(41)

13



and all its rest eigenvalues are within the open unit disk, thus

lim
:→∞


2(:)

s(:)

 = span


1= ⊗ O2

0

 (48)

That is, B?8 → 0, B38 → 0 as : → ∞, ∀8. Referring to Eq.(39), it can be derived that
∑=
8=1 G?8 (:) = G? and∑=

8=1 G38 (:) = G3 as : →∞, ∀8. The equality constraints Eq.(13) are satisfied. From the upper half of Eq.(48), f?8 (:)

and f38 (:) will converge to two same values, respectively. According to the discussion in the previous subsection, we

have f?8 (:) → a∗2? and f38 (:) → a∗
23

as : →∞, ∀8.

At this point, the convergence of the proposed algorithm has been demonstrated without considering saturation

constraints. Next, we consider the case of torque saturation, that is, some y8 are saturated regardless of whether x8 are

saturated.

It can be seen from the above analysis that the algorithm Eq.(37) is a feedback system with r as the gain. By

premultiplying (1T
= ⊗ [1, 0]T) from both sides of Eq.(37a), it can be obtained that

∑
8

f?8 (: + 1) =
∑
8, 9

18, 9f? 9 (:) + r4? (:) (49)

where 4? (:) = G? −
∑=
8=1 f?8 (:) (recall Eq.(39)) is the gap between the actual parameters and the target parameter

regarding the equality constraints of attitude control. Without loss of generality, assume 4? (:) > 0, then the overall level

of f?8 (:) will increase and each f?8 (:) will approach to the same value a∗2? . And according to Eq.(37b), G?8 (: + 1) is

an increasing function with respect to f?8 (: + 1), which leads to ∑=
8=1 G?8 (: + 1) −∑=

8=1 G?8 (:) > 0. Then, we have

4? (: + 1) < 4? (:) from Eq.(37c). The feedback in Eq.(37) will reduce the gap 4? (:). Similarly, there also exists

a feedback between
∑
8 f38 (:) and 43 (:) = G3 −

∑=
8=1 f38 (:). In this process, some of the actuators may reach the

torque saturation. After an iteration : , if actuator node �8 is saturated, then for : > : , node �8 will hold saturation.

Considering the actuator saturation, the algorithm Eq.(41) can be revised as


2(: + 1)

s(: + 1)

 =


H rO2=

W? (O2= − H) I − rW?



2(:)

s(:)

 (50)

where W? = diag(W?1, · · · ,W?=) ∈ R2=×2=, in which

W?8 =


0 if actuator node �8 is saturated

W?8 otherwise
(51)
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Following the similar eigenvalue perturbation analysis, the above system Eq.(50) can be proven to be stable. The last

case, where some x8 are saturated and y8 is not, can be analyzed by following the procedure of Eqs.(49)-(51). Obviously

the proposed method is still convergent in this case. Hence, the proposed algorithm will solve the KKT conditions of the

problem Eq.(21) in a distributed way, and all actuator nodes will get the globally optimal solution.

Remark 1When the gradient method Eq.(34) is used to solve the local equations Eq.(30), if an adaptive diminishing

stepsize U8 (A) that varies with each iteration is adopted, the Eq.(34) can converge to the optimal solution as A →∞. If

a constant stepsize U8 is adopted, the Eq.(34) will converge to an interval containing the optimal solution, where the

error bound is related to the stepsize U8 and iteration number A [22]. Smaller stepsize and more iterations will result in

smaller error bounds. If the stepsize U8 is small sufficient, the iteration error with respect to x (A )
8
(:) can be lumped into

the matrix W8 for analysis.

Remark 2 For the selection of parameter r, one can refer to [23], which gives a conservative bound on r. An optimized

r can also be obtained by an optimization method.

V. Numerical simulation
The proposed distributed optimization algorithm is applied to an unconstrained flexible spacecraft in this section to

demonstrate its effectiveness. The considered spacecraft is a uniform elastic plate sizing 6m × 10m. 8 sets of three-axis

orthogonal reaction-wheel systems are installed at the actuator mounting nodes �8 (8 = 1, · · · , 8) for attitude control and

vibration suppression. The communication topology and mounting positions of the actuator nodes is shown in Fig.3.

The circles marked numbers denote actuator mounting nodes; the lines represent the interactions between actuator

nodes. By the finite element method, the inertia matrix of the system is diag(2251.6, 5940.5, 8189.3) (kg·m2), and

the fundamental frequency of the whole system is 0.8424 Hz. Six unconstrained modes are selected by the inertia

completeness criteria in the simulation of dynamics. The other five mode frequencies selected are 1.9644 Hz, 2.3066 Hz,

2.9550 Hz, 3.5186 Hz, and 4.2664 Hz. The damping coefficients of the selected modes are assumed to be constants

b8 = 0.005, 8 = 1, · · · , 6.
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Fig. 3 Communication topology of actuator nodes.

To fully verify the effectiveness of the proposed method, a sequence of large-angle attitude maneuvers are
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implemented in the simulation. There are two 165◦ attitude maneuver commands at 190s and 320s, respectively, and the

Euler axis is assumed to be [0.8729,−0.4364, 0.2182]T. Referring to [14, 17], the initial parameters of the system are

assumed to be

[@0 (0), qT (0)]T = [−0.4386,−0.4821,−0.5576, 0.5140]T

8(0) = [3 × 10−4, 5 × 10−3, 1 × 10−4]T rad/s

((0) = [5.6311, 4.0732, 3.7053,−0.4255,−0.8020, 0.7464] × 10−3

¤((0) = [3.3687, 0.6147,−3.0043,−2.2010, 0.1501,−0.1176] × 10−4

Two cases are considered in the simulation. In case I, the distributed vibration suppression method based on control

allocation [17] is adopted. In case II, the control law Eq.(7) is adopted and the proposed distributed optimization

algorithm is utilized to obtain the control gains. In both cases, the maximum output torque of the actuator is considered

to be 2 Nm, and the control period is set to be 0.08 s. Some parameters of case II are set as follows: the constraints on

the control gains are assumed to be
∑=
8=1 G?8 = G? = 40 and

∑=
8=1 G38 = G3 = 500. The initializations are chosen as

G?8 (0) = 40/8, G38 (0) = 500/8, 8 = 1, · · · , 8. The parameters in the algorithm are chosen as follows: r = 0.006 in

Eq.(29); The gradient method Eq.(34) is adopted to solve the equations Eq.(30) and U8 is chosen as 0.008. The number

of iterations of the proposed algorithm is set to be 8. Since the difference of initial values between the two adjacent

control cycles are not distinct, a small number of iterations is chosen. In addition, there are almost only elementary

mathematical operations in the proposed algorithm, thus its execution is fast.

The simulation results are shown in Figs.4∼9. The time histories of the Euler angles and angular velocity errors are

similar in the two cases. For the sake of brevity, only those of the case II are shown in Figs.4(a) and 4(b).
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Fig. 4 Spacecraft Attitude.

Fig.5 shows the time history of the modal coordinates. It can be found that, by the proposed distributed optimization
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Fig. 5 Modal coordinates.
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Fig. 6 Torques of actuators.
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Fig. 7 Optimal control gains : ?8 and :38 .

algorithm, the vibration of the system is not as severe as that of the distributed control allocation method [17]. The

reason is that the method in [17] does not consider the torque saturation of the actuators and it also requires a high

control frequency to achieve superior control performance. This is a limitation of the method itself, independent of the
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(a) 2?8 (b) 238

Fig. 8 Consensus variables 2.

(a) s?8 (b) s38

Fig. 9 Surplus variables s.

choice of the control law parameters. The time histories of the torques generated at all the 8 actuator mounting nodes

are shown in Fig.6. In Fig.6, different line types represent different torque output axes, and different colors represent

different actuator mounting nodes. The time histories of the control gains by the proposed distributed optimization

algorithm are show in Fig.7. The differences of the control gains at different nodes are not large, the reason is that the

difference of the vibration state matrices V8 of each nodes are not large. By increasing the difference of the vibration

state matrices V8 , the difference of the control gains among the nodes can be increased, so as to better suppress the

vibration. But this will also increase the torque saturation possibility of actuator nodes. The consensus variable 2

and the surplus variable s are shown in Fig.8 and Fig.9, respectively. It can be seen that the convergence speed of the

algorithm is relatively fast. At the same time, it can be verified that the equality constraints on the control gains are

satisfied when the algorithm converges.

Compared with the method in [17], the method in this paper does not require a centralized control unit to generate the

control torque. The implementation of the proposed method here is in a more thoroughly distributed way. Meanwhile,

the method in this paper has a certain energy regulation ability due to the introduction of the term �4 in objective
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function.

VI. Conclusion
A distributed optimization method is proposed to handle the attitude control and vibration suppression of flexible

spacecraft. The momentum exchange actuators are scattered across the spacecraft. By assuming each actuator mounting

node adopts the same form of control law, after determining the control gains of each nodes the attitude control and

vibration suppression can be realized in a thoroughly distributed way. The centralized control unit is not required.

The stability of the control law is analyzed by the Lyapunov method. The dynamic and steady-state performance of

the attitude control is formulated into equality constraints. The vibration of the system is formulated as the objective

function of the optimization problem. A surplus based consensus method is proposed to solve the KKT conditions of

the optimization problem in a distributed way. Numerical simulations demonstrate the effectiveness of the proposed

algorithm. Compared with the distributed vibration suppression method based on control allocation, the proposed

method has a better performance and does not require high control frequency.

References
[1] Singhose, W. E., Banerjee, A. K., and Seering, W. P., “Slewing flexible spacecraft with deflection-limiting input shaping,”

Journal of Guidance, Control, and Dynamics, Vol. 20, No. 2, 1997, pp. 291–298. doi:10.2514/2.4036.

[2] Fracchia, G., Biggs, J. D., and Ceriotti, M., “Analytical low-jerk reorientation maneuvers for multi-body spacecraft structures,”

Acta Astronautica, Vol. 178, 2020, pp. 1–14. doi:10.1016/j.actaastro.2020.08.020.

[3] Zhong, C., Chen, Z., and Guo, Y., “Attitude control for flexible spacecraft with disturbance rejection,” IEEE Transactions on

Aerospace and Electronic Systems, Vol. 53, No. 1, 2017, pp. 101–110. doi:10.1109/TAES.2017.2649259.

[4] Gennaro, S. D., “Output attitude tracking for flexible spacecraft,” Automatica, Vol. 38, No. 10, 2002, pp. 1719–1726.

doi:10.1016/S0005-1098(02)00082-1.

[5] Hu, Q., and Ma, G., “Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver,”

Aerospace Science and Technology, Vol. 9, No. 4, 2005, pp. 307–317. doi:10.1016/j.ast.2005.02.001.

[6] D’Eleuterio, G., and Hughes, P., “Dynamics of gyroelastic continua,” Journal of Applied Mechanics, Vol. 51, No. 2, 1984, pp.

415–422. doi:10.1115/1.3167634.

[7] D’Eleuterio, G., and Hughes, P. C., “Dynamics of gyroelastic spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 10,

No. 4, 1987, pp. 401–405. doi:10.2514/3.20231.

[8] Damaren, C., and D’Eleuterio, G., “Optimal control of large space structures using distributed gyricity,” Journal of Guidance,

Control, and Dynamics, Vol. 12, No. 5, 1989, pp. 723–731. doi:10.2514/3.20467.

19

https://doi.org/10.2514/2.4036
https://doi.org/10.1016/j.actaastro.2020.08.020
https://doi.org/10.1109/TAES.2017.2649259
https://doi.org/10.1016/S0005-1098(02)00082-1
https://doi.org/10.1016/j.ast.2005.02.001
https://doi.org/10.1115/1.3167634
https://doi.org/10.2514/3.20231
https://doi.org/10.2514/3.20467


[9] Damaren, C., and D’Eleuterio, G., “Controllability and observability of gyroelastic vehicles,” Journal of Guidance, Control,

and Dynamics, Vol. 14, No. 5, 1991, pp. 886–894. doi:10.2514/3.20728.

[10] Hu, Q., Jia, Y., and Xu, S., “Adaptive suppression of linear structural vibration using control moment gyroscopes,” Journal of

Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 990–996. doi:10.2514/1.62267.

[11] Hu, Q., and Zhang, J., “Attitude control and vibration suppression for flexible spacecraft using control moment gyroscopes,”

Journal of Aerospace Engineering, Vol. 29, No. 1, 2016, p. 04015027. doi:10.1061/(asce)as.1943-5525.0000513.

[12] Hu, Q., Jia, Y., Hu, H., Xu, S., and Zhang, J., “Dynamics and modal analysis of gyroelastic body with variable speed

control moment gyroscopes,” Journal of Computational and Nonlinear Dynamics, Vol. 11, No. 4, 2016, p. 044506.

doi:10.1115/1.4033438.

[13] Hu, Q., Jia, Y., and Xu, S., “Recursive dynamics algorithm for multibody systems with variable-speed control moment

gyroscopes,” Journal of guidance, control, and dynamics, Vol. 36, No. 5, 2013, pp. 1388–1398. doi:10.2514/1.59070.

[14] Guo, J., Geng, Y., Wu, B., and Kong, X., “Vibration suppression of flexible spacecraft during attitude maneuver using CMGs,”

Aerospace Science and Technology, Vol. 72, 2018, pp. 183–192. doi:10.1016/j.ast.2017.11.005.

[15] Guo, J., Damaren, C. J., and Geng, Y., “Space Structure Vibration Suppression Using Control Moment Gyroscope Null Motion,”

Journal of Guidance, Control, and Dynamics, Vol. 42, No. 10, 2019, pp. 2272–2278. doi:10.2514/1.g004344.

[16] Hu, Y., Geng, Y., and Wu, B., “Flexible Spacecraft Vibration Suppression by Distributed Actuators,” Journal of Guidance,

Control, and Dynamics, Vol. 43, No. 11, 2020, pp. 2141–2147. doi:10.2514/1.G005190.

[17] Hu, Y., Geng, Y., and Biggs, J. D., “Simultaneous Spacecraft Attitude Control and Vibration Suppression via Control Allocation,”

Journal of Guidance, Control, and Dynamics, Vol. 44, No. 10, 2021, pp. 1853–1861. doi:10.2514/1.G005834.

[18] Chang, H., Huang, P., Zhang, Y., Meng, Z., and Liu, Z., “Distributed control allocation for spacecraft attitude takeover

control via cellular space robot,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 11, 2018, pp. 2499–2506.

doi:10.2514/1.G003626.

[19] Liu, W., Geng, Y., Wu, B., and Biggs, J. D., “Distributed Constrained Control Allocation for Cellularized Spacecraft Attitude

Control System,” Journal of Guidance, Control, and Dynamics, Vol. 45, No. 2, 2022, pp. 385–393. doi:10.2514/1.G006266.

[20] Chang, T.-H., Nedić, A., and Scaglione, A., “Distributed constrained optimization by consensus-based primal-dual perturbation

method,” IEEE Transactions on Automatic Control, Vol. 59, No. 6, 2014, pp. 1524–1538. doi:10.1109/TAC.2014.2308612.

[21] Xu, Y., Han, T., Cai, K., Lin, Z., Yan, G., and Fu, M., “A distributed algorithm for resource allocation over dynamic digraphs,”

IEEE Transactions on Signal Processing, Vol. 65, No. 10, 2017, pp. 2600–2612. doi:10.1109/TSP.2017.2669896.

[22] Nedić, A., and Ozdaglar, A., “Subgradient methods for saddle-point problems,” Journal of optimization theory and applications,

Vol. 142, No. 1, 2009, pp. 205–228. doi:10.1007/s10957-009-9522-7.

20

https://doi.org/10.2514/3.20728
https://doi.org/10.2514/1.62267
https://doi.org/10.1061/(asce)as.1943-5525.0000513
https://doi.org/10.1115/1.4033438
https://doi.org/10.2514/1.59070
https://doi.org/10.1016/j.ast.2017.11.005
https://doi.org/10.2514/1.g004344
https://doi.org/10.2514/1.G005190
https://doi.org/10.2514/1.G005834
https://doi.org/10.2514/1.G003626
https://doi.org/10.2514/1.G006266
https://doi.org/10.1109/TAC.2014.2308612
https://doi.org/10.1109/TSP.2017.2669896
https://doi.org/10.1007/s10957-009-9522-7


[23] Cai, K., and Ishii, H., “Average consensus on general strongly connected digraphs,” Automatica, Vol. 48, No. 11, 2012, pp.

2750–2761. doi:10.1016/j.automatica.2012.08.003.

21

https://doi.org/10.1016/j.automatica.2012.08.003

	FronteRivista
	HUYAB_OA_01-23sf
	Introduction
	System Description
	Design of Control Law
	Distributed Optimization Method
	Problem Formulation
	Problem Solution
	Distributed Optimization Method
	Convergence Analysis

	Numerical simulation
	Conclusion


