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Editorial

Editorial for Special Issue: “Feature Papers of Forecasting 2021”

Sonia Leva

Department of Energy, Politecnico di Milano, 20156 Milano, Italy; sonia.leva@polimi.it

The human capability to react or adapt to upcoming changes strongly relies on the
ability to forecast them. Forecasting and its applications are increasingly important because
they allow to improve decision-making processes by providing useful insights about
the future. Scientific research is giving unprecedent attention to forecasting methods
and applications, with a continuously growing number of articles about novel forecast
approaches being published.

In this Special Issue, as well as in the one published in 2020 [1], high-quality papers
in Forecasting spread into topics such as power and energy forecasting, forecasting in
economics and management, forecasting in computer science, weather and forecasting
and environmental forecasting have been selected and published. In particular, in this
Special Issue, the most recent and high-quality research about forecasting is collected.
Eleven papers are selected to represent a wide range of research fields where forecasting
applications are playing a crucial role.

Nikolaidis et al. [2] propose a dynamical forecaster capable of estimating the required
spinning reserves on the basis of a real-time load forecast. A neural network is trained via
non-linear regression to accurately predict the load ahead starting from eight predictors,
divided into constant and variable inputs by exploiting a model predictive control. The
results provided demonstrate that the adoption of the proposed dynamical forecaster
allows for significant improvements in terms of decreasing operating reserve requirements:
Based on real-time updates, the load forecasting can achieve lower costs while the system
security is preserved.

Ramos et al. [3] present a methodology designed for office buildings and aimed at
improving the accuracy in electricity consumption forecasting on a 5-min time interval,
providing proper support to decisions related to energy management towards higher effi-
ciency. The prediction, based on data measured by different devices including presence,
temperature, consumption and humidity, is carried out by means of two different forecast-
ing algorithms, namely, Artificial Neural Network (ANN) and K-Nearest Neighbor (KNN)
algorithms. The present research demonstrated that in order to achieve the maximum
forecast accuracy in different periods of the day, hence in different contexts regarding
consumption patterns, different forecasting algorithms must be used.

Chaiton et al. [4] present the outcomes of simulations forecasting the impact of five
possible Tobacco Endgame policies on smoking prevalence and on tax revenues in Ontario
by 2035. The Ontario SimSmoke simulation is exploited for modeling the expected effect
of the first four strategies, namely: plain packaging, free cessation services, decreasing
the number of tobacco outlets and increasing tobacco taxes. On the other hand, different
models are involved in the evaluation of the impact of increasing the minimum required age
to legally purchase tobacco to 21 years. Simulations predict that an increase in tobacco taxes
will determine the greatest decrease in smoking prevalence, and that reducing smoking
prevalence to “less than 5 by 35” by combining non-tax interventions and excise tax increase
will result in a minimal impact on tax revenues.

Petropoulos et al. [5] focus on univariate time series forecasting and provide an
overview of five different approaches allowing an improvement in the performances
achievable with standard extrapolation methods. In further detail, the Theta method
(manipulation of local curvatures), Multiple Temporal Aggregation (MTA), bootstrapping,
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Forecasting with Sub-seasonal Series (FOSS) and forecasting with multiple starting points
are discussed and compared in terms of how information is extracted from data, the
computational cost and the performance. Moreover, the concept of the “wisdom of the
data” is presented, explaining how a proper data manipulation can translate into improved
forecast accuracy by combining forecasts carried out from different perspectives on the
same data.

Watson et al. [6] investigate how the quality of weather data derived from thunder-
storm simulations influences the outcome of power outage models. A comparative analysis
is conducted using two different Numerical Weather Prediction (NWP) systems with vari-
ous levels of data assimilation, determining how outage models trained on these different
sets of weather data differ in terms of performance. It is demonstrated that erroneous
estimations in weather simulations propagate into the outage models in specific and quan-
tifiable ways, suggesting how improved weather representations can possibly improve the
quality of the power outage insights obtained.

Nespoli et al. [7] propose a preliminary forecast procedure with the objective to predict
a family of batteries which is suitable, from both a technical and a financial point of
view, for coupling with a certain PV plant configuration. The procedure is applied to
hypothetical plants aimed at fulfilling the energy requirements of a commercial and an
industrial loads. The amount of energy produced by the PV system is estimated on the
basis of a performance analysis carried out on real plants with similar characteristics, while
the battery operations are determined by two distinct control logics regulating charge and
discharge, respectively. Finally, an unsupervised clustering based on k-means algorithm
applied to all possible PV+BESS (Battery Energy Storage System) configurations allowed the
researchers to identify the family of feasible solutions which, as expected, was characterized
by a low payback time and a low number of residual cycles.

Boudhaouia et al. [8] describe a novel web-oriented data analysis platform capable of
forecasting water consumption in real-time by exploiting Machine Learning techniques.
The prediction is carried out with no prior and contextual information, relying only on
past water consumption data recorded by smart meters as unevenly spaced time series
with high-resolution and based on two different algorithms, namely, a Long Short-Term
Memory (LSTM) and a Back-Propagation Neural Network (BPNN). The two models are
tested on forecasting the water consumption in a private building: By evaluating their
performance, it is observed that LSTM outperforms BPNN, providing more accurate
predictions. According to the authors, the developed model can even be generalized to
different types of consumption, such as electricity and gas.

Bas et al. [9] introduce a novel time series forecasting approach based on the Holt
method modified by using time-varying smoothing parameters instead of fixed ones. Holt’s
smoothing parameters are obtained for each observation exploiting first-order autoregres-
sive models whose parameters, in turn, are assessed through a Harmony Search Algorithm
(HSA). The proposed method is tested on Istanbul Stock Exchange datasets covering the
years between 2000 and 2017: The forecasts are obtained with a subsampling bootstrap
approach, and different test lengths are considered during this analysis.

Wu et al. [10] deal with the topic of forecasting volatility from econometric datasets,
a crucial task in finance. First, they assess the robustness of state-of-art Normalizing and
Variance-Stabilizing (NoVaS) methods for long-term time-aggregated predictions, address-
ing the lack of experimental results in current NoVaS-related studies. Then, they develop a
novel model-free method that, after an extensive analysis, demonstrated improved and
more stable performance with respect to state-of-art NoVaS and standard GARCH-type
methods in both the short and long term, regardless of whether simulation or real-world
data are used.

Ali et al. [11] propose a novel approach aimed at predicting ocean currents by means of
deep learning. In detail, a LSTM model is applied to the prediction of the three-dimensional
tensors representing water column velocity. The proposed method is tested on estimating
the Loop Current (LC) measured in the Gulf of Mexico between 2009 and 2011 at multiple
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spatial and temporal scales, where an RMSE (Root Mean Square Error) lower than 0.05 cm/s
and a correlation coefficient of 0.6 were presented. Moreover, the model presented a useful
forecast period, hence the time interval after which the forecast significantly diverges from
the observed motion field, larger than 4 days.

Vega et al. [12] face the challenge of forecasting the number of new COVID-19 infec-
tions in the short and medium term by proposing the SIMLR model, incorporating Machine
Learning (ML) into the epidemiological SIR model. By combining these two components,
it is substantially possible to reduce the amount of data required by Machine Learning in
order to produce accurate predictions and to estimate the time-varying parameters of a SIR
model to produce forecasts with an advance of one to four weeks. The proposed SIMLR
model is applied to study cases from Canada and the United States, demonstrating state-of-
the-art forecasting performance with the additional advantage of providing probabilistic
and interpretable outcomes. The authors expect this approach to be involved not only in
COVID-19 modeling and for other infectious diseases as well.
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SIMLR: Machine Learning inside the SIR Model for
COVID-19 Forecasting
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Abstract: Accurate forecasts of the number of newly infected people during an epidemic are critical
for making effective timely decisions. This paper addresses this challenge using the SIMLR model,
which incorporates machine learning (ML) into the epidemiological SIR model. For each region,
SIMLR tracks the changes in the policies implemented at the government level, which it uses to
estimate the time-varying parameters of an SIR model for forecasting the number of new infections
one to four weeks in advance. It also forecasts the probability of changes in those government policies
at each of these future times, which is essential for the longer-range forecasts. We applied SIMLR
to data from in Canada and the United States, and show that its mean average percentage error is
as good as state-of-the-art forecasting models, with the added advantage of being an interpretable
model. We expect that this approach will be useful not only for forecasting COVID-19 infections, but
also in predicting the evolution of other infectious diseases.

Keywords: COVID-19; probabilistic graphical models; interpretable machine learning

1. Introduction

Since its identification in December 2019, COVID-19 has posed critical challenges
for the public health and economies of essentially every country in the world [1–3].
Government officials have taken a wide range of measures in an effort to contain this
pandemic, including closing schools and workplaces, setting restrictions on air travel, and
establishing stay at home requirements [4]. Accurately forecasting the number of new
infected people in the short and medium term is critical for the timely decisions about
policies and for the proper allocation of medical resources [5,6].

There are three basic approaches for predicting the dynamics of an epidemic: compartmental
models, statistical methods, and ML-based methods [5,7]. Compartmental models subdivide a
population into mutually exclusive categories, with a set of dynamical equations that explain
the transitions among categories [8]. The Susceptible-Infected-Removed (SIR) model [9] is a
common choice for the modelling of infectious diseases. Statistical methods extract general
statistics from the data to fit mathematical models that explain the evolution of the epidemic [6].
Finally, ML-based methods use machine learning algorithms to analyze historical data and find
patterns that lead to accurate predictions of the number of new infected people [7,10].

Arguably, when any approach is used to make high-stake decisions, it is important
that it be not just accurate, but also interpretable: It should give the decision-maker enough
information to justify the recommendation [11]. Here, we propose SIMLR, which is an
interpretable probabilistic graphical model (PGM) that combines compartmental models
and ML-based methods. As its name suggests, it incorporates machine learning (ML)
within an SIR model. This combines the strength of curve fitting models that allow accurate
predictions in the short-term, involving many features, with mechanistic models that allow
to extend the range to predictions in the medium and long terms [12].

Forecasting 2022, 4, 72–94. https://doi.org/10.3390/forecast4010005 https://www.mdpi.com/journal/forecasting5
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SIMLR uses a mixture of experts approach [13], where the contribution of each expert to
the final forecast depends on the changes in the government policies implemented at various
earlier time points. When there is no recent change in policies (two to four weeks before the
week to be predicted), SIMLR relies on an SIR model with time-varying parameters that are
fitted using machine learning methods. When a change in policy occurs, SIMLR instead relies
on a simpler model that predicts that the new number of infections will remain constant.
Note that forecasting the number of new infections one and two weeks in advance (ΔI1 and
ΔI2) is relatively easy as SIMLR knows, at the time of the prediction, whether the policy has
changed recently. However, for three- or four-week forecasts (ΔI3 and ΔI4), our model needs
to estimate the likelihood of a future change of policy. SIMLR incorporates prior domain
knowledge to estimate such policy-change probabilities.

The use of such prior models—here epidemiological models—is particularly important
when the available data is scarce [14]. At the same time, machine learning models need
to acknowledge that the reported data on COVID-19 is imperfect [15,16]. The use of
probabilistic graphical models allows SIMLR to account for this uncertainty on the data. At
the same time, the probability tables associated with this graphical model can be manually
modified to adapt SIMLR to the specific characteristics of a region.

This work makes three important contributions. (1) It empirically shows that an SIR
model with time-varying parameters can describe the complex dynamics of COVID-19.
(2) It describes an interpretable model that predicts the new number of infections one
to four weeks in advance, achieving state-of-the-art results, in terms of mean absolute
percentage error (MAPE), on data from Canada and the United States. (3) It presents a
machine learning model that incorporates the uncertainty of the input data and can be
tailored to the specific situations of a particular region.

The rest of Section 1 describes the related work and the basics of the SIR compartmental
model. Section 2 then describes in detail our proposed SIMLR approach. Section 3 shows
the results of the predicting the number of new infections in the United States and provinces
of Canada. Finally, Section 4 presents our final remarks.

1.1. Basic SIR Model

The Susceptible-Infected-Removed (SIR) compartmental model [9] is a mathematical
model of infectious disease dynamics that divide the population into three disjoint groups [8].
Susceptible (S) refers to the set of people who have never been infected but can acquire
the disease. Infected (I) refers to the set of people who have and can transmit the infection.
Removed (R) refers to the people who have either recovered or died from the infection and
cannot transmit the disease anymore. This model is defined by the differential equations:

dS
dt

= − βS(t)I(t)
N

,
dI
dt

=
βS(t)I(t)

N
− γI(t),

dR
dt

= γI(t) (1)

SIR assumes an homogeneous and constant population, and it is fully defined by the
parameters β (transmission rate) and γ (recovery rate). The intuition behind this model
is that every infected patient gets in contact with β people. Since only the susceptible
people can become infected, the chance of interacting with a susceptible person is simply
the proportion of susceptible people in the entire population, N = S + I + R. Likewise, at
every time point, γ proportion of the infected people is removed from the system. Figure 1a
depicts the general behaviour of an SIR model.

6
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Figure 1. (a) General behaviour of the SIR model. (b) The number of infections predicted by the SIR
model with fixed parameters, fitted to the US data for 1 week prediction. (c) Similar to (b), but with
time-varying parameters.

1.2. Related Work

The main idea behind combining compartmental models with machine learning is to
replace the fixed parameters of the former with time-varying parameters that can be learned
from data [6,17–19]. However, most of the approaches focus on finding the parameters
that can explain the past data, and not on predicting the number of newly infected people.
Although those approaches are useful for obtaining insight into the dynamics of the disease,
it does not mean that those parameters will accurately predict the behaviour in the future.

Particularly relevant to our approach is the work by Arik et al. [5], who used latent
variables and autoencoders to model extra compartments in an extended Susceptible-
Exposed-Infected-Removed (SEIR) model. Those additional compartments bring further
insight into how the disease impacts the population [20,21]; however, our experiments
suggest that they are not needed for an accurate prediction of the number of new infections.
One limitation of their model is a decrease in performance when the trend in the number
of new infections changes. We hypothesize that those changes in trend are related to the
government policies that are in place at a specific point in time. SIMLR is able to capture
those changes by tracking the policies implemented at the government level.

A different line of work replaces epidemiological models with machine learning
methods to directly predict the number of new infections [22–25]. Importantly, Yeung
et al. [26] added non-pharmaceutical interventions (policies) as features in their models;
however, their approach is limited to make predictions up to two weeks in advance, since
information about the policies that will be implemented in the future is not available at
inference time. Our SIMLR approach differs by being interpretable and also by forecasting
policy changes, which allows it to extend the horizon of the ΔI predictions.

There are many models that attempt to predict the evolution of the COVID-19 epidemic.
The Center for Disease Control and Prevention (CDC) in the United States allows different
research teams across the globe to submit their forecasts of the number of cases and deaths
1 to 8 weeks in advance [27]. More than 100 teams have submitted at least one prediction
to this competition. We compare SIMLR with all of the models that made predictions 1 to
4 weeks in advance in the same time span as our study.

2. Materials and Methods

We view SIMLR as a probabilistic graphical model that uses a mixture of experts
approach to forecast the number of new COVID-19 infections, 1 to 4 weeks in advance.
Figure 2 shows the intuition behind SIMLR. Changes in the government policies are likely
to modify the trend of the number of new infections. We assume that stronger policies are
likely to decrease the number of new infections, while the opposite effect is likely to occur
when relaxing the policies. These changes are reflected as a change in the parameters of the
SIR model. Using those parameters, we can then predict the number of new infections, then
use that to compute the likelihood of observing other new policy changes in the short term.

While Figure 2 is an schematic diagram used for pedagogical purposes; Figure 3
depicts the formal probabilistic graphical model, as a plate model, that we use to estimate
the parameters of the SIR model, the number of new infections, and the likelihood of

7
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observing changes in policies 1 to 4 weeks in advance. The blue nodes are estimated at
every time point, while the values of the green nodes are either known as part of the
historical data, or inferred in a previous time point. The random variables are assumed to
have the following distributions:

CTt+1 | {CPt−τ}τ∈{1,2,3} ∼ CatK∈{−1,0,1}(θCT)

βt+1 | {βt−τ}τ∈{0,1,2}, CTt+1 ∼ N (μβ, Σβ)

γt+1 | {γt−τ}τ∈{0,1,2}, CTt+1 ∼ N (μγ, Σγ)

SIRt+1 | βt+1, γt+1 ∼ N (μSIR, ΣSIR)
Ut | {SIRt−τ}τ∈{0,1,2} ∼ CatK∈{−1,0,1}(θU)

Ot | Wt ∼ CatK∈{0,1}(θO)

CPt+1 | Ot, Ut ∼ CatK∈{−1,0,1}(θCP)

(2)

where t indexes the current week, SIRt = [St, It, Rt], μSIR ∈ R
3 is given below by

Equation (3), μβ = (α0,CTt+1) + (α1,CTt+1)βt−1 + (α2,CTt+1)βt−2 + (α3,CTt+1)βt−3 and
μγ = (ω0,CTt+1) + (ω1,CTt+1)γt−1 + (ω2,CTt+1)γt−2 + (ω3,CTt+1)γt−3 are linear combinations
of the three previous values of β and γ, (respectively). The coefficients of those linear
combinations depend on the value of the random variable CTt+1. We did not specify a
distribution for the node New_infectionst+1 because its value is deterministically computed
as St − St+1.

Figure 2. Intuition behind SIMLR. The policies currently in place determine the value of the
parameters needed to infer the next values, using an SIR model. Those predictions are then used to
estimate how the policies might change in the future.

Informally, the assignment CTt = −1 means that we expect a change in trend from
an increasing number of infections to a decreasing one. The opposite happens when
CTt = 1, while CTt = 0 means that we expect the population to follow the current trend
(either increasing or decreasing). We assume these changes in trend depend on changes
in the government policies 2 to 4 weeks prior to the week of our forecast—e.g., we use
{CTt−3, CTt−2, CTt−1} when predicting the number of new infections at t + 1, ΔIt+1, and
we need {CTt, CTt+1, CTt+2} when predicting ΔIt+4. Note that, at time t, we will not
know CTt+1 nor CTt+2. We chose this interval based on the assumption that the incubation
period of the virus is 2 weeks.

8
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The status of CTt+1 defines the coefficients that relate βt+1 and γt+1 with their three
previous values βt, βt−1, βt−2 and γt, γt−1, γt−2, respectively. Since βt+1 and γt+1 fully
parameterize the SIR model in Equation (1), we can estimate the new number of infected
people, ΔIt+1, from these parameters (as well as the SIR values at time t).

The random variables Ut ∈ {−1, 0, 1} and Ot ∈ {0, 1} are auxiliary variables designed
to predict the probability of observing a change in policy at time t + 1. Intuitively, Ut
represents the "urgency" of modifying a policy. As the number of cases per 100K inhabitants
and the rate of change between the number of cases in two consecutive time points increases,
the urgency to set stricter government policies increases. As the number (and rate of
change) of cases decreases, the urgency to relax the policies increases. Finally, Ot models
the “willingness” to execute a change in government policies. As the number of time points
without a change increases, so does this “willingness”.

Figure 3. Modeling SIMLR as a PGM for forecasting new cases of COVID-19. The blue nodes are
estimated at each time point, while the green ones are either based on past information, or where
estimated in a previous iteration.

9
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2.1. SIR with Time-Varying Parameters

We can approximate an SIR model by transforming the differential Equation (1) into
the equations of differences:

St = −β
St−1 It−1

N
+ St−1

It = β
St−1 It−1

N
− γIt−1 + It−1

Rt = γIt−1 + Rt−1

(3)

where St, It, Rt are the number of individuals in the groups Susceptible, Infected and
Removed, respectively, at time t. Similarly St−1, It−1, Rt−1 represent the number individuals
in each group at time t − 1. β is the transmission rate, and γ is the recovery rate.

While the SIR model is non-linear with respect to the states (S, I, R), it is linear with
respect to the parameters β and γ. Therefore, under the assumption of constant and known
population size (i.e., N = St + It + Rt) we can re-write the set of Equation (3) as:

[
St
It

]
=

[
− St−1 It−1

N 0
St−1 It−1

N −It−1

][
β
γ

]
+

[
St−1
It−1

]

Rt = N − St − It

(4)

Given a sequence of states x1, . . . , xn, where xt = [St It]T , it is possible to estimate the
optimal parameters of the SIR model as:

(β∗, γ∗) = arg min
β,γ

n

∑
i=1

||xi − x̂i||2 + λ1(β − β0)
2 + λ2(γ − γ0)

2 (5)

where x̂i is computed using Equation (4), and λ1 and λ2 are optional regularization
parameters that allow the incorporation of the priors β0 and γ0. For the case of Gaussian
priors—i.e., β ∼ N (β0, σ2

β) and γ ∼ N (γ0, σ2
γ)—we use λ1 = 1

2σ2
β

and λ2 = 1
2σ2

γ
[28].

Intuitively, Equation (5) computes the transmission rate (β∗) and the recovery rate (γ∗)
that best explain the number of new infections, deaths, and recovered people in a fixed
time frame. If we know a standard recovery rate and transmission rate a priori (β0, γ0),
it is possible to incorporate them into the Equation (5) as regularization parameters. The
weights λ1 and λ2 control how much to weight those prior parameters. Small weights
means we basically use the parameters learned by the data, and large weights mean more
emphasis on the prior information.

In the traditional SIR model, we set λ1 = λ2 = 0 and fit a single β and γ to the
entire time series. However, as shown in Figure 1a, an SIR model with fixed parameters is
unable to accurately model several waves of infections. As illustration, Figure 1b shows the
predictions produced by fitting an SIR with fixed parameters (Equation (5)) to the US data
from 29 March 2020 to 3 May 2021, and then using those parameters to make predictions
one week in advance, over this same interval. That is, using this learned (β, γ), and the
number of people in the S, I, and R compartments on 28 March 2020, we predicted the
number of observed cases during the week of 29 March 2020 to 4 April 2020. We repeated
the same procedure for the entire time series. Note that even though the parameters β and
γ were found using the entire time series – i.e., using information that was not available at
the time of prediction—the resulting model still does a poor job fitting the reported data.

Figure 1c, on the other hand, was created by allowing β and γ to change every week.
Here, we first found the parameters that fit the data from 29 March 2020 to 4 April 2020—call
them β1 and γ1—then used those parameters along with the SIR state on 28 March 2020 to
predict the number of new infections one week ahead—i.e., the sampled week of 29 March
2020 to 4 April 2020. By repeating this procedure during the entire time series we obtained
an almost perfect fit to the data. Of course, these are also not “legal” predictions since they
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too use information that is not available at prediction time—i.e., they used the number of
reported infections during this first week to find the parameters, which were then used to
estimate the number of cases over this time. However, this “cheating” example shows that
an SIR model, with the optimal time-varying parameters, can model the complex dynamics
of COVID-19. Recall from Figure 1b that this is not the case in the SIR model with fixed
parameters, which cannot even properly fit the training data.

2.2. Estimating βt+1 and γt+1

Naturally, the challenge is “legally” computing the appropriate values of βt+1 and
γt+1, for each week, using only the data that is known at time t. Figure 3 shows that
computing βt+1 and γt+1 depends on the status of the random variable CTt+1. When
CTt+1 = 0—i.e., there is no change in the current trend—we assume that:

βt+1 ∼ N (α0 + α1βt + α2βt−1 + α3βt−2, σ2
β)

γt+1 ∼ N (ω0 + ω1γt + ω2γt−1 + ω3γt−2, σ2
γ)

(6)

At time t, we can use the historical daily data x1, x2, . . . , xt to find the weekly parameters
β1, β2, . . . , βt/7 and γ1, γ2, . . . , γt/7. Note that the is just one value for each week, so is there
are 140 days, there are 140/7 = 20 weeks. The first weekly pair (β1, γ1) is found by
fitting Equation (5) to x1, . . . , x7; (β2, γ2) to x8, . . . , x14; and so on. Finally, we find the
parameters α and ω in Equation (6) by maximizing the likelihood of the computed pairs.
After finding those parameters, it is straightforward to infer (βt+1, γt+1). Note that this
approach is the probabilistic version of linear regression. To estimate the parameters σ2

β and

σ2
γ we can simply estimate the variance of the residuals. An advantage of also computing

these variances is that it is possible to obtain confidence intervals by sampling from the
distribution in Equation (6) and then using those samples along with Equation (3) to
estimate the distribution of the new infected people.

We estimated βt+1 and γt+1 as a function of the 3 previous values of those parameters
since this allows them to incorporate the velocity and acceleration at which the parameters
change. We computed the velocity of β as vβ,t = βt − βt−1 and its acceleration as
aβ,t = vβ,t − vβ,t−1. Then, estimating βt = θ0 + θ1βt−1 + θ2vβ,t−1 + θ3aβ,t−1 is equivalent to
the model in Equation (6). The same reasoning applies to the computation of γt. We call
this approach the “trend-following varying-time parameters SIR”, tf-v-SIR.

For the case of CTt = −1 and CTt = 1 (which represents a change in trend from
increasing number of infections to decreasing number of infections or vice-versa), we set
βt+1 and γt+1 to values such that the predicted number of new cases at week t + 1 is
identical to the one at week t. We call this the “Same as the Last Observed Week” (SLOW)
model. As shown in Section 3, SLOW is a baseline with very good performance despite
its simplicity. Given that the pandemic is a physical phenomenon that changes relatively
slowly from one week to the next, making a prediction that assumes that the new number
of cases will remain constant is not a bad prediction.

2.3. Estimating CTt+1, CPt+1, Ot

The random variables CTt+1, CPt+1 and Ot in Figure 3 are all discrete nodes with
discrete parents, meaning their probability mass functions are fully defined by conditional
probability tables (CPTs). Learning the parameters of such CPTs from data is challenging
due to the scarcity of historical information. The random variable CTt+1 depends on the
random variable changes in policy (CP) at times t − 1, t − 2, t − 3; however, there are very
few changes in policy in a given region, meaning it is difficult to accurately estimate those
probabilities from data. For the random variable O, which represents the “willingness”
of the government to implement a change in policy, there is no observable data at all.
We therefore relied on prior expert knowledge to set the parameters of the conditional
probability tables for these random variables. Figure 4 shows the conditional probability
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tables (CPT) for the random variables CTt+1, CPt+1, Ot. The intuition used to generate the
CPT’s is as follows:

We considered that a change in trend in the current week depends on changes in
policies during the previous three weeks. We chose 3 weeks using the hypothesis that the
incubation period for the virus is 2 weeks. Then the effects of a policy will be reflected
approximately 2 weeks after a change. We decided to analyze also one week after, and one
week before this period, giving as a result the tracking of CPt−3 to CPt−1. Secondly, we
also assume that whenever we observe a change of policy that will move the trend from
going up to going down, then that event will most likely happen. This is why most of the
probability mass is located in a single column. For example, if we observe that the policies
are relaxed at any point during the weeks t − 3, t − 2, or t − 1, then we assume that we
will observe a change in trend with 99.9% probability.

The rationale for the CPT P(Ot | Wt) is that the government becomes more open to
implement changes after long periods of ‘inactivity’. For example, if they implement a
change in policy this week (Wt = 0), then the probability of considering a second change
of policy during the same week is very small (0.01%). We are assuming that, after a change
in policy, the government will wait to see the effect of that change before taking further
action. If 4 weeks have passed since the last change in policy, we estimated the probability
of considering a change in the policy as 50%, while if more than 7 weeks have passed, then
they are fully open to the possibility of implementing a new change.

P(Ot | Wt) estimates the probability of considering a change in the policy. The
probability of actually implementing a change, P(CPt+1 | Ot, Ut) depends not only on
how willing the government is, but also on how urgent it is to make a change. In general,
if the government is open to implement a change, and the urgency is “high”, then the
probability of changing a policy is high. We also considered that the government “prefers”
to either not make changes in policy or relax the policies, rather than to implement more
strict policies.

Figure 4. Conditional probability tables used by SIMLR. The names of the variables refer to the
nodes that appear on Figure 2 on the main text.

2.4. Estimating Ut

For modelling the random variable Ut, which represents the “Urgency to change the
trend”, we use an NN-CPD (neural-network conditional probability distribution), which is
a modified version of the multinomial logistic conditional probability distribution [29].
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Definition 1 (NN-CPD). Let Y ∈ {1, . . . , m} be an m-valued random variable with k parents
X1, . . . , Xk that each take on numerical values. The conditional probability distribution P(Y | X1, . . . , Xk)
is an NN-CPD if there is an function z = fθ(X1, . . . , Xk) ∈ R

m, represented as a neural network
with parameters θ, such that p(Y = i | x1, . . . , xk) = exp(zi)/ ∑j exp(zj), where zi represents the
i-th entry of z.

Note Ut is a latent variable, so there is no observable data at all. We again rely on
domain knowledge to estimate its probabilities. To compute P(Ut | SIRt−2, SIRt−1, SIRt),
we extract two features: ct = 10 × 105(St−1 − St)/N, which represents the number of new
reported infections per 100K inhabitants; and vt = ct − ct−1, which estimates the rate of
change of ct. Then define P(Ut | SIRt−2, SIRt−1, SIRt) = P(Ut | ct, vt).

To learn the parameters θ we created the dataset shown in Figure 5. Note that the
targets in such dataset are probabilities. We relied on the probabilistic labels approach
proposed by Vega et al. [30] to use a dataset with few training instances along with their
probabilities to learn the parameters of a neural network more efficiently. We trained and a
simple neural network with a single hidden layers with 64 units, and 3 output units with
softmax activation.

The random variables Ut ∈ {−1, 0, 1} and Ot ∈ {0, 1} are auxiliary variables designed
to predict the probability of observing a change in policy at time t + 1. Intuitively, Ut
represents the “urgency” of modifying a policy. As the number of cases per 100 K
inhabitants and the rate of change between the number of cases in two consecutive time
points increases, the urgency to set stricter government policies increases. As the number
(and rate of change) of cases decreases, the urgency to relax the policies increases. Most of
the parameters in both NN-CPD tables are similar for the US and Canada, the difference
arises from a perceived preference for not setting very strict policies in the US during the
first year of the pandemic.first year of the pandemic.

Figure 5. Dataset used to create the NN-CPD for the variable Ut and its visualization. Values closer
to 1 (yellow) increase p(Ut = 1 | Ct, Vt). Values closer to 0 (green) increase p(Ut = 0 | Ct, Vt). Values
closer to −1 (blue) increase p(Ut = −1 | Ct, Vt).
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2.5. Evaluation

We evaluated the performance of SIMLR, in terms of the mean absolute percentage
error (MAPE) and mean absolute error (MAE), for forecasting the number of new infections
one to four weeks in advance, in data from United States (as a country and individually for
every state) and the six biggest provinces of Canada: Alberta (AB), British Columbia (BC),
Manitoba (MN), Ontario (ON), Quebec (QB), and Saskatchewan (SK). For each of the
regions, the predictions are done on a weekly basis, over the 39 weeks from 26 July 2020 to
1 May 2021. This time span captures different waves of infections. Equation (7) show the
computation of the metrics used for evaluating our approach.

MAPE =
1
n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣
MAE =

1
n

n

∑
t=1

|yt − ŷt|
(7)

At the end of every week, we fitted the SIMLR parameters using the data that was
available until that week. For example, on 25 July 2020, we used all the data available
from 1 January 2020 to 25 July 2020 to fit the parameters of SIMLR. Then, we made the
predictions for the number of new infections during the weeks: 26 July 2020–1 August 2020
(one week in advance), 2 August 2020–8 August 2020 (two weeks in advance), 9 August
2020–15 August 2020 (three weeks in advance), and 16 August 2020–22 August 2020 (four
weeks in advance). After this, we then fitted the parameters with data up to 1 August 2020
and repeated the same process, for 38 more iterations, until we covered the entire range of
predictions.

We compared the performance of SIMLR with the SIR compartmental model with
time-varying parameters learned using Equation (6) but no other random variable (tf-v-SIR),
and with the simple model that forecasts that the number of cases one to four weeks in
advance is the “Same as the Last Observed Week” (SLOW). For the United States data, we
also compared the performance of SIMLR against the publicly available predictions at the
COVID-19 Forecast Hub, which are the predictions submitted to the Center for Disease
Control and Prevention (CDC) [31].

For training, we used the publicly available dataset OxCGRT [4], which contains
the policies implemented by different regions, as well as the time period over which
they were implemented. We limited our analysis to three policy decisions: Workplace

closing, Stay at home requirements, and Cancellation of public events in the case
of Canada. For the case of the United States we used Restrictions on gatherings,
Vaccination policy, and Cancellation of public events. For information about the
new number of reported cases and deaths, we used the publicly available COVID-19
Data Repository by the Center for Systems Science and Engineering at Johns Hopkins
University [1]. The code for reproducing the results presented here are discussed in
Appendix A.

3. Results

3.1. Data Preprocessing

Before inputting the time-series data to SIMLR, we performed some basic preprocessing
during the training phase, and exclusively on the training data. We evaluated of our models
by comparing its predictions with the results reported by the different health agencies –i.e.,
we did not fill in the data on the test sets:

1. The original data contains the cumulative number of reported infections/deaths on a
daily basis. We trivially transformed this time-series into the number of new daily
infections/deaths.
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2. We considered negative values from the new daily infections/deaths time-series as
missing, assuming these negative values arose due to inconsistencies during the data
reporting procedure.

3. We “filled-in” the missing values. When the number of new infections/deaths was
missing at day d, we assumed that the entry at d + 1 contained the cases for both d and
d + 1, and divided the number of new infections/deaths evenly between both days.

4. We eliminated outliers. For each day d, with number of reported new infections, ΔId,
we computed the mean (μd) and standard deviation (σd of the set ΔId−10, . . . , ΔId−1;
we then set ΔId := min{ΔId, μd + 4σd}.

5. We used the number of new infections and new deaths to produce the SIR vector
SIRt = [St, It, Rt].

In step 5, we assumed that everyone in a given region was susceptible at the start
time—i.e., S0 = N. At each new time point, we transfer the number of new infections
from S to I, and the number of new deaths and recovered from I to R. If the number of
new recovered people is not reported, we used the surveillance definition of recovered
used by Canadian health agencies. This definition is based on the assumption that a
recovered person is one who is not hospitalized and is 14 days past the day when they
tested positive [32,33]:

“Active and recovered status is a surveillance definition to try to understand the
number of active cases in the population. It is not related to clinical management
of cases. It is based on the assumption that a case is recovered 14 days after a
particular date...”

3.2. MAPE and MAE

Figure 6 shows the MAPE of the one- to four-week forecasts for the United States as
a country and the six biggest provinces of Canada. Note that SIMLR has a consistently
lower MAPE than tf-v-SIR and SLOW. Figure 7 shows a similar result in terms of MAE.
Tables 1 and 2 show the mean and standard deviations of the metrics corresponding to
the Figures 6 and 7. In addition Table 3 show the correlation coefficient between the time
series of the reported new infections every week and the predictions made by the different
models.

Figure 6. Comparison of SIMLR, SIR model with time-varying parameters, and SLOW. Table 1
contains the numerical information.
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Figure 7. Comparison of SIMLR, SIR model with time-varying parameters, and SLOW in terms of
MAE. To make the numbers comparable, the figures each show the US MAE values divided by 100.

Table 1. MAPE of the six biggest provinces in Canada and United States as a country, one- to
four-weeks in advance. The number in parenthesis is the standard deviation.

Week 1 Week 2

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 7 (8) 10 (10) 17 (9) 20 (14) 23 (16) 33 (17)

BC 11 (8) 12 (10) 11 (8) 18 (10) 22 (15) 20 (13)

MN 19 (14) 20 (13) 21 (15) 36 (24) 34 (22) 37 (24)

ON 14 (9) 14 (10) 16 (10) 28 (21) 29 (24) 29 (19)

QB 13 (11) 14 (11) 16 (11) 23 (20) 26 (30) 27 (19)

SK 14 (9) 15 (12) 18 (13) 28 (17) 31 (18) 33 (18)

US 9 (6) 11 (8) 13 (9) 16 (13) 19 (16) 24 (17)

Week 3 Week 4

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 34 (21) 33 (22) 48 (26) 46 (35) 47 (33) 63 (35)

BC 22 (14) 23 (16) 25 (18) 25 (20) 27 (21) 31 (20)

MN 49 (31) 48 (34) 50 (27) 60 (38) 63 (42) 62 (33)

ON 42 (37) 44 (40) 42 (30) 55 (51) 59 (58) 53 (40)

QB 32 (28) 34 (36) 37 (27) 38 (41) 51 (64) 45 (35)

SK 32 (23) 42 (32) 43 (22) 38 (24) 60 (50) 49 (26)

US 23 (23) 25 (26) 34 (28) 36 (38) 38 (41) 45 (40)
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Table 2. MAE of the six biggest provinces in Canada and United States as a country, one- to four-weeks
in advance. The number in parenthesis is the standard deviation. For the case of the US the number
of cases was divided by 100.

Week 1 Week 2

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 385 (559) 598 (905) 850 (724) 966 (971) 1245 (1430) 1651 (1258)

BC 339 (304) 397 (426) 361 (294) 594 (443) 661 (480) 648 (485)

MN 204 (227) 252 (271) 221 (224) 422 (371) 418 (379) 413 (346)

ON 1471 (1343) 1520 (1662) 1635 (1388) 3124 (2632) 3001 (2847) 3044 (2351)

QB 1229 (1443) 1265 (1354) 1410 (975) 2098 (2264) 2496 (3270) 2446 (1743)

SK 161 (161) 171 (203) 194 (174) 339 (294) 382 (324) 355 (264)

US* 841 (796) 1061 (1149) 1103 (913) 1361 (1398) 1729 (1979) 1933 (1580)

Week 3 Week 4

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 1719 (1381) 1601 (1558) 2378 (1649) 2261 (1863) 2385 (2087) 3074 (1858)

BC 731 (566) 777 (672) 853 (716) 835 (709) 883 (703) 1127 (892)

MN 609 (504) 591 (501) 602 (467) 749 (612) 775 (630) 753 (571)

ON 4357 (3672) 4511 (3983) 4266 (3053) 5702 (4427) 5910 (4988) 5447 (3417)

QB 2854 (2527) 3261 (4096) 3288 (2389) 3244 (3131) 4636 (6115) 3947 (2788)

SK 351 (320) 522 (500) 472 (306) 410 (287) 736 (733) 541 (348)

US* 1793 (2012) 2089 (2768) 2538 (2151) 2414 (2755) 2933 (4027) 3157 (2679)

Table 3. Pearson correlation coefficient between the ground truth and the predictions of the six
biggest provinces in Canada and United States as a country one- to four-weeks in advance.

Week 1 Week 2

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 0.99 0.98 0.96 0.94 0.95 0.84

BC 0.97 0.97 0.97 0.90 0.89 0.90

MN 0.96 0.96 0.95 0.85 0.87 0.86

ON 0.96 0.97 0.96 0.83 0.85 0.85

QB 0.97 0.97 0.96 0.93 0.89 0.86

SK 0.97 0.96 0.95 0.89 0.89 0.86

US 0.97 0.97 0.96 0.93 0.93 0.87

Week 3 Week 4

SIMLR tf-v-SIR SLOW SIMLR tf-v-SIR SLOW

AB 0.90 0.90 0.68 0.84 0.85 0.50

BC 0.84 0.83 0.83 0.80 0.81 0.75

MN 0.69 0.75 0.73 0.51 0.56 0.57

ON 0.67 0.68 0.71 0.51 0.53 0.58

QB 0.83 0.84 0.74 0.71 0.71 0.61

SK 0.82 0.81 0.78 0.73 0.69 0.71

US 0.88 0.90 0.77 0.80 0.84 0.65
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Figure 8c shows how our proposed SIMLR approach compares with the 18 models that
submitted predictions at the country level to the CDC during the same span of time (results
at the state level are included in the Appendix B). Note that SIMLR and the model LNQ-ens1
are the best performing models, with no statistically significant difference (p > 0.05 on a
paired t-test) with respect to MAPE.

Figure 8. (a) 1-week forecasts SIMLR, tf-v-SIR, and SLOW, for Alberta, Canada. (b) 2-week forecasts,
of the same models, for US data. (c) Comparison of SIMLR versus models submitted to the CDC (on
US data).

4. Discussion

Figure 8 illustrates the actual predictions of SIMLR one week in advance for the
province of Alberta, Canada; and two weeks in advance for the US as a country. These
two cases exemplify the behaviour of SIMLR. As noted above, there is a 2- to 4-week lag
after a policy changes, before we see the effects. This means the task of making 1-week
forecasts is relatively simple, as the relevant policy (at times t− 3 to t− 1) is fully observable.
This allows SIMLR to directly compute CTt+1, which can then choose whether to continue
using the SIR with time-varying parameters if no policy changed at time t − 1, t − 2, or
t − 3, or using the SLOW predictor if the policy changed.

Figure 8a shows a change in the trend of reported new cases at week 22. However, just
by looking at the evolution of number of new infections before week 22, there is no way to
predict this change, which is why tf-v-SIR predicts that the number of new infections will
continue growing. However, since SIMLR observed a change in the government policies at
week 20, it realized it could no longer rely on its estimation of parameters and so switched
to the SLOW model, which is why it was more accurate here. A similar behaviour occurs in
week 34, when the third wave of cases in Alberta started. Due to a relaxation in the policies
on week 31, SIMLR (at week 31) correctly predicted a change of trend around weeks 33–35.
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This behavior is not exclusive for the data of Alberta and it explains why the performance
of SIMLR is consistently higher than the baselines used for comparison in Figure 6 and
Figure 8c. A striking result is how hard it is to beat the simple SLOW model (COVIDhub-
baseline). Out of the 19 models considered here, only five (including SIMLR) do better than
this simple baseline when predicting three to four weeks ahead. This brings some insight
into the challenge of making accurate prediction in the medium term—probably due to the
need to predict, then use, policy change information. Tables A1–A4 in the Appendix B show
a comparison between our proposed SIMLR and tf-v-SIR against the models submitted to
the CDC for all the states in the US. SIMLR consistently ranks among the best performers,
with the advantage of being an interpretable model.

A deeper analysis of Tables A1–A4 shows that, in some states, the performance of
SIMLR degrades for longer range predictions. This occurs because we are monitoring only
the same three policies for all the states; however, different states might have implemented
different policies and reacted differently to them. For example, closing schools might be
a relevant policy in a state where there is an outbreak that involves children, but not as
relevant if most of the cases are in older people.

Tracking irrelevant policies might degrade the performance of SIMLR. If the status
of an irrelevant policy changes, then the dynamics of the disease will not be affected. The
model however, will assume that the change in the policy will cause a change of trend and
it will rely on the SLOW model, instead of the more accurate tf-v-SIR. Although SIMLR can
be adapted to track different policies, the policies that are relevant for a given state must be
given as an input. So while we think our overall approach applies in general, our specific
model (tracking these specific policies, etc.) might not perform accurate predictions across
all the regions. This is also a strength, in that it is trivial to adapt our specific model to track
the policies of interest within a given region.

Predictions at the country level are more complicated, since most of the time policies
are implemented at the state (or province) level instead of nationally. For making predictions
for an entire country, as well as predictions three or four weeks in advance, SIMLR first
predicts, then uses, the likelihood of observing a change in trend, at every week. In these
cases, the random variable CTt+1 no longer acts like a “switch”, but instead it mixes the
predictions of the tf-v-SIR and SLOW models, according to the probability of observing a
change in the trend.

Figure 8b shows that whenever there is a stable trend in the number of new reported
infections—which suggests there have been no recent policy changes—SIMLR relies on
the predictions of the tf-v-SIR model; however, as the number (and rate of change) of new
infections increases, so does the probability of observing a change in the policy. Therefore,
SIMLR starts giving more weight to the predictions of the SLOW model. Note this behavior
in the same figure during weeks 13–20.

One limitation of SIMLR is that it relies on conditional probabilities that are hard to
learn due to lack of data, which forced us to build them based on domain knowledge. If
this prior knowledge is inaccurate, then the predictions might be also misleading. Also,
different regions might have different “thresholds” for taking action. Despite this limitation,
SIMLR produced state-of-the-art results in both forecasting in the US as a country and at
the provincial level in Canada, as well as very competitive results in predictions at the state
level in the US.

Note that modelling SIMLR as a PGM does not imply causality. Although changes in
the observed policy influence changes in the trend of new reported cases, the opposite is also
true in reality. However, using probabilistic graphical models does makes it interpretable.
It also allows us to incorporate domain knowledge that compensates for the relatively
scarce data. SIMLR’s excellent performance—comparable to state-of-the-art systems in this
competitive task—show that it is possible to design interpretable machine learning models
without sacrificing performance.
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5. Conclusions

Forecasting the number of new COVID-19 infections is a very challenging task. Many
factors play a role on how the disease spreads, including the government policies and the
adherence of citizens to such policies. These elements are difficult to model mathematically;
however, the collected data (number of new infections and deaths, for example) are a
reflection of all those complex interactions.

Machine learning, on the other side, excels at learning patterns directly from the
data. Unfortunately, training many models from scratch can require a great deal of data,
especially to learn complex patterns, such as the evolution of a pandemic.

We proposed SIMLR, a methodology that uses machine learning (ML) techniques
to learn a model that can set, and adjust, the parameters of mathematical model for
epidemiology (SIR). SIMLR augments that SIR model by incorporating expert knowledge
in the form of a probabilistic graphical model. In this way, human experts can incorporate
their believes in the likelihood that a policy will change, and when. By combining both
components we substantially reduce the data that machine learning usually requires to
produce models that can make accurate predictions.

Importantly, besides providing state-of-the-art predictions in terms of MAPE in the
short and medium term, the resulting SIMLR model is interpretable and probabilistic.
The first means that we can justify the predictions given by the algorithm—e.g., “SIMLR
predicts 1000 cases for the next week due to a change in the government policies that will
decrease the transmission rate“. The second means we can produce probabilistic values—so
instead of predicting a single value, it can predict the entire probability distribution—e.g.,
the probability of 100 cases next week, or of 200 cases or of 1000, etc.

This paper demonstrated that a model that explicitly models and incorporates government
policy decisions can accurately produce one- to four-week forecasts of the number of COVID-19
infections. This involved showing that an SIR model with time-varying parameters is enough
to describe the complex dynamics of this pandemic, including the different waves of infections.
We expect that this approach will be useful not only for modelling COVID-19, but other
infectious diseases as well. We also hope that its interpretability will leads to its adoption by
researchers, and users, in epidemiology and other non-ML fields.

Author Contributions: Conceptualization, R.V., L.F. and R.G.; methodology, R.V., L.F. and R.G.;
software, R.V.; validation, R.V.; formal analysis, R.V., L.F. and R.G.; investigation, R.V., L.F. and R.G.;
resources, R.G.; data curation, R.V.; writing—original draft preparation, R.V.; writing—review and
editing, R.V., L.F. and R.G.; visualization, R.V.; supervision, R.G.; project administration, R.G.; funding
acquisition, R.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Alberta Machine Intelligence Institute.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the datasets used for this manuscript are publicly available. For
information about the new number of reported cases and deaths, we used the publicly available
COVID-19 Data Repository by the Center for Systems Science and Engineering at Johns Hopkins
University [1] https://github.com/CSSEGISandData/COVID-19, accessed on 1 September 2020.
For policy tracking we used the OxCGRT [4] https://github.com/OxCGRT/covid-policy-tracker,
accessed on 1 September 2020. For comparing our approach with other models we used the publicly
available predictions at the COVID-19 Forecast Hub [31] https://github.com/reichlab/covid19-
forecast-hub, accessed on 1 September 2020.

Acknowledgments: We thank the Google Cloud Research Credits program and Compute Canada for
providing computational support. We also benefited from our many meetings with our colleagues of
the greater University of Alberta Covid-Team.

Conflicts of Interest: The authors declare no conflict of interest.

20



Forecasting 2022, 4

Appendix A. Code Availability

The code for reproducing the main results of this manuscript are publicly available at:
https://github.com/rvegaml/SIMLR, accessed on 7 December 2021.

There are six jupyter notebooks on that repository. All the experiments were run using
an e2-standard-4 (4 vCPUs, 16 GB memory) computer in the Google Cloud Platform.

• CDC_models.ipynb: It contains the code used to compile the predictions of the models
submitted to the CDC. The dataset required to run this script was not included due to
the size, but it is publicly available.

• Comparison_CDC.ipynb: It contains the code to create the graphs that compare
SIMLR with the models submitted to the CDC. It uses the files created by the previous
notebook.

• Model_Canada_Provinces.ipynb: It contains the data to predict the number of cases 1
to 4 weeks in advance in the 6 biggest provinces in Canada.

• Model_US_Country.ipynb: Similar to the previous one, but for the predictions on US
at the country level.

• Model_US_States.ipynb: Similar to the previous one, but for the predictions on US at
the state level.

• SIR_Simulations.ipynb: Code to create the simulated SIR, and to show how a simple
SIR model with time-varying parameters can describe the complexities of the COVID-19
dynamics.

The provided repository in addition contains the in-house developed python library
MLib. This library contains custom code for inference in probabilistic graphical models.

Appendix B. Additional Tables

Table A1. Comparison of MAPE between different models across all the states in the US 1 week in
advance. The number in parenthesis represents the standard deviation of the MAPE.

1 Week

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 20(16) 19(16) 20(12) 21(15) 20(12) 1/16

Alaska 16(13) 18(15) 17(15) 18(10) 15(14) 4/15

Arizona 21(18) 25(19) 22(21) 18(16) 18(16) 3/16

Arkansas 20(18) 21(29) 24(29) 19(19) 19(19) 13/16

California 15(11) 20(15) 13(10) 13(10) 13(10) 1/16

Colorado 15(15) 19(11) 16(12) 13(8) 13(8) 2/16

Connecticut 17(12) 19(10) 17(11) 23(17) 17(11) 1/16

Delaware 20(14) 18(14) 19(13) 15(11) 15(11) 4/16

Washington DC 23(15) 19(13) 23(15) 15(10) 15(10) 8/16

Florida 12(11) 13(7) 12(8) 9(7) 9(7) 2/16

Georgia 16(12) 16(13) 16(14) 16(15) 16(15) 3/16

Hawaii 27(22) 23(15) 25(17) 18(13) 18(13) 13/15

Idaho 16(11) 16(10) 14(10) 14(10) 14(10) 2/16

Illinois 13(12) 17(10) 12(9) 12(8) 12(9) 1/17

Indiana 11(10) 17(10) 15(10) 13(11) 13(11) 3/17

Iowa 23(18) 21(15) 22(15) 20(22) 20(14) 5/16

Kansas 16(15) 20(15) 18(12) 21(14) 18(12) 1/16

Kentucky 16(11) 16(8) 15(9) 12(9) 12(9) 2/16

Louisiana 24(17) 23(22) 24(22) 21(19) 21(19) 3/16

Maine 17(15) 19(15) 18(15) 14(11) 14(11) 2/16
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Table A1. Cont.

1 Week

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Maryland 14(12) 15(12) 13(12) 11(7) 11(7) 2/16

Massachusetts 15(10) 16(11) 13(9) 14(10) 13(9) 1/16

Michigan 15(10) 20(10) 16(11) 19(11) 16(11) 1/16

Minnesota 19(17) 21(16) 20(14) 15(12) 15(12) 4/16

Mississippi 19(16) 17(16) 19(15) 16(12) 16(12) 5/16

Missouri 20(14) 19(13) 21(15) 12(38) 11(36) 14/16

Montana 19(17) 21(12) 19(15) 35(104) 18(13) 2/16

Nebraska 20(18) 20(16) 20(15) 18(13) 18(13) 5/16

Nevada 18(17) 20(15) 20(15) 15(11) 15(11) 5/16

New Hampshire 18(14) 18(13) 16(14) 17(11) 16(14) 1/16

New Jersey 11(10) 13(10) 11(9) 14(10) 11(9) 1/16

New Mexico 15(10) 20(12) 15(11) 15(11) 15(11) 2/16

New York 12(9) 14(10) 13(8) 11(9) 11(9) 2/16

North Carolina 12(10) 14(10) 13(9) 12(9) 12(9) 2/16

North Dakota 22(22) 23(24) 23(23) 16(13) 16(13) 8/16

Ohio 12(9) 16(10) 13(10) 11(8) 11(8) 2/16

Oklahoma 22(23) 24(25) 23(24) 15(11) 15(11) 13/16

Oregon 19(13) 18(13) 18(13) 13(10) 13(10) 4/16

Pennsylvania 13(11) 15(12) 15(11) 11(8) 11(8) 3/17

Rhode Island 14(11) 17(11) 13(11) 23(15) 13(11) 1/16

South Carolina 16(13) 16(11) 16(13) 12(8) 12(8) 7/16

South Dakota 18(12) 17(14) 17(11) 15(10) 15(10) 2/16

Tennessee 18(15) 19(15) 22(16) 18(12) 18(13) 12/16

Texas 24(22) 23(28) 25(29) 20(18) 20(21) 7/16

Utah 14(14) 17(11) 16(13) 11(10) 11(10) 7/16

Vermont 25(20) 20(15) 21(14) 21(15) 21(14) 1/16

Table A2. Comparison of MAPE between different models across all the states in the US 2 weeks in
advance. The number in parenthesis represents the standard deviation of the MAPE.

2 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 32(27) 32(30) 32(27) 30(19) 30(24) 3/16

Alaska 30(32) 30(25) 27(25) 28(22) 27(24) 2/15

Arizona 41(32) 46(37) 38(36) 32(28) 32(28) 4/16

Arkansas 39(56) 40(61) 45(61) 32(43) 30(28) 14/16

California 22(20) 41(31) 24(21) 25(19) 24(21) 1/16

Colorado 31(28) 30(19) 33(26) 24(19) 24(19) 11/16

Connecticut 27(25) 29(18) 29(26) 33(18) 29(26) 1/16

Delaware 26(19) 26(19) 26(19) 20(16) 20(16) 5/16

Washington DC 34(22) 26(16) 34(23) 23(13) 23(13) 8/16

Florida 20(14) 22(11) 20(13) 14(10) 14(10) 3/16

Georgia 25(18) 31(19) 27(19) 22(20) 22(20) 4/16

Hawaii 41(38) 32(30) 39(36) 29(23) 28(23) 7/15
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Table A2. Cont.

2 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Idaho 25(24) 27(20) 24(23) 24(16) 24(23) 1/16

Illinois 23(18) 31(19) 27(19) 23(16) 23(16) 3/17

Indiana 27(21) 31(23) 31(23) 24(22) 23(16) 13/17

Iowa 36(45) 33(21) 33(26) 34(32) 31(24) 3/16

Kansas 32(28) 35(29) 33(30) 24(17) 24(17) 5/16

Kentucky 26(22) 28(14) 25(22) 19(15) 19(15) 7/16

Louisiana 31(35) 31(39) 31(39) 29(24) 29(24) 3/16

Maine 34(28) 31(27) 34(30) 23(18) 23(18) 6/16

Maryland 24(18) 26(19) 23(18) 22(16) 22(16) 3/16

Massachusetts 26(18) 28(19) 25(19) 24(16) 24(16) 2/16

Michigan 33(22) 35(19) 33(20) 31(16) 27(16) 4/16

Minnesota 40(34) 39(32) 41(35) 28(23) 28(23) 10/16

Mississippi 26(23) 32(25) 31(24) 22(18) 22(18) 11/16

Missouri 32(30) 29(26) 31(27) 18(41) 13(38) 14/16

Montana 34(29) 35(20) 36(28) 30(25) 26(18) 13/16

Nebraska 29(22) 32(20) 30(20) 27(14) 27(14) 3/16

Nevada 31(22) 37(25) 33(26) 23(18) 23(18) 5/16

New Hampshire 29(23) 32(18) 30(24) 28(16) 28(16) 2/16

New Jersey 19(14) 23(13) 19(14) 25(13) 19(14) 1/16

New Mexico 29(23) 36(20) 30(24) 25(21) 25(21) 4/16

New York 24(18) 24(15) 24(18) 21(13) 21(13) 4/16

North Carolina 22(14) 26(18) 25(18) 17(14) 17(14) 6/16

North Dakota 42(39) 41(42) 48(44) 32(24) 31(20) 13/16

Ohio 25(22) 30(19) 29(24) 20(15) 20(15) 10/16

Oklahoma 34(30) 34(32) 37(31) 25(21) 25(21) 13/16

Oregon 29(24) 28(18) 30(24) 18(15) 18(15) 10/16

Pennsylvania 29(19) 27(16) 31(19) 19(14) 19(14) 9/17

Rhode Island 21(17) 29(19) 24(17) 30(19) 24(17) 1/16

South Carolina 27(19) 26(20) 27(21) 18(13) 18(13) 13/16

South Dakota 30(26) 30(28) 32(25) 27(20) 27(20) 4/16

Tennessee 30(24) 29(26) 34(27) 24(19) 24(19) 12/16

Texas 38(49) 35(52) 38(51) 26(26) 25(34) 8/16

Utah 27(29) 30(20) 32(27) 20(19) 20(19) 10/16

Vermont 29(24) 26(22) 28(25) 29(25) 27(23) 3/16

Table A3. Comparison of MAPE between different models across all the states in the US 3 weeks in
advance. The number in parenthesis represents the standard deviation of the MAPE.

3 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 40(43) 42(41) 34(36) 34(27) 34(27) 2/16

Alaska 36(41) 37(35) 32(35) 39(36) 32(35) 1/15

Arizona 49(44) 70(59) 59(60) 42(35) 42(35) 6/16

Arkansas 49(52) 54(69) 53(70) 40(38) 37(26) 12/16

California 41(49) 67(53) 48(50) 34(29) 34(29) 6/16
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Table A3. Cont.

3 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Colorado 50(54) 39(26) 39(27) 31(27) 31(27) 5/16

Connecticut 38(42) 39(24) 40(35) 39(21) 39(21) 2/16

Delaware 39(36) 34(28) 39(35) 30(23) 30(23) 5/16

Washington DC 48(44) 32(23) 35(33) 26(20) 26(20) 5/16

Florida 33(26) 34(20) 29(20) 19(14) 19(14) 3/16

Georgia 41(27) 47(26) 39(27) 29(22) 29(22) 5/16

Hawaii 64(79) 41(38) 54(61) 34(28) 34(28) 6/15

Idaho 38(39) 40(31) 35(35) 34(26) 33(25) 4/16

Illinois 38(29) 40(31) 40(28) 33(26) 32(21) 5/17

Indiana 40(33) 44(38) 42(34) 35(33) 32(23) 11/17

Iowa 45(48) 43(34) 42(33) 47(41) 41(38) 2/16

Kansas 47(47) 51(46) 45(43) 31(20) 31(20) 5/16

Kentucky 38(39) 38(25) 31(23) 25(18) 25(18) 5/16

Louisiana 36(41) 48(58) 46(58) 38(28) 38(28) 4/16

Maine 50(39) 43(41) 46(39) 33(27) 33(27) 5/16

Maryland 34(36) 36(33) 37(37) 32(25) 32(25) 5/16

Massachusetts 38(34) 40(28) 38(30) 33(23) 33(23) 2/16

Michigan 49(35) 48(27) 45(24) 43(22) 39(24) 3/16

Minnesota 55(54) 51(51) 51(50) 40(35) 40(37) 6/16

Mississippi 43(38) 47(41) 46(38) 29(23) 29(23) 12/16

Missouri 36(29) 39(39) 39(39) 23(47) 19(43) 12/16

Montana 51(46) 42(32) 40(34) 40(31) 34(21) 7/16

Nebraska 42(33) 44(33) 43(33) 37(26) 37(26) 4/16

Nevada 41(35) 55(42) 47(44) 34(25) 34(25) 6/16

New Hampshire 43(38) 42(24) 38(22) 34(21) 34(21) 3/16

New Jersey 27(24) 31(20) 25(17) 34(16) 25(17) 1/16

New Mexico 46(47) 52(29) 42(32) 33(32) 33(32) 8/16

New York 37(35) 33(18) 30(28) 29(17) 29(17) 2/16

North Carolina 32(21) 36(28) 32(24) 22(15) 22(15) 4/16

North Dakota 61(67) 61(54) 66(67) 50(36) 45(28) 12/16

Ohio 43(42) 41(31) 38(31) 28(19) 28(19) 5/16

Oklahoma 51(50) 46(47) 49(48) 33(22) 33(22) 12/16

Oregon 47(49) 39(23) 35(26) 28(21) 28(21) 2/16

Pennsylvania 46(40) 37(23) 38(23) 27(17) 27(17) 5/17

Rhode Island 27(26) 37(31) 32(28) 39(21) 32(28) 1/16

South Carolina 36(25) 35(28) 33(28) 23(15) 23(15) 3/16

South Dakota 44(41) 47(40) 43(40) 40(29) 40(29) 3/16

Tennessee 34(29) 40(35) 38(37) 31(25) 31(25) 3/16

Texas 52(54) 48(55) 44(55) 31(27) 31(27) 6/16

Utah 42(44) 43(30) 46(33) 32(24) 32(24) 10/16

Vermont 44(29) 37(21) 41(28) 39(24) 38(24) 3/16
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Table A4. Comparison of MAPE between different models across all the states in the US 4 weeks in
advance. The number in parenthesis represents the standard deviation of the MAPE.

4 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Alabama 54(48) 56(52) 51(46) 40(27) 40(27) 3/16

Alaska 58(66) 50(36) 47(38) 49(32) 46(36) 2/15

Arizona 70(80) 104(103) 93(102) 65(68) 61(64) 7/16

Arkansas 59(56) 68(86) 66(87) 46(53) 45(49) 8/16

California 64(87) 95(83) 81(84) 50(47) 50(47) 7/16

Colorado 73(90) 52(26) 52(33) 41(36) 39(24) 6/16

Connecticut 60(65) 46(34) 58(49) 44(23) 44(23) 6/16

Delaware 44(47) 39(37) 46(41) 34(34) 34(34) 5/16

Washington DC 65(64) 37(30) 46(48) 35(34) 35(34) 5/16

Florida 47(46) 52(42) 47(45) 27(26) 27(26) 5/16

Georgia 48(40) 64(35) 59(33) 38(32) 38(32) 7/16

Hawaii 102(153) 55(43) 77(98) 45(43) 45(43) 6/15

Idaho 55(53) 54(41) 53(44) 41(40) 41(40) 7/16

Illinois 53(38) 51(43) 54(40) 43(37) 39(27) 5/17

Indiana 56(51) 61(55) 56(54) 45(49) 44(33) 6/17

Iowa 61(72) 55(46) 53(46) 55(56) 50(45) 2/16

Kansas 66(68) 68(69) 59(58) 43(26) 43(26) 5/16

Kentucky 50(49) 47(39) 43(36) 34(23) 34(23) 5/16

Louisiana 48(49) 68(66) 64(67) 44(35) 44(35) 7/16

Maine 69(64) 56(55) 62(59) 43(40) 43(40) 6/16

Maryland 51(71) 45(45) 53(61) 42(43) 42(43) 6/16

Massachusetts 49(52) 50(40) 47(45) 45(38) 45(38) 2/16

Michigan 62(67) 56(36) 51(37) 53(32) 51(44) 2/16

Minnesota 74(87) 65(61) 64(62) 55(51) 47(41) 5/16

Mississippi 52(49) 62(52) 59(51) 38(43) 38(43) 6/16

Missouri 48(45) 54(57) 54(57) 32(47) 28(44) 9/16

Montana 70(72) 53(40) 55(39) 52(48) 42(36) 9/16

Nebraska 53(43) 57(46) 56(45) 47(31) 47(35) 5/16

Nevada 67(54) 77(61) 71(65) 41(43) 41(43) 8/16

New Hampshire 52(50) 50(30) 43(33) 40(25) 40(25) 2/16

New Jersey 45(62) 36(24) 40(54) 43(24) 38(23) 3/16

New Mexico 69(80) 73(39) 65(48) 46(48) 45(29) 7/16

New York 48(43) 41(22) 39(31) 37(25) 33(22) 4/16

North Carolina 41(33) 48(41) 45(36) 29(22) 29(22) 6/16

North Dakota 79(112) 83(77) 94(93) 72(63) 60(53) 9/16

Ohio 60(58) 54(44) 52(44) 35(31) 35(31) 6/16

Oklahoma 81(92) 61(67) 70(81) 42(32) 42(40) 9/16

Oregon 63(65) 49(33) 43(35) 39(27) 39(27) 2/16

Pennsylvania 63(54) 47(29) 47(30) 35(27) 35(27) 5/17

Rhode Island 37(39) 46(45) 42(43) 44(27) 42(43) 1/16

South Carolina 45(31) 49(37) 49(36) 28(21) 28(21) 8/16

South Dakota 51(47) 64(46) 62(45) 54(40) 52(30) 9/16

Tennessee 48(48) 58(49) 58(50) 43(31) 43(31) 5/16
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Table A4. Cont.

4 Weeks

State tf-v-SIR SLOW SIMLR LNQ-ens1 Best Rank

Texas 63(62) 59(67) 58(67) 37(34) 37(34) 6/16

Utah 55(70) 56(44) 58(50) 40(36) 40(36) 7/16

Vermont 56(67) 41(26) 49(55) 45(27) 41(26) 4/16
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Abstract: Despite the large efforts made by the ocean modeling community, such as the GODAE
(Global Ocean Data Assimilation Experiment), which started in 1997 and was renamed as Ocean-
Predict in 2019, the prediction of ocean currents has remained a challenge until the present day—
particularly in ocean regions that are characterized by rapid changes in their circulation due to
changes in atmospheric forcing or due to the release of available potential energy through the
development of instabilities. Ocean numerical models’ useful forecast window is no longer than
two days over a given area with the best initialization possible. Predictions quickly diverge from
the observational field throughout the water and become unreliable, despite the fact that they can
simulate the observed dynamics through other variables such as temperature, salinity and sea surface
height. Numerical methods such as harmonic analysis are used to predict both short- and long-term
tidal currents with significant accuracy. However, they are limited to the areas where the tide was
measured. In this study, a new approach to ocean current prediction based on deep learning is pro-
posed. This method is evaluated on the measured energetic currents of the Gulf of Mexico circulation
dominated by the Loop Current (LC) at multiple spatial and temporal scales. The approach taken
herein consists of dividing the velocity tensor into planes perpendicular to each of the three Cartesian
coordinate system directions. A Long Short-Term Memory Recurrent Neural Network, which is best
suited to handling long-term dependencies in the data, was thus used to predict the evolution of the
velocity field in each plane, along each of the three directions. The predicted tensors, made of the
planes perpendicular to each Cartesian direction, revealed that the model’s prediction skills were
best for the flow field in the planes perpendicular to the direction of prediction. Furthermore, the
fusion of all three predicted tensors significantly increased the overall skills of the flow prediction
over the individual model’s predictions. The useful forecast period of this new model was greater
than 4 days with a root mean square error less than 0.05 cm·s−1 and a correlation coefficient of 0.6.

Keywords: deep learning; Loop Current; ocean current forecasting; LSTM; ocean measurements

1. Introduction

Sustained large efforts in the ocean modeling community, such as the GODAE (Global
Ocean Data Assimilation Experiment), which started in 1997 [1,2] and was renamed as
OceanPredict in 2019 [3], have been made to promote and coordinate the approach to
ocean forecasting among the international community. This large effort has seen many
achievements in terms of predictive capabilities of ocean features temperature, salinity and
sea surface height (SSH) and they are evaluated through a standard set of metrics [4]. How-
ever, the prediction of ocean currents has remained a challenge to this day—particularly in
ocean regions that are characterized by rapid changes in their circulation due to changes
in atmospheric forcing or due to the release of available potential energy through the
development of dynamical instabilities. Predictions of ocean currents in the California
current system can be found in [5], as well as other studies. This paper shows a correlation
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coefficient less than 0.3 after two days with a root mean square error (RMSE) of 7 cm·s−1

for the vertically integrated velocity component. Using mooring measurements in the
same oceanographic region as that studied in Chao et al. [5], Shulman and Paduan [6]
showed a significant decrease in the correlation coefficient and RMSE with depth between
the observation and the model analyses while assimilating the 33 h filtered high-frequency
(HF) radar surface current data. Ocean numerical models’ useful forecast window is no
longer than two days over a given area with the best initialization possible, as shown by [7]
in a dynamically active current system, such as the Loop Current (LC) in the Gulf of Mexico
(GoM). The RMSE was 10 cm·s−1 and the correlation coefficient was 0.63 for the daily
surface averaged predicted current. Ocean numerical model predictions quickly diverge
from the observational field throughout the water and become unreliable, despite the fact
that they can simulate the observed dynamics through other variables such as temperature,
salinity and SSH. Numerical methods such as harmonic analysis are used to predict both
short- and long-term tidal currents with significant accuracy. However, they are limited to
the areas where the tide was measured.

Today’s full-water column predictions primarily rely on the use of finite-difference,
finite-volume and finite-element methods to solve the primitive equation of motion in
numerical models used to simulate ocean dynamics. The outputs of these models consist
of the temporal prediction of three-dimensional fields of ocean state variables including
both components of the horizontal velocity field, namely u and v along the x and y axes of
the Cartesian coordinate system, respectively. In this study, we evaluate the application of
a deep learning (DL—[8]) model to predict the three-dimensional velocity field from in-situ
data. We demonstrate that the water column current velocity patterns can be learned by a
DL model, which can then be used to predict the layered structure of the flow field. To this
end, we show that the DL model is capable of accurately predicting the water column
velocities more than four days in advance, doubling the current state of the art prediction
window for in-situ currents. In this study, we propose a Recurrent Neural Network (RNN)
Long Short-Term Memory (LSTM) model [9] to perform predictions of ocean currents’
speed and direction, as described in Section 2. LSTM networks have outperformed fully
connected neural networks and other machine learning techniques in natural language
processing [10,11] that has many similarities with ocean current predictions, as shown by
Immas et al. [12]. RNNs have been the state-of-the-art method in modeling time series
data for the last decade. In addition, this type of network has seen an increase in real-
life applications, including but not limited to aquaculture [13], wind and solar energy
resources management [14], bio science and medical applications [15] and also in industrial
applications [16].

In a recent study by Wang et al. [17], an LSTM network was used to demonstrate
the feasibility of medium-term (3 months) predictions of the GoM’s SSH in the LC region.
The LSTM model was trained and tested with 18 years of analyzed daily SSH—“analyzed”
indicates that the model calculated SSH was corrected with in-situ and remote sensing
observations—from the Hybrid Coordinate Ocean Model (HYCOM)-GoM 1/25◦ horizontal
resolution [18]. The Loop Current (LC) and the mesoscale eddies associated with its
nonlinear dynamics are the major drivers of the upper 1000 m water column circulation
in the GoM [19]. The nonlinear dynamics of the LC is dominated by the shedding of
anticyclonic eddies called Loop Current Eddies (LCE) at irregular time intervals [20–22].
The formation of the latter is primarily caused by the growth of baroclinic instability, which
is associated with the formation of deep meanders and eddies [19,23,24]. Using metrics
set in the literature for LC forecasting, the deep learning model predicted; overall, the LC
system SSH frontal distance from reference points within 40 km nine weeks in advance.
Furthermore, the model also predicted the final separation of two consecutive LC eddies
through the SSH evolution, namely the eddies Cameron and Darwin 8 and 12 weeks in
advance, respectively, an improvement over the 5–6-week useful forecast range of state of
the art numerical models for the LC dynamics [25].
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In this study, the LSTM model is applied to the prediction of water column velocity
three-dimensional tensors. The prediction model is implemented on in-situ full water
column current measurements collected in the LC region in the GoM between 2009 and
2011. Section 2 describes the measurements and their four-dimensional structure as well
as the metrics used to assess the model’s skills. Section 3 presents the LTSM prediction
model and its implementation on the velocity data. Section 4 presents the model results
and concluding remarks are given in Section 5.

2. Method

2.1. Dataset

Long term times series of 3-dimensional velocity flow fields in the LC region are
readily available from various ocean numerical model consortia that provide free on-
line access. Such consortia include HYCOM (https://www.hycom.org (accessed on 12
September 2021) [26]), Navy Coastal Ocean Model (NCOM) (https://www.ncdc.noaa.gov/
data-access/model-data/model-datasets/navoceano-ncom-reg (accessed on 12 September
2021) [27]), or ECCO (http://www.ecco.ucsd.edu (accessed on 12 September 2021) [28]) for
example. In comparison, long term in-situ measurements of the LC system water column
are scarce.

A comprehensive observational study of the LC in the eastern GOM, including 9 tall
moorings and 7 short moorings, an array of 25 pressure-equipped inverted echo sounders
(PIES), and remote sensing, measured the water column velocity for 2.5 years, beginning
in April 2009 [29]. This array was located to cover both the east and west sides of the
LC between the West Florida Slope and the Mississippi Fan, and was also centered over
the zone where LCEs typically separate from the LC. The horizontal separation between
moorings was around 50–80 km and between the PIES sensors was around 40–50 km.
These recorded data were used to construct the measurement-based water velocity matrix
used in this study.

To create such a matrix, these observations were processed using the optimal inter-
polation, as described in [30,31]. The horizontal resolution of the resulting data array
was roughly based on the correlation length scales of recorded data, with the geostrophic
velocity profiles based on the gravest empirical method (GEM) [30,32]. The resulting
measurement-based water velocity matrix comprised 50 depth levels down to 3000 m
below the surface, and extended horizontally between 88.5◦ W to 85◦ W and 24.65◦ N to
27◦ N with a horizontal resolution between 30 and 50 km (Figure 1). However, in this
study, only the first 500 m was selected, corresponding to 26 vertical layers. The time
resolution for the velocity data was 12 h, which corresponds to 1810 data frames for each
u and v velocity component. The final matrix dimensions were of 1810 × 26 × 29 × 36.
The current velocity measurements used in this study encompass the period from May
2009 to November 2011, during which three LCEs, namely Ekman, Franklin, and Hadal,
were formed.

Figure 1. Loop Current SSH from HYCOM [33] (m) during eddy Ekman separation on 1 July 2009.
The red rectangle shows the array boundaries.
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2.2. 4-Dimensional Tensor Slicing

The time series of the 3-dimensional gridded velocity forms a tensor whose dimensions
must be reduced to one so it can be processed by the DL model. At each time step, a gridded
velocity cube can be sliced in layers perpendicular to the three Cartesian coordinate axes
(Figure 2). Thus, in the vertical direction (z-axis), the volume is split in horizontal layers
corresponding to each depth level of the velocity data. Each layer becomes its own time
series and can be reduced to a single dimension by EOF decomposition, as was carried
out for the SSH field in [17]. For each resulting layer and velocity component, a DL model,
trained on its own layer, is used to predict the evolution of that particular layer only.
A similar approach can be used for layers perpendicular to the x and y axes and located
at each grid point of the respective axis, as shown in Figure 2. As errors are specific
to each layer and because the tensor evolves differently in each of the directions, it is
expected that the models’ skill will vary with the direction of prediction, as explained in
the following section.

Figure 2. Velocity plane field extractions perpendicular to each of the three Cartesian coordinate
directions at each depth (z) in the vertical direction and at each grid point of the x (zonal direction)
and y-axis (meridional direction), respectively.

2.3. Volume Slicing Induced Errors

Most numerical model solutions are obtained from discretized partial differential equa-
tions solved on one or more embedded volumetric grid, such as the Arakawa C grid [34].
To solve these equations, boundary conditions are provided at the grid boundaries, where
virtual grid points are added for computational purposes. Specific boundary conditions
allow the radiation of features from within the grid to outside of it without losing the
integrity of the signal inside the grid during the outing process. This process can be tracked
in all three directions. In the case of a deep learning model, only features contained within
the grid are available to the model. There is no influence from the boundaries, which serve
to constrain the solution within the model and limit the model solution’s drift in numerical
models. Therefore, DL model forecast errors in individual layers may grow significantly
over time and ultimately change the integrity of the signal, as shown in Figure 3. This is
particularly relevant in the case of perturbation simulations, where the phase of the signal
in different layers could be changed by the errors in the individual layered predictions.
Figure 3 provides an example of what it would look like in each of the planes normal to
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each direction. Starting with the z-planes (top view), a slight phase shift in the vertical
direction will lead to the removal of the red signal in the x-plane in the region outlined by
the green shaded area and also in the y-plane the furthest on the outside. As each forecast is
sequentially reused for the next, the errors become part of the learning base. Additionally,
because horizontal motions are much larger than vertical motions in the ocean, the DL
model prediction skills will differ according to the direction of layers used for prediction.

Figure 3. Layered prediction-induced errors. (a) Top view, normal to the z-axis. (b) Lateral view
normal to the y-axis. (c) Lateral view normal to the x-axis. The green shaded area highlights the
focus area where errors are displayed. In each subplot, the left (right) image shows the observed
(predicted) field. Each color corresponds to a different vertical layer as indicated, layer 1(3) being at
the top (bottom).

To evaluate the layered prediction errors, the metrics set by GODAE OceanPredict [4]
were applied. They identify two types of errors, namely the single point error and the
structural error. These errors are quantified by the calculation of the Peak Signal to Noise
Ratio (PSNR) including RMSE and correlation coefficient (CC) (see [17] for definitions),
and Structural Similarity (SSIM), respectively. The PSNR is based on the mean square error
(MSE) [35]. Given an observed plane field Ob of size m, n and its prediction Pr, MSE is
defined as:

MSE =
1

m n

m−1

∑
i=0

n−1

∑
j=0

[Ob(i, j)− Pr(i, j)]2 (1)

The PSNR (in dB) is defined as:

PSNR = 10 · log10(
Peak2

MSE
) (2)

where Peak is the maximum value of all data points in both Ob and Pr. In image processing,
PSNR is primarily used to assess the quality of an image reconstruction. The PSNR between
two images is calculated in decibels. To compare image reconstruction quality, both the
mean square error (MSE) and peak signal-to-noise ratio (PSNR) are often utilized.

The SSIM index can be calculated in sub-regions of each layer. It is a measure of
similarity between two patterns [35].

SSIM(Ob, Pr) =
(2μObμPr + c1)(2σObPr + c2)

(μ2
Ob + μ2

Pr + c1)(σ
2
Ob + σ2

Pr + c2)
(3)

where:

• μOb and σ2
Ob are the mean and variance of Ob, respectively.

• μPr and σ2
Pr are the mean and the variance of Pr, respectively.

• σObPr is the covariance of Ob and Pr.
• c1 = (k1L)2, c2 = (k2L)2 are used to stabilize the ratio with a weak denominator.
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• L = 2#bits per gridcell − 1 is the dynamic range of the gridded velocity values.
• k1 = 0.01 and k2 = 0.03 are the default values of the two scale factors.

3. Deep Learning Prediction Model

Unlike conventional numerical models which use a set of a dynamical equations to
describe a physical system, data-driven deep learning methods rely on neural networks to
model physical systems. To achieve this, we first reduced the temporal matrix of each layer
to one dimension by applying EOFs and then implemented an LSTM network to model
the velocity field in each layer, as shown in Figure 4.

Figure 4. Single layer forecasting model flow chart.

3.1. Empirical Orthogonal Functions

EOF is a major analysis tool in oceanographic, geophysical and meteorological applica-
tions [36–38]. EOFs are used to reduce data dimensions by separating spatial components
from temporal components. The principle of this decomposition is to extract the most
dominant information with fewer dimensions [39]. It provides a dense description of
spatial data and temporal variability in terms of an orthogonal basis (eigenvectors). Each
associated eigenvalue provides a measure of the fraction of the total variance under the EOF
mode. This decomposition provides a statistical description of any dynamical processes by
projecting them onto empirical normal modes, rather than the physical or natural modes of
the system, which are process specific and therefore unable to encompass all the processes
involved in the dynamics of the system being predicted in this study. The projection of the
data onto EOF modes is called principal component (PC), which indicates the temporal
variations of the variance of it associated spatial pattern [37]. EOF decomposition is carried
out by Singular Value Decomposition (SVD), which is written as follows:

Q = UDWT (4)

where Q is an n × p matrix and D is an n × p rectangular diagonal matrix of non-negative
numbers (the singular values of Q). U is an n × n matrix, the columns of which are
orthogonal unit vectors of length n, called the left singular vectors of Q, and W is a p × p
matrix whose columns are orthogonal unit vectors of length p and called the right singular
vectors of Q. In addition, UD is the time-dependent principal components (PCs), and WT

is the spatial pattern matrix whose columns are so-called EOF modes.

3.2. Deep Learning Model: Long Short-Term Memory Network

The deep learning model selected for the prediction model is a type of Recurrent
Neural Network (RNN). RNNs are well suited for time sequence prediction, and work by
feeding the output of each neuron, along with a new input, back into itself, forming loops
within its architecture [40]. In an RNN network, a simple RNN neuron or hidden unit’s
output behavior can be modeled by Equation (5), where xn and sn are the input and state
at time n, respectively. Furthermore, Wgi and Wgs represent the input and state (recurrence)
weights and f an activation function. Note that the output can be obtained from the state
whenever it is needed.

sn = f (Wgi xn−1 + Wgs sn−1) (5)

However, the caveat of the RNN given in Equation (5) is its gradient vanishing problem
or memory loss. This occurs because RNNs are typically trained with a stochastic gradient
descent algorithm, and gradients may vanish for a multi-layer RNN due to the chain rule
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in differentiation. LSTM neural networks were designed to solve this problem [41], in
which a memory unit mn was added to avoid the disappearance of gradients. Let α and
β be constants and ⊕ denote an element-wise multiplication; then, the memory unit is
updated by the following rule:

mn = α ⊕ mn−1 + β ⊕ f (Wgi xn−1 + Wgs sn−1) (6)

The state is then related to the memory unit with an activation function. In this way,
derivatives will not vanish due to the additive relationship described in Equation (6).

3.3. Prediction Procedure

The LSTM network used in this study was previously adopted for the prediction of
SSH time series in [17,42]. In this study, two identical networks were designed to model
and predict the velocity components, u and v, respectively. After the EOF decomposition
of each velocity component, the PCs were used to train the LSTM model, which in turn
was used to predict future PCs. At the beginning of the process, the system was initialized
using random weights and then run through all the training data in chronological order,
each time adjusting the weights through the gradient descent of the loss function. Each
run through the entire training dataset is called an epoch and this step allows the model to
optimize its weights (Equation (6)), at which point the model can predict any state learned
from the data without the data at any point in time in hindcast mode.

The MATLAB Neural Network Toolbox was used to implement the LSTM network.
The Adaptive Moment estimation [43] (Adam) optimization rather than the Stochastic
Gradient Descent with Momentum [44] (SGDM) algorithm was used to update network
weights iteratively during the training phase due to the improved performance with the
former. The hyperparameters of the prediction model were manually tuned to optimize the
performance of the prediction model. The resulting hyperparameters were as follows: mini-
batch size = 128, initial learning rate = 0.03, number of hidden nodes = 100, and maximum
number of Epochs = 500. Only one LSTM layer was used because the overall performance
of the model, including the training and prediction processing time, as well as prediction
skills, degraded when more layers were added. Training and prediction were carried out
on a single NVIDIA GPU, TITAN X (Pascal compatibility) with CUDA toolkit Version 11
with a memory of 12GB. The training times for a single layer and for all layers for each
direction are provided in Table 1. Once trained, at each prediction time step, the LSTM
updates its state in accordance to its own prediction. This allows the LSTM to continue
predicting based on both the training data and future predictions.

Table 1. Training time in seconds for a single and all layers in each directional model.

Training Direction Single Layer All Layers

Z direction 25.22 s 649.43 s
Y direction 26.32 s 722.8 s
X direction 25.16 s 652.15 s

The prediction procedure can be summarized as follows: (1) The current velocity
components’ time series from time t1 to tn are reduced to their respective PCs by EOF
decomposition. (2) The PCs are used to train the LSTM model sequentially. (3) All the PCs
up to time tn are then used to predict the PCs of the velocity field at time tn + 1. For the next
prediction at time tn + 2, the predicted PCs at tn + 1 are used to retrain the LSTM model
together with the PCs corresponding to time t1 to tn, and this is repeated for all subsequent
forecasts. In addition, new data can be added at any time to the training dataset, which
will then be used to retrain the LSTM model.
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3.4. Layered Prediction Model Approach

As previously described, the water velocity dataset is a time series consisting of
two orthogonal components u and v, each of which known as a four-dimensional tensor.
To reduce the computational complexity, at each instant, the corresponding velocity cube (u
or v) is partitioned into a number of layers (or planes). For each layer, a prediction module
consisting of EOF and LSTM is trained and then used to predict the velocity field of that
particular layer. Collectively, these prediction modules form a layered prediction model.
Layered models are implemented for each spatial direction. As a consequence, they are
referred to as prediction models X (29 layers), Y (36 layers), and Z (26 layers), respectively.

4. Layered Prediction Experiments

In all three directions, each layered model was trained using 90% of the available
time series and preserving the remaining for prediction validation. Thus, the training used
1629 samples (814.5 days) from 2 March 2009 to 25 May 2011, while the testing period
started from 26 May 2011 to 23 August 2011 (90.5 days). The training and testing periods
are illustrated in Figure 5. The model prediction period was set to 7 days, which was also
the length of the sliding prediction window. This prediction period was chosen in response
to the predictive skill goal set for the LC current speed by the United States’ National
Academies of Sciences, Engineering, and Medicine (NASEM) [45].

Figure 5. Data partitioning for training and prediction experiments. T is the duration of the dataset
(1810 time samples = 905 days), F the length of the prediction window (14 samples = 7 days), and the
blue line is the testing period which includes 20 forecast sliding windows, each separated by a
12 h period.

4.1. Model Z Velocity Predictions

Model Z, or the Z directional model, consisted of 26 horizontal layers distributed
from the sea surface down to 500 m. The 7-day prediction of the model for the surface
layer velocity (layer 1 in the z-direction) is shown in Figure 6. It illustrates that the
proposed model was able to predict seven days in advance the formation of a cyclonic
eddy in the region highlighted in Figure 6. The model accurately predicted the center of
rotation, direction and strength of the velocity vectors at the surface. However, elsewhere,
the model prediction differed more significantly from the observations. To assess the
overall performance of the model, we computed the average CC, RMSE, SSIM and PSNR,
along with their standard deviations, for both u, v on each plane of each tensor and over
the twenty sliding windows (Figure 7). These quantities quickly deteriorated over 14 time
steps (7 days), which indicates the challenge of predicting LC velocity tensors compared to
SSH prediction performed using a similar LSTM structure in [17,42,46], despite the fact that
the cyclonic eddy was correctly predicted. Indeed, after 7 days, the anticyclone southwest
of the predicted cyclone exhibited a weaker circulation than the observed one, and its
northern counterpart was sustained for longer than the observed one.
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(a)

(b)

Figure 6. Predicted (top) and corresponding observed (bottom) surface velocity. (a) Twelve-hour
prediction. (b) One hundred sixty-eight-hour (7-day) prediction. The red arrows in (a) show the
region of formation of the cyclonic eddy predicted in the red highlighted areas in (b).
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Figure 7. Model Z fourteen time-step (7 days) 20-day sliding window average of CC, SSIM, PSNR, and RMSE of the velocity
fields. The unit for the horizontal axis is prediction time steps (one time step is 12 h). The error bar denotes the standard
deviation with a 95% confidence interval.

4.2. Directional Velocity Structure Prediction Dependency

We now compare the predictions of all models in each of the three Cartesian directions.
In particular, for a given directional model prediction, we compared the other two model
predictions along the same direction as the former. Figure 8 shows the comparison in
terms of CC, RMSE, SSIM and PSNR for Model X prediction and the other two models
(Models Y and Z) in the x-direction. All the metrics were calculated for fourteen time
steps and averaged over 20-day sliding windows and over all the layers of the directional
model. Model X prediction in the x-direction exhibited a higher CC and similarity index,
although the PNSR is very similar between models, especially after the seventh time step.
On the other hand, the RMSE is the highest for Model X after the sixth time step. Model Y
prediction is also better than Model Z’s prediction in the x-direction.

A similar comparison is shown for Model Y in Figure 9. The CC and the similarity
index are strikingly much higher for Model Y and than for the other two models. The PSNR
is also significantly higher and the RMSE much lower than for the other two models.
The prediction of Model Z in the y-direction was also better than the one of Model X. In the
x-directions, fewer differences were found between all three models predictions than in the
y-direction.

Figure 10 shows the comparison of the three models in the z-direction. As expected,
Model Z is better at predicting in the z-direction; however it shows a better CC than for the
other two models only after 7 days. The similarity index is much higher while the PSNR is
similar to the ones of the other model, showing no significant improvement. The RMSE
becomes lower than for the other two models after the seventh time step. Again, as for
the x-direction prediction, the differences between the three models are not as different
as they were in the y-direction. These results indicate that each model best prediction is
associated with its direction of prediction. In addition, in terms of dynamical evolution,
the most significant changes were in the y-direction (x-z planes) and better captured by the
Model Y.
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Figure 8. Fourteen time-step (7 days) 20-day sliding window average of CC, SSIM, PSNR, and RMSE of the velocity fields
in the x-direction, predicted by Model X (solid line), Model Y (dotted line), and Model Z (dashed line).

Figure 9. Same as Figure 8 but for the velocity fields in the y-direction.
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Figure 10. Same as Figure 8 but for the velocity fields in the z-direction.

4.3. Vertical Velocity Structure Prediction

Examples of the 7-day predicted flow field are shown in Figures 11–13 for Models
X, Y, and Z respectively. Figure 11 shows a vertical section of the velocity magnitude in
the x-direction for all three models at 87◦ W. It confirms the metrics results and shows
the best agreement between the flow structure of Model X and the observations in the
x-direction. Similarly, Figure 12 shows the vertical section of the velocity magnitude in the
x-direction for all three models at 25◦ N. It confirms the metrics results and shows the best
agreement between the flow structure of Model Y and the observations in the y-direction.
The same consistency between the prediction and observed flow structure is also confirmed
for Model Z in the z-direction (Figure 13). As each prediction model performs best in its
corresponding tensor orientation, we propose fusing the prediction of all three models into
one tensor.
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Figure 11. Vertical section of the velocity tensor in the x-direction at 87◦ N on day 7 of the prediction. (a) Observations;
(b) Model X prediction; (c) Model Y prediction; (d) Model Z prediction.

Figure 12. Vertical section of the velocity tensor in the y-direction at 25◦ W.
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Figure 13. Horizontal section of the velocity tensor at 100 m depth on day 7 of the prediction. (a) Observations; (b) Model X
prediction; (c) Model Y prediction; (d) Model Z prediction.

4.4. Fusion of the Models’ Predictions

As each model can best predict the evolution of the velocity field in its respective layers,
we hypothesize that the fusion of the three model predictions would yield an improved
prediction of the overall tensor over each individual one. For this purpose, a simple
fusion block was added to the prediction system, as shown in Figure 14. Although various
methods can be used to fuse all three tensors, such as unweighted or median selection-based
average, we chose to apply a three-dimensional Gaussian smoothing procedure [47] as it
provides better results than the other two. The results of the fusion process are shown for the
72 h (3-day) and 168 h (7-day) predictions in Figures 15 and 16, respectively. These figures
consist of a 3D representation of the normalized relative vorticity of the flow predicted by
each of the three individual models and by the fusion method. Despite the noise associated
with each model, the fusion approach is able to filter the noise out and deliver a tensor
field that is very similar to the observations, even for a 168 h prediction. The significant
improvement of the 3D tensor prediction by the fusion process over individual prediction
models is further demonstrated by computing the metrics RMSE, PNSR, SSIM and CC of
the various predictions (Figure 17). The fusion output showed an overall improvement
over individual predictions for all metrics over the 7-day prediction window. In particular,
the RMSE was reduced by more than 25% on day 7 of the prediction.
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Figure 14. Block diagram of the fusion approach to produce a unified volumetric prediction.

Figure 15. Three-dimensional normalized relative vorticity field of the observed and 72 h predicted
tensors. (a) Observed, (b) Model Z, (c) Model X, (d) Model Y, (e) and fusion result.
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Figure 16. The conditions are same as Figure 15 for the 168 h prediction.

Figure 17. Fusion results. (a) Mean Squared Error (MSE), (b) Correlation Coefficient (CC), (c) Peak
Signal-to-Noise Ratio (PNSR) and (d) Structural Similarity index (SSIM) between the observed
3-dimensional fields and the predictions from Models Z, X, and Y.
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5. Conclusions

Modeling and predicting the LCS subsurface vertical structure in the GoM region is
essential to all aspects of life in the region. However, useful forecasts of the flow field by
current modeling methods do not exceed two days [5–7]. In this study, we developed a deep
learning-based prediction model that was capable of predicting some important features
of the 3D velocity fields of the LCS up to seven days in advance in a rectangular region
where the LC is most active and commonly sheds eddies (Figure 6). Overall, the fusion
model exhibited a CC > 0.5 up to 4.5 days (Figure 17). Subsurface velocity data measured
by in-situ sensors for an approximately three-year period [29] were used to train and test a
deep learning prediction method. To implement the deep learning model, we reduced the
dimensionality of the tensors of each component of the velocity field to one dimension by
applying EOF. The obtained PC vectors were used as an input variable to the LSTM model.
The prediction model was applied separately to each layer of the tensor. We defined one
tensor for each direction of the Cartesian coordinate system, which led to three prediction
models associated with each direction, respectively. Each model was composed of one
individual LSTM model per layer in each tensor and the final prediction consisted of the
final tensor made of all the layered predictions for each velocity component. The results
of this approach revealed that the prediction models associated with each of the three
directions were the best at predicting the flow field in their respective directions. The errors
across layers significantly altered the cross-layer structure of the flow. However, the fusion
of all three models’ solution with a Gaussian filter delivered an improved prediction field
over each individual predictions.

Because the number of layer models necessary to conduct the full three-dimensional
prediction is equal to the total number of grid points of the field to be predicted, the imple-
mentation of such model for real-time forecast seems unrealistic. However, multithread
and parallel computing allows for the simultaneous computation of the predictions in all
the layers in an efficient and timely manner. In addition, such dense observation arrays
are rare and spatially and temporally limited, which limits the size and number of the
layers to be predicted as well. In any case, when compared to ocean numerical model
operations, even though numerical models are much cheaper to operate, they are unable
to reliably predict the evolution of the ocean state without being constrained by ocean
observations. It is true that observing arrays are ephemeral, but when they do exist they can
be used to make forecasts that do not require numerical models, which simplifies the data
processing and streamlines the forecasting process since only one variable is used versus
the multitude of state and atmospheric variables required by ocean numerical models.
Table 1 shows that the computational time for training is less than 800 s for all layers in a
given direction. Assuming that each direction can be computed by one thread, then the
overall prediction time would be less than 800 s, which makes this approach adequate for
real-time forecasting, even at a hourly rate. HF radar ocean surface current measurements
provide a good test-bed for the application of our method, where in this case, only one
layer is predicted. The latter are now increasingly used for monitoring coastal circulation
in many areas of the coast around the world [48]. The other limitation of the deep learning
method is the duration of the measurements. Such methods’ accuracy strongly depends
on the diversity of events captured by the measurements and therefore their prediction
skills can be limited by the duration of the measurements used to create the deep learning
models. Ideally, a times series that captures the full extent of the variability in the natural
system would yield the best forecast by such methods. However, it is not explicitly clear
how prediction improvement is correlated to the duration of the measurements in this
tensor prediction method. In a point-wise prediction exercise of ocean current velocity
for unmanned underwater vehicle navigation, Immas et al. [12] showed that they could
predict with an LSTM model one month of current with one month of training data.

The layered prediction method applied in this study was originally developed by
Wang et al. [17] to predict the evolution of the SSH, a two-dimensional field. Predicting
the three-dimensional velocity fields with this two-dimensional method has revealed
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the importance of the relative changes between layers in the accuracy of the predicted
tensor. Future work will be focused on the inclusion of the relationship between individual
nodes and their surrounding nodes in the domain, in order to account for the relative
evolution between nodes. This node’s spatio-temporal connectivity could be learned
through another DL model ultimately coupled with the prediction model. We anticipate
that such multi-model approach could provide longer reliable three-dimensional forecasts
than the approach herein.
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Abstract: Forecasting volatility from econometric datasets is a crucial task in finance. To acquire
meaningful volatility predictions, various methods were built upon GARCH-type models, but these
classical techniques suffer from instability of short and volatile data. Recently, a novel existing
normalizing and variance-stabilizing (NoVaS) method for predicting squared log-returns of financial
data was proposed. This model-free method has been shown to possess more accurate and stable
prediction performance than GARCH-type methods. However, whether this method can sustain
this high performance for long-term prediction is still in doubt. In this article, we firstly explore
the robustness of the existing NoVaS method for long-term time-aggregated predictions. Then, we
develop a more parsimonious variant of the existing method. With systematic justification and
extensive data analysis, our new method shows better performance than current NoVaS and standard
GARCH(1,1) methods on both short- and long-term time-aggregated predictions. The success of our
new method is remarkable since efficient predictions with short and volatile data always carry great
importance. Additionally, this article opens potential avenues where one can design a model-free
prediction structure to meet specific needs.

Keywords: ARCH-GARCH; model-free; aggregated forecasting

1. Introduction

Accurate and robust volatility forecasting is a central focus in financial econometrics.
This type of forecasting is crucial for practitioners and traders to make decisions in risk
management, asset allocation, pricing of derivative instruments and strategic decisions re-
garding fiscal policies, etc. Standard methods to perform volatility forecasting are typically
built upon applying GARCH-type models to predict squared financial log-returns. With
the model-free prediction principle, first proposed by Politis [1], a model-free volatility pre-
diction method—NoVaS—has been proposed recently for efficient forecasting without the
assumption of normality. Some previous studies have shown that the NoVaS method pos-
sesses better predictive performance than GARCH-type models when forecasting squared
log-returns, e.g., Gulay and Emec [2] showed that the NoVaS method could overcome
GARCH-type models (GARCH, EGARCH and GJR-GARCH) with generalized error dis-
tributions by comparing the pseudo-out-of-sample (POOS) forecasting performance on
S&P500 and BIST 100 return series (here the pseudo-out-of-sample forecasting analysis
means using data up to and including the current time to predict future values). Chen
and Politis [3] showed that the “time-varying” NoVaS method is robust against possible
non-stationarities in the data. Furthermore, Chen and Politis [4] extended this NoVaS
approach to perform multi-step-ahead predictions of squared log-returns.

However, to the best of our knowledge, such methods have not been evaluated for
time-aggregated prediction. Time-aggregated prediction here stands for the prediction of
Yn+1 + · · ·+ Yn+h after observing {Yt}n

t=1. Such predictions remain crucial for strategic
decisions implemented by commodity or service providers, ([5,6]), trust funds, pension
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management, insurance companies, portfolio management of specific derivatives ([7]) and
assets ([8]). Time-aggregated forecasting is also able to provide some degree of confidence
in understanding the general trend in the near future, potentially for the entire following
week or months ahead, which is definitely more meaningful than merely understanding
what might happen for any single step ahead (predicting Yn+h for one value of h) in the time
horizon. In fact, the quality of forecasts for econometric data has been evaluated through
such time-aggregated metrics in [9,10]. In this article, we continue utilizing these time-
aggregated metrics to challenge the ability of the NoVaS method for short- and long-term
time-aggregated predictions on squared log-returns series. For exploring such capabilities
of the existing NoVaS method, we set up comprehensive data analyses to substantiate the
efficiency of the NoVaS method and also address the lack of data experiments in NoVaS
studies. Apart from this, we also attempt to improve the existing one further by proposing
a more parsimonious model. Based on extensive data analysis, our new method shows
more stable performance than the state-of-the-art NoVaS method regardless of whether
simulation or real-world data are used. We also find that the state-of-the-art NoVaS method
is even surpassed by the standard GARCH(1,1) model sometimes. On the other hand, our
new method returns consistently excellent forecasting. Notably, our method achieves a
remarkable improvement when the dataset at hand is short and volatile.

The rest of this article is organized as follows. In Section 2, we firstly introduce the
theoretical background and structure of the existing NoVaS method. Then, our new method
is proposed and a simple comparison is made to show the stability of our new method.
In Section 3, we substantiate our proposal by extensive simulations and data analysis.
Moreover, we utilize the CW test to support our parsimonious model. Finally, a summary
and discussion are given in Sections 4 and 5, respectively.

2. Method

2.1. The Existing NoVaS Method

The NoVaS method is a model-free prediction principle. The main idea lies in applying
an invertible transformation H, which can map the non-i.i.d. vector {Yi}t

i=1 to a vector
{εi}t

i=1 that has i.i.d. components. This leads to the prediction of Yt+1 by inversely trans-
forming the prediction of εt+1 [11]. The starting point to build the transformation of the
existing NoVaS method is the ARCH model [12]. Then, Politis [1] made some adjustments
to determine the final form of H as:

Wt =
Yt√

αs2
t−1 + ã0Y2

t + ∑
p
i=1 aiY2

t−i

for t = p + 1, · · ·, n. (1)

In Equation (1), {Yt}n
t=1 is the log-returns vector in this article; {Wt}n

t=p+1 is the
transformed vector, which we hope to transform to i.i.d.; α is a fixed-scale invariant constant;
s2

t−1 is calculated by (t − 1)−1 ∑t−1
i=1(Yi − μ)2, with μ being the mean of {Yi}t−1

i=1; ã0 is the
coefficient corresponding with the currently observed value Y2

t . For reaching a qualified
transformation function, Equation (2) is required to stabilize the variance.

α ∈ (0, 1), ã0 ≥ 0, ai ≥ 0 for all i ≥ 1, α + ã0 +
p

∑
i=1

ai = 1 (2)

Then, α and ã0, a1, · · ·, ap are finally determined by minimizing |Kurtosis(Wt)− 3|. In
practice, the transformed {Wt} is usually uncorrelated; see [11] for additional processes
for correlated {Wt}. This method is model-free in the sense that we do not assume any
particular distribution for the innovation {Wt} except for matching its kurtosis to 3. Once
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H is found, H−1 can be obtained immediately. For example, H−1 corresponding with
Equation (1) is:

Yt =

√√√√ W2
t

1 − ã0W2
t
(αs2

t−1 +
p

∑
i=1

aiY2
t−i) for t = p + 1, · · ·, n. (3)

To obtain the prediction of Y2
n+1, Politis [11] defined two types of optimal predictors

under L1 (Mean Absolute Deviation) and L2 (Mean Squared Error) criteria after observing
historical information set Fn = {Yt, 1 ≤ t ≤ n}:

L1-optimal predictor of Y2
n+1 :

Median
{

Y2
n+1,m : m = 1, · · ·, M

∣∣Fn

}

= Median

{
W2

n+1,m

1 − ã0W2
n+1,m

(αs2
n +

p

∑
i=1

aiY2
n+1−i) : m = 1, · · ·, M

∣∣∣∣Fn

}

= (αs2
n +

p

∑
i=1

aiY2
n+1−i)Median

{
W2

n+1,m

1 − ã0W2
n+1,m

: m = 1, · · ·, M

}

L2-optimal predictor of Y2
n+1 :

Mean
{

Y2
n+1,m : m = 1, · · ·, M

∣∣Fn

}

= Mean

{
W2

n+1,m

1 − ã0W2
n+1,m

(αs2
n +

p

∑
i=1

aiY2
n+1−i) : m = 1, · · ·, M

∣∣∣∣Fn

}

= (αs2
n +

p

∑
i=1

aiY2
n+1−i)Mean

{
W2

n+1,m

1 − ã0W2
n+1,m

: m = 1, · · ·, M

}

(4)

where {Wn+1,m}M
m=1 are generated M times from its empirical distribution or a normal dis-

tribution. Here, the normal distribution is an asymptotic limit of the empirical distribution
of {Wn+1}. More details about this procedure and multi-step prediction are presented in
Section 2.2. {Y2

n+1,m}M
m=1 are given by plugging {Wn+1,m}M

m=1 into Equation (3) and setting
t as n + 1. During the optimization process, different forms of unknown parameters in
Equation (2) are applied so that various NoVaS methods are established. Chen [13] pointed
out that the Generalized Exponential NoVaS (GE-NoVaS) method with exponentially de-
cayed unknown parameters presented in Equation (5) is superior to other NoVaS-type
methods.

α 	= 0, ã0 = c′, ai = c′e−ci for all 1 ≤ i ≤ p, c′ = 1 − α

∑
p
i=0 e−ci

(5)

2.2. A New Method with Less Parameters

However, during our investigation, we found that the GE-NoVaS method returns
extremely large predictions under the L2 criterion sometimes. The reason for this phe-
nomenon is that the denominator of Equation (3) will be quite small when the generated
{W∗} (from empirical or normal distribution) is very close to 1/ã0. In this situation, the
prediction error will be amplified. Moreover, when the long-term ahead prediction is
desired, this amplification will be accumulated and the final prediction will be dampened.
Therefore, a removing-ã0 idea is proposed to avoid such issues in this article. H and H−1

of the GE-NoVaS-without-ã0 method can be rewritten as below:

Wt =
Yt√

αs2
t−1 + ∑

p
i=1 aiY2

t−i

; Yt =

√√√√W2
t (αs2

t−1 +
p

∑
i=1

aiY2
t−i) ; for t = p + 1, · · ·, n. (6)
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We should notice that even without the ã0 term, the causal prediction rule is still
satisfied. It is easy to obtain the analytical form of the first-step-ahead Yn+1, which can be
expressed as below:

Yn+1 =

√√√√W2
n+1(αs2

n +
p

∑
i=1

aiY2
n+1−i) (7)

More specifically, when the first-step GE-NoVaS-without-ã0 prediction is performed,
{W∗

n+1} are generated M (i.e., 5000 in this article) times from a standard normal distribution
by the Monte Carlo method or bootstrapped from its empirical distribution F̂w which
is calculated from Equation (1). Then, plugging these {W∗

n+1,m}M
m=1 into Equation (7),

M pseudo-predictions {Ŷ∗
n+1,m}M

m=1 are obtained. According to the strategy implied by
Equation (4), we choose L1 and L2 risk optimal predictors Ŷ2

n+1 as the sample median and
mean of {Ŷ∗

n+1,1, · · · , Ŷ∗
n+1,M}, respectively. We can even predict the general form of Yn+h,

such as g(Yn+h), by adopting the sample mean or median of {g(Ŷ∗
n+1,1), · · · , g(Ŷ∗

n+1,M)}.
Similarly, the two-steps-ahead Yn+2 can be expressed as:

Yn+2 =

√√√√W2
n+2(αs2

n+1 + a1Y2
n+1 +

p

∑
i=2

aiY2
n+2−i) (8)

When the prediction of Yn+2 is required, M pairs of {W∗
n+1, W∗

n+2} are still generated
by bootstrapping or Monte Carlo method from empirically or standard normal distribu-
tions, respectively. Y2

n+1 is replaced by the predicted value Ŷ2
n+1 which is derived from

running the first-step GE-NoVaS-without-ã0 prediction with simulated {W∗
n+1,m}M

m=1 under
the L1 or L2 criterion. Subsequently, we choose L1 and L2 risk optimal predictors of Yn+2
as the sample median and mean of {Ŷ∗

n+2,1, · · · , Ŷ∗
n+2,M}.

Finally, iterating the process described above, we can accomplish multi-step-ahead
NoVaS predictions. Yn+h, h ≥ 3 can be expressed as:

Yn+h =

√√√√W2
n+h(αs2

n+h−1 +
p

∑
i=1

aiY2
n+h−i) (9)

To obtain the prediction of Yn+h, we generate M number of {W∗
n+1, · · · , W∗

n+h} and
plug {Yn+k}h−1

k=1 with NoVaS predicted values {Ŷn+k}h−1
k=1, which are computed iteratively.

L1 and L2 risk optimal predictors of Yn+h are computed by the sample median and mean
of {Ŷ∗

n+h,1, · · · , Ŷ∗
n+h,M}. In short, we can summarize that Yn+h is determined by:

Yn+h = fGE-NoVaS-without−ã0(Wn+1, · · · , Wn+h, Fn) (10)

Since Fn is the observed information set, we can simplify the expression of Yn+h as:

Yn+h = fGE-NoVaS-without−ã0(Wn+1, · · · , Wn+h) (11)

For applying the GE-NoVaS method, we can still build the relationship between Yn+h
and {Wn+1, · · · , Wn+h} as:

Yn+h = fGE-NoVaS(Wn+1, · · · , Wn+h) (12)

We should notice that simulated {W∗
n+1,m, · · · , W∗

n+h,m}M
m=1 for obtaining GE-NoVaS

method prediction of Yn+h should be generated by the bootstrapping or Monte Carlo
method from an empirically or trimmed standard normal distribution. The reason for
using the trimmed distribution is |Wt| ≤ 1/

√
ã0 from Equation (1). Here, we summarize

Algorithm 1 to perform h-step-ahead time-aggregated prediction using the GE-NoVaS-
without-ã0 method. The algorithm of GE-NoVaS can be written out similarly.
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Remark (The advantage of removing the ã0 term): First, after removing the ã0 term, the
prediction of the NoVaS method under the L2 criterion is more stable. More details will
be shown in Section 2.3. Second, the suggestion of removing ã0 can also lead to less time
complexity of our new method. The reason for this phenomenon is simple. If we consider
the limiting distribution of {Wt} series, 1/

√
ã0 is required to be larger than or equal to

3 to ensure that {Wt} has a sufficiently large range, i.e., ã0 is required to be less than or
equal to 0.111 (recall that the mass of standard normal data is within [−3, 3]). However, the
optimal combination of NoVaS coefficients may not render a suitable ã0. For this situation,
we need to increase the NoVaS transformation order p and repeat the normalizing and
variance-stabilizing process till ã0 in the optimal combination of coefficients is suitable.
This repeating process definitely increases the computation workload.

Algorithm 1: The h-step ahead prediction for the GE-NoVaS-without-ã0 method.

Step 1 Define a grid of possible α values, {αk; k = 1, · · · , K}. Fix α = αk, then
calculate the optimal combination of αk, a1, · · · , ap of the GE-NoVaS-
without-ã0 method, which minimizes |Kurtosis(Wt)− 3|.

Step 2 Derive the analytic form of Equation (11) using αk, a1, · · · , apfrom the
first step.

Step 3 Generate {W∗
n+1, · · · , W∗

n+h} M times from a standard normal dis-
tribution or the empirical distribution F̂w. Plug {W∗

n+1, · · · , W∗
n+h}

into the analytic form of Equation (11) to obtain M pseudo-values
{Ŷ∗

n+h,1, · · · , Ŷ∗
n+h,M}.

Step 4 Calculate the optimal predictor of g(Yn+h) by taking the sample mean
(under L2 risk criterion) or sample median (under L1 risk criterion) of
the set {g(Ŷ∗

n+h,1), · · · , g(Ŷ∗
n+h,M)}.

Step 5 Repeat above steps with different α values from {αk; k = 1, · · · , K} to
get K prediction results.

2.3. The Potential Instability of the GE-NoVaS Method

Next, we provide an illustration to compare the GE-NoVaS and GE-NoVaS-without-ã0
methods in predicting the volatility of the Microsoft Corporation (MSFT) daily closing
price from 8 January 1998 to 31 December 1999 and show an interesting finding that the
long-term time-aggregated predictions of the GE-NoVaS method are unstable under the L2
criterion. Based on the finding of Awartani and Corradi [14], squared log-returns can be
used as a proxy for volatility to render a correct ranking of different GARCH models in
terms of a quadratic loss function. Log-return series {Yt} can be computed by the equation
shown below:

Yt = 100 × log(Xt+1/Xt) (13)

where {Xt} is the corresponding MSFT daily closing price series. For achieving a compre-
hensive comparison, we use 250 financial log-returns as a sliding window to perform POOS
1-step, 5-step and 30-step (long-term) ahead time-aggregated predictions under the L2
criterion. Then, we roll this window through the whole dataset, i.e., we use {Y1, · · · , Y250}
to predict Y2

251, {Y2
251, · · · , Y2

255} and {Y2
251, · · · , Y2

280}; then, we use {Y2, · · · , Y251} to pre-
dict Y2

252, {Y2
252, · · · , Y2

256} and {Y2
252, · · · , Y2

281}, for 1-step, 5-step and 30-step aggregated
predictions, respectively, and so on. We can define all 1-step, 5-step and 30-step-ahead
time-aggregated predictions as {Ŷ2

k,1}, {Ŷ2
i,5} and {Ŷ2

j,30}, which are presented as below:
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Assume that there are a total of N log-return data points:

Ŷ2
k,1 = Ŷ2

k+1, k = 250, 251, · · · , N − 1

Ŷ2
i,5 =

5

∑
m=1

Ŷ2
i+m, i = 250, 251, · · · , N − 5

Ŷ2
j,30 =

30

∑
m=1

Ŷ2
j+m, j = 250, 251, · · · , N − 30

(14)

In Equation (14), Ŷ2
k+1, Ŷ2

i+m, Ŷ2
j+m are single-step predictions of squared log-returns by

the two NoVaS-type methods. To obtain the “Prediction Errors” for the two methods, we
can calculate the “loss” by comparing the aggregated prediction results with the realized
aggregated values based on Equation (15):

Lp,h = ∑
p
(Ŷ2

p,h −
h

∑
m=1

(Y2
p+m))

2, p ∈ {k, i, j}; h ∈ {1, 5, 30} (15)

where {Y2
p+m} are realized squared log-returns. To show the potential instability of the

GE-NoVaS method under the L2 criterion, we take α to be 0.5 to build a toy example. In the
algorithm when performing the GE-NoVaS method, α could take an optimal value from a
discrete set {0.1, · · · , 0.8} based on the prediction performance.

From Figure 1, we can clearly see that the GE-NoVaS-without-ã0 method can better
capture different steps’ true time-aggregated features. On the other hand, the GE-NoVaS
method returns unstable results for 30-step-ahead time-aggregated predictions. Besides, we
can see that the 1-step-ahead POOS prediction returned by the GE-NoVaS method is almost
a flat curve, which is actually meaningless. Similarly, for the 5-step-ahead time-aggregated
prediction case, the POOS prediction of the GE-NoVaS method fails to match the true
time-aggregated values.
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Figure 1. Curves of the true and predicted time-aggregated squared log-returns from GE-NoVaS and GE-NoVaS-without-ã0

methods.
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3. Data Analysis and Results

To perform extensive data analysis in a bid to validate our method, we deploy POOS
predictions using two NoVaS and standard GARCH(1,1) methods with simulated and
real-world data. All results are collated in Table 1. The optimal results for each data cases
are highlighted in bold. For controlling the dependence of the prediction performance on
the length of the dataset, we build datasets with two fixed lengths—250 or 500—to mimic
1-year or 2-year data, respectively. At the same time, we choose the window size for our
rollover forecasting analysis to be 100 or 250 for the 1-year or 2-year datasets.

3.1. Simulation Study

We use the same simulation Models 1–4 from [4], shown below, to mimic four 1-year
datasets. Recall that one NoVaS method can generate the L1 or L2 predictor and {W∗} can
be chosen from a normal distribution or empirical distribution; thus, there are four variants
of one specific NoVaS method. We take the best-performing result among four variants
of a specific NoVaS method to be its final prediction. Finally, we continue applying the
formula in Equation (15) to measure the performance of the different methods, as described
in Section 2.3.

Model 1: Time-varying GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = 0.00001 + β1,tσ
2
t−1 + α1,tX2

t−1, {εt} ∼ i.i.d. N(0, 1)
α1,t = 0.1 − 0.05t/n; β1,t = 0.73 + 0.2t/n, n = 250
Model 2: Standard GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = 0.00001 + 0.73σ2
t−1 + 0.1X2

t−1, {εt} ∼ i.i.d. N(0, 1)
Model 3: (Another) Standard GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = 0.00001 + 0.8895σ2
t−1 + 0.1X2

t−1, {εt} ∼ i.i.d. N(0, 1)
Model 4: Standard GARCH(1,1) with Student-t errors
Xt = σtεt, σ2

t = 0.00001 + 0.73σ2
t−1 + 0.1X2

t−1,
{εt} ∼ i.i.d. t distribution with five degrees of freedom

Result analysis: From the first block of Table 1, we can read that both NoVaS methods are
superior to the GARCH(1,1) model. Although these simulated datasets are generated from
GARCH(1,1)-type models, the GE-NoVaS-without-ã0 method can bring around 66% and
48% improvements compared to the GARCH(1,1) model for 5-step-ahead time-aggregated
predictions of Model-4 and Model-1 data, respectively. Notably, GARCH(1,1) brings poor
results for the 30-step-ahead time-aggregated predictions of Model-4 simulated data, which
implies that such a classical method is impaired by error accumulation problems when
long-term predictions are required. On the other hand, the model-free NoVaS method can
avoid this issue. Taking a closer look at these results, we can observe that almost all optimal
results come from applying the GE-NoVaS-without-ã0 method. Moreover, the GE-NoVaS
method is surpassed by GARCH(1,1) when forecasting 30-step-ahead time-aggregated
Model-2 data. On the other hand, the GE-NoVaS-without-ã0 method provides consistently
stable results. These results imply that the GE-NoVaS-without-ã0 method dominates the
GE-NoVaS method when predicting long-term or short-term time-aggregated predictions.
Besides, using the same generated models from the previous study of the NoVaS method [4]
ensures fairness. Additionally, with simulation implementations, the ability against model
misspecification of NoVaS methods is verified in Appendix A.

3.2. A Few Real Datasets

We also present a variety of real-world datasets of different size and intrinsic behavior:

• 2-year period data: 2018∼2019 stock price data.
• 1-year period data: 2019 stock price and index data.
• 1-year period volatile data due to pandemic: 11.2019∼10.2020 stock price, currency

and index data.
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Taking into account three types of real-world data is necessary to challenge our new
method and explore the existing method in different regimes. We also tactically pay
more attention to short and volatile data since this is a more challenging task to handle.
Equation (13) is continually used to obtain the log-return series of different datasets.

Before comparing in depth the forecasting performance of the NoVaS-type and
GARCH methods, we first investigate the properties of the used datasets. From Figure 2,
we can see that there were huge variations in the four datasets during 11.2019∼10.2020,
which implies the extreme fluctuations in global economics due to the COVID-19 pandemic.
We wished to apply such datasets to test whether the NoVaS-type methods can achieve
good forecasting performance for such volatile data.

Figure 2. Price series of selected 9 datasets.

Besides, it is natural to question whether these datasets are stationary. In a comprehen-
sive manner, we choose three statistical tests—Augmented Dickey–Fuller (ADF) Test [15],
Phillips–Perron (PP) Unit Root Test [16] and Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
Test [17]—to check the stationarity of the squared log-returns series of each selected dataset.
One aspect that should be noticed is that the number of lags is crucial for the ADF test. If
the included lag is too small, then the remaining serial correlation in the errors will bias
the test. If this number is larger, the power of the test will suffer. Here, we consider taking
the longest lag that is statistically significant. More specifically, we determine this longest
lag by observing the last lag that crosses through the confidence interval lines of the auto-
correlation plot. Besides, we apply a long version of the truncation lag parameter on both
the PP and KPSS tests. The results of the three tests are tabulated in Table A4. Combining
these results, we can argue that most of the squared log-return series in the normal time
period are stationary. However, during the volatile time period, the squared log-returns of
IBM, SP500 and Dow Jones are thought to be non-stationary by the ADF test. The KPSS test
also returns small p-values for these three datasets. These results are consistent with our
conjecture that data tend to show non-stationarity during volatile periods. Again, it will be
interesting to see if the NoVaS-type methods can offer good forecasting performance for
non-stationary data. Recall that Chen and Politis [3] found that the NoVaS methodology
generally outperforms the GARCH benchmark on the one-step-ahead point prediction of
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non-stationary data (involving local stationarity and/or structural breaks). However, they
only considered two real-world time series. Here, we extend such empirical study to short-
and long-term time-aggregated predictions with sufficient data examples.

Remark (One ARCH-type model for non-stationary data): Since our stationarity tests
suggest that some series may not be stationary, we can consider applying ARCH-without-
intercept, which is a variant of the ARCH model. This variant is non-stationary but stable
in the sense that the observed process has non-degenerated distribution. Moreover, it ap-
pears to be an alternative to common stationary but highly persistent GARCH models [18].
Inspired by this ARCH-type model, the NoVaS method may be further improved by re-
moving the corresponding intercept term αs2

t−1 in Equations (1) and (6). More empirical
experiments could be conducted along this direction.

Result analysis: From the last three blocks of Table 1, there is no optimal result that comes
from the GARCH(1,1) method. When the target data are short and volatile, GARCH(1,1)
gives poor results for 30-step-ahead time-aggregated predictions, such as the volatile
Djones, CADJPY and IBM cases. Among the two NoVaS methods, the GE-NoVaS-without-
ã0 method outperforms the GE-NoVaS method for the three types of real-world data. More
specifically, around 70% and 30% improvements are created by our new method compared
to the existing GE-NoVaS method when forecasting 30-step-ahead time-aggregated volatile
Djones and CADJPY data, respectively. We should also notice that the GE-NoVaS method
is again surpassed by the GARCH(1,1) model on 30-step-ahead aggregated predictions of
2018∼2019 BAC data. On the other hand, the GE-NoVaS-without-ã0 method performs sta-
bly. These comprehensive prediction comparisons cover the shortage of empirical analyses
of NoVaS methods, and imply that NoVaS-type methods are indeed valid and efficient for
real-world short- or long-term predictions of three main types of econometric data. See
Appendix A for more results.

3.3. Statistical Significance

However, one may suggest that the victory of our new methods is only specific to
these samples. Therefore, we challenge this superiority by testing the statistical significance.
Noting that the GE-NoVaS-without-ã0 method is a nested method (taking ã0 = 0 in the
larger model) compared with the GE-NoVaS method, we deploy the CW test [19] to ensure
that the removing-ã0 idea is also statistically reasonable; see the p-value column in Table 1
for the tests’ results. The reason for not performing CW tests on the simulation cases is that
the prediction performance of each simulation is the average value of 5 replications. These
CW test results imply that the null hypothesis should not be rejected for almost all cases
under a 5% level of significance, which confirms the equivalence of the new method to the
existing one.
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Table 1. Comparisons of different methods’ forecasting performance.

GE-NoVaS GE-NoVaS-without-ã0 GARCH(1,1) p-Value(CW Test)

Si
m

ul
at

ed
-1

-y
ea

r-
da

ta

Model-1-1step 0.91369 0.88781 1.00000
Model-1-5steps 0.61001 0.52872 1.00000
Model-1-30steps 0.77250 0.73604 1.00000
Model-2-1step 0.97796 0.94635 1.00000
Model-2-5steps 0.98127 0.96361 1.00000
Model-2-30steps 1.38353 0.98872 1.00000
Model-3-1step 0.99183 0.92829 1.00000
Model-3-5steps 0.77088 0.67482 1.00000
Model-3-30steps 0.79672 0.71003 1.00000
Model-4-1step 0.83631 0.78087 1.00000
Model-4-5steps 0.38296 0.34396 1.00000
Model-4-30steps 0.00199 0.00201 1.00000

2-
ye

ar
s-

da
ta

2018∼2019-MCD-1step 0.99631 0.99614 1.00000 0.00053
2018∼2019-MCD-5steps 0.95403 0.92120 1.00000 0.03386
2018∼2019-MCD-30steps 0.75730 0.62618 1.00000 0.19691
2018∼2019-BAC-1step 0.98393 0.97966 1.00000 0.09568
2018∼2019-BAC-5steps 0.98885 0.95124 1.00000 0.07437
2018∼2019-BAC-30steps 1.14111 0.87414 1.00000 0.03643

1-
ye

ar
-d

at
a

2019-AAPL-1step 0.84533 0.80948 1.00000 0.25096
2019-AAPL-5steps 0.85401 0.68191 1.00000 0.06387
2019-AAPL-30steps 0.99043 0.73823 1.00000 0.17726
2019-Djones-1step 0.96752 0.96365 1.00000 0.34514
2019-Djones-5steps 0.98725 0.89542 1.00000 0.24529
2019-Djones-30steps 0.86333 0.80304 1.00000 0.23766
2019-SP500-1step 0.96978 0.92183 1.00000 0.45693
2019-SP500-5steps 0.96704 0.75579 1.00000 0.24402
2019-SP500-30steps 0.34389 0.29796 1.00000 0.08148

Vo
la

ti
le

-1
-y

ea
r-

da
ta

11.2019∼10.2020-IBM-1step 0.80222 0.80744 1.00000 0.16568
11.2019∼10.2020-IBM-5steps 0.38933 0.40743 1.00000 0.03664
11.2019∼10.2020-IBM-30steps 0.01143 0.00918 1.00000 0.15364
11.2019∼10.2020-CADJPY-1step 0.46940 0.48712 1.00000 0.16230
11.2019∼10.2020-CADJPY-5steps 0.11678 0.13549 1.00000 0.06828
11.2019∼10.2020-CADJPY-30steps 0.00584 0.00394 1.00000 0.15174
11.2019∼10.2020-SP500-1step 0.97294 0.92349 1.00000 0.05536
11.2019∼10.2020-SP500-5steps 0.96590 0.75183 1.00000 0.17380
11.2019∼10.2020-SP500-30steps 0.34357 0.29793 1.00000 0.16022
11.2019∼10.2020-Djones-1step 0.56357 0.57550 1.00000 0.11099
11.2019∼10.2020-Djones-5steps 0.09810 0.11554 1.00000 0.45057
11.2019∼10.2020-Djones-30steps 4.32 × 10−5 1.24 × 10−5 1.00000 0.68487

Note: The values presented in the GE-NoVaS and GE-NoVaS-without-ã0 columns reflect the relative performance compared with the
‘standard’ GARCH(1,1) method. The null hypothesis of the CW test is that parsimonious and larger models have equal mean squared
prediction error (MSPE). The alternative is that the larger model has a smaller MSPE.

4. Summary

In previous studies of NoVaS methods, only a few real-word data analyses were
performed [2–4]. Here, we provide extensive data analyses to address the lack of real-
world data experiments. Our results are consistent with previous findings and substantiate
the effectiveness of the NoVaS method again, i.e., the NoVaS method is more efficient and
stable than the classical GARCH method for short-term predictions. Further, we reveal the
ability of NoVaS-type methods to perform long-term time-aggregated forecasting. Beyond
this, we propose a new NoVaS method that outperforms the state-of-the-art GE-NoVaS
method. Our findings in this article are summarized as follows:

• Existing GE-NoVaS and new GE-NoVaS-without-ã0 methods provide substantial
improvements for time-aggregated prediction, which hints towards the stability of
NoVaS-type methods for providing long-horizon inferences.

• Our new method has superior performance to the GE-NoVaS method, especially for
shorter sample sizes or more volatile data. This is significant given that GARCH-type
models are difficult to estimate in shorter samples.

• We provide a statistical hypothesis test that shows that our model provides a more
parsimonious fit, especially for long-term time-aggregated predictions.
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5. Discussion

In this article, we explored the GE-NoVaS method toward short and long time-
aggregated predictions and proposed a new variant that is based on a parsimonious
model, has better empirical performance and yet is statistically reasonable. Although our
new method is in a parsimonious form, it still obeys the autoregressive prediction rule
and it is more stable for performing predictions under L2 risk criterion than current the
GE-NoVaS method. We should note that the unknown coefficients of both the GE-NoVaS
(ã0, a1, · · · , ap) and GE-NoVaS-without-ã0 (a1, · · · , ap) methods are in exponential form,
which implies that the correlations within series data are decreasing in exponential speed
with the increasing time order. However, this specific form is not suitable for use for
predicting all datasets. In other words, we anticipate performing NoVaS prediction without
fixing the unknown coefficients in an invariant form to satisfy the variety of real-world
econometric datasets. Therefore, building a NoVaS method with a more arbitrary coeffi-
cient form can be a future research direction. In addition, we should also note that there is
a high demand to perform efficient forecasting for integer time series data. For example, a
relevant topic regarding such integer-value prediction is forecasting COVID-19 cases. It
will be beneficial to develop a variant of NoVaS for integer-value data. Moreover, in the
financial market, the stock data move together. Thus, it would be exciting to see if one can
perform model-free predictions in a multiple time series scenario. We hope that this article
will open up avenues where one can explore other specific transformation structures to
improve the existing forecasting frameworks and aid in specific tasks.

From a statistical inference point of view, one can also construct prediction intervals
for these predictions using bootstrap. Such prediction intervals are well sought after in
the econometrics literature and some results on the asymptotic validity of these can be
provided. Additionally, we can also explore dividing the dataset into test and training in
some optimal way and see if this can improve the performance of these methods.

In addition, there are some model-free methods based on machine learning to perform
prediction tasks. These modern techniques enjoy high accuracy, but are time-consuming
and lack of statistical inference. On the other hand, our new method and existing NoVaS
methods are time-efficient and outperform classical GARCH-type methods significantly.
More importantly, NoVaS-type methods can provide concrete statistical inference. Thus, it
will be interesting to challenge NoVaS-type methods’ forecasting accuracy with machine-
learning-based methods.
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Appendix A. Additional Simulation Study and Data Analysis Results

Appendix A.1. Additional Simulation Study: Model Misspecification

In the real world, it is difficult to convincingly state whether the data obey one par-
ticular type of GARCH model, so we wish to provide four more GARCH-type models to
simulate one-year datasets to see if our methods are satisfactory regardless of the underly-
ing distribution and GARCH-type model. The simulation study results are presented in
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Table A1, which implies that the NoVaS-type methods are more robust against model
misspecification and GE-NoVaS-without-ã0 is the best method.

Model 5: Another time-varying GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = ω0,t + β1,tσ
2
t−1 + α1,tX2

t−1, {εt} ∼ i.i.d. N(0, 1)
gt = t/n; ω0,t = −4sin(0.5πgt) + 5; α1,t = −1(gt − 0.3)2 + 0.5; β1,t = 0.2sin(0.5πgt) +
0.2, n = 250
Model 6: Exponential GARCH(1,1) with Gaussian errors
Xt = σtεt, log(σ2

t ) = 0.00001 + 0.8895 log(σ2
t−1) + 0.1εt−1 + 0.3(|εt−1| − E|εt−1|),

{εt} ∼ i.i.d. N(0, 1)
Model 7: GJR-GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = 0.00001 + 0.5σ2
t−1 + 0.5X2

t−1 − 0.5It−1X2
t−1, {εt} ∼ i.i.d. N(0, 1)

It = 1 if Xt ≤ 0; It = 0 otherwise
Model 8: Another GJR-GARCH(1,1) with Gaussian errors
Xt = σtεt, σ2

t = 0.00001 + 0.73σ2
t−1 + 0.1X2

t−1 + 0.3It−1X2
t−1, {εt} ∼ i.i.d. N(0, 1)

It = 1 if Xt ≤ 0; It = 0 otherwise

Table A1. Comparisons of different methods’ forecasting performance on simulated 1-year data.

GE-NoVaS GE-NoVaS-without-ã0 GARCH(1,1)

M5-1step 0.91538 0.83168 1.00000
M5-5steps 0.49169 0.43772 1.00000
M5-30steps 0.25009 0.22659 1.00000
M6-1step 0.95939 0.94661 1.00000
M6-5steps 0.93594 0.84719 1.00000
M6-30steps 0.84401 0.70301 1.00000
M7-1step 0.84813 0.73553 1.00000
M7-5steps 0.50849 0.46618 1.00000
M7-30steps 0.06832 0.06479 1.00000
M8-1step 0.79561 0.76586 1.00000
M8-5steps 0.48028 0.38107 1.00000
M8-30steps 0.00977 0.00918 1.00000

Appendix A.2. Additional Data Analysis: 1-Year Datasets

To make our data analysis more comprehensive, we present more results of predictions
on 1-year real-world datasets in Table A2. One interesting finding is that the GE-NoVaS
method is significantly overcome by using the GARCH(1,1) model for some cases, such as
the BAC, TSLA and Smallcap datasets. The GE-NoVaS-without-ã0 method still maintains
great forecasting performance.

Table A2. Comparisons of different methods’ forecasting performance on real-world 1-year data.

GE-NoVaS GE-NoVaS-without-ã0 GARCH(1,1)

2019-MCD-1step 0.95959 0.93141 1.00000
2019-MCD-5steps 1.00723 0.90061 1.00000
2019-MCD-30steps 1.05239 0.80805 1.00000
2019-BAC-1step 1.04272 0.97757 1.00000
2019-BAC-5steps 1.22761 0.89571 1.00000
2019-BAC-30steps 1.45020 1.01175 1.00000
2019-MSFT-1step 1.03308 0.98469 1.00000
2019-MSFT-5steps 1.22340 1.02387 1.00000
2019-MSFT-30steps 1.23020 0.97585 1.00000
2019-TSLA-1step 1.00428 0.98646 1.00000
2019-TSLA-5steps 1.06610 0.97523 1.00000
2019-TSLA-30steps 2.00623 0.87158 1.00000
2019-Bitcoin-1step 0.89929 0.86795 1.00000
2019-Bitcoin-5steps 0.62312 0.55620 1.00000
2019-Bitcoin-30steps 0.00733 0.00624 1.00000
2019-Nasdaq-1step 0.99960 0.93558 1.00000
2019-Nasdaq-5steps 1.15282 0.84459 1.00000
2019-Nasdaq-30steps 0.68994 0.58924 1.00000
2019-NYSE-1step 0.92486 0.90407 1.00000
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Table A2. Cont.

GE-NoVaS GE-NoVaS-without-ã0 GARCH(1,1)

2019-NYSE-5steps 0.86249 0.69822 1.00000
2019-NYSE-30steps 0.22122 0.18173 1.00000
2019-Smallcap-1step 1.02041 0.98731 1.00000
2019-Smallcap-5steps 1.15868 0.87700 1.00000
2019-Samllcap-30steps 1.30467 0.88825 1.00000
2019-BSE-1step 0.70667 0.67694 1.00000
2019-BSE-5steps 0.25675 0.23665 1.00000
2019-BSE-30steps 0.03764 0.02890 1.00000
2019-BIST-1step 0.96807 0.95467 1.00000
2019-BIST-5steps 0.98944 0.82898 1.00000
2019-BIST-30steps 2.21996 0.88511 1.00000

Appendix A.3. Additional Data Analysis: Volatile 1-Year Datasets

Similarly, we consider more volatile 1-year datasets. All prediction results are tabu-
lated in Table A3. It is clear that both NoVaS-type methods still outperform the GARCH(1,1)
model for short- and long-term time-aggregated forecasting. Although the GE-NoVaS
method yields optimal performance in some cases, we should note that the GE-NoVaS-
without-ã0 method still gives almost the same but slightly worse results. Interestingly, the
GE-NoVaS-without-ã0 method can introduce a significant improvement compared with the
GE-NoVaS method for 30-step-ahead predictions. This again hints towards the superior
robustness of our new method specifically for long-term aggregated predictions.

Table A3. Comparisons of different methods’ forecasting performance on volatile 1-year data.

GE-NoVaS GE-NoVaS-without-ã0 GARCH(1,1)

11.2019∼10.2020-MCD-1step 0.51755 0.58018 1.00000
11.2019∼10.2020-MCD-5steps 0.10725 0.17887 1.00000
11.2019∼10.2020-MCD-30steps 3.32 × 10−5 7.48 × 10−6 1.00000
11.2019∼10.2020-AMZN-1step 0.97099 0.90200 1.00000
11.2019∼10.2020-AMZN-5steps 0.88705 0.71789 1.00000
11.2019∼10.2020-AMZN-30steps 0.58124 0.53460 1.00000
11.2019∼10.2020-SBUX-1step 0.68206 0.69943 1.00000
11.2019∼10.2020-SBUX-5steps 0.24255 0.30528 1.00000
11.2019∼10.2020-SBUX-30steps 0.00499 0.00289 1.00000
11.2019∼10.2020-MSFT-1step 0.80133 0.84502 1.00000
11.2019∼10.2020-MSFT-5steps 0.35567 0.37528 1.00000
11.2019∼10.2020-MSFT-30steps 0.01342 0.00732 1.00000
11.2019∼10.2020-EURJPY-1step 0.95093 0.94206 1.00000
11.2019∼10.2020-EURJPY-5steps 0.76182 0.76727 1.00000
11.2019∼10.2020-EURJPY-30steps 0.16202 0.15350 1.00000
11.2019∼10.2020-CNYJPY-1step 0.77812 0.79877 1.00000
11.2019∼10.2020-CNYJPY-5steps 0.38875 0.40569 1.00000
11.2019∼10.2020-CNYJPY-30steps 0.08398 0.06270 1.00000
11.2019∼10.2020-Smallcap-1step 0.58170 0.60931 1.00000
11.2019∼10.2020-Smallcap-5steps 0.10270 0.10337 1.00000
11.2019∼10.2020-Smallcap-30steps 7.00 × 10−5 5.96 × 10−5 1.00000
11.2019∼10.2020-BSE-1step 0.39493 0.39745 1.00000
11.2019∼10.2020-BSE-5steps 0.03320 0.04109 1.00000
11.2019∼10.2020-BSE-30steps 2.45 × 10−5 1.82 × 10−5 1.00000
11.2019∼10.2020-NYSE-1step 0.55741 0.57174 1.00000
11.2019∼10.2020-NYSE-5steps 0.08994 0.10182 1.00000
11.2019∼10.2020-NYSE-30steps 1.36 × 10−5 6.64 × 10−6 1.00000
11.2019∼10.2020-USDXfuture-1step 1.14621 0.99640 1.00000
11.2019∼10.2020-USDXfuture-5steps 0.61075 0.54834 1.00000
11.2019∼10.2020-USDXfuture-30steps 0.10723 0.10278 1.00000
11.2019∼10.2020-Nasdaq-1step 0.71380 0.75350 1.00000
11.2019∼10.2020-Nasdaq-5steps 0.29332 0.33519 1.00000
11.2019∼10.2020-Nasdaq-30steps 0.01223 0.00599 1.00000
11.2019∼10.2020-Bovespa-1step 0.60031 0.57558 1.00000
11.2019∼10.2020-Bovespa-5steps 0.08603 0.07447 1.00000
11.2019∼10.2020-Bovespa-30steps 6.87 × 10−6 2.04 × 10−6 1.00000
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Appendix B. Stationarity Test Results of Some Real-World Datasets

Table A4. p-values of three stationarity tests.

ADF KPSS PP

2018∼2019 MCD 0.01 0.10 0.01
2018∼2019 BAC 0.01 0.10 0.01
2019 AAPL 0.01 0.10 0.01
2019 Djones 0.10 0.10 0.01
2019 SP500 0.18 0.10 0.01
11.2019∼10.2020 IBM 0.31 0.05 0.01
11.2019∼10.2020 CADJPY 0.01 0.10 0.01
11.2019∼10.2020 SP500 0.23 0.08 0.01
11.2019∼10.2020 Djones 0.22 0.08 0.01

Note: The null hypothesis of the ADF and PP tests is that the tested series is non-stationary. Therefore, if the ADF
and PP tests are rejected, it means that this tested series is stationary. On the other hand, the null hypothesis of
KPSS is that the series is stationary.
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Abstract: Exponential smoothing methods are one of the classical time series forecasting methods. It is
well known that exponential smoothing methods are powerful forecasting methods. In these methods,
exponential smoothing parameters are fixed on time, and they should be estimated with efficient
optimization algorithms. According to the time series component, a suitable exponential smoothing
method should be preferred. The Holt method can produce successful forecasting results for time
series that have a trend. In this study, the Holt method is modified by using time-varying smoothing
parameters instead of fixed on time. Smoothing parameters are obtained for each observation from
first-order autoregressive models. The parameters of the autoregressive models are estimated by
using a harmony search algorithm, and the forecasts are obtained with a subsampling bootstrap
approach. The main contribution of the paper is to consider the time-varying smoothing parameters
with autoregressive equations and use the bootstrap method in an exponential smoothing method.
The real-world time series are used to show the forecasting performance of the proposed method.

Keywords: Holt method; subsampling bootstrapped; harmony search algorithm; forecasting

1. Introduction

Exponential smoothing methods were published in the late 1950s [1–3], and they are
known as some of the most successful forecasting methods in the literature. There are
many exponential smoothing methods in the literature, such as the single exponential
smoothing method, Holt method, Holt-Winters method, etc. Each exponential smoothing
method is used in different situations. If data has no trend and no seasonality, a simple
exponential smoothing method is used for forecasting. If data has a linear trend and no
seasonality, the Holt method is used for forecasting. If data has both trend and seasonality,
the Holt-Winters method is used for forecasting. In the coming years, the damped trend
model was proposed by [4] if data has an over-trend. The reason why exponential smooth-
ing methods are popular in the literature is that the forecasting success of exponential
smoothing methods is superior to complicated approaches such as [5–7]. In addition to
these methods, [8] proposed a simple modification of the exponential smoothing method
named the ATA method, which is an effective and simple method to use compared with
complex approaches in recent years.

Moreover, ref. [9,10] developed state-of-the-art guidelines for the application of the ex-
ponential smoothing methodology. Ref. [11] proposed a uniformly-sampled-autoregressive-
moving-average model for a second-order linear stochastic system. Ref. [12] introduced the
optimal procedure of the Boolean Kalman filter over a finite horizon. Ref. [13] presented
a general benchmarking framework applicable to computational intelligence algorithms
for solving forecasting problems. Ref. [14] proposed a new enhanced optimization model
based on the bagged echo state network and improved by a differential evolution algorithm

Forecasting 2021, 3, 839–849. https://doi.org/10.3390/forecast3040050 https://www.mdpi.com/journal/forecasting63
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to estimate energy consumption. Ref. [15] introduced a two-stage Bayesian optimization
framework for scalable and efficient inference in state-space models.

The method proposed by [2] is one of the effective exponential smoothing methods
for forecasting data with trend. The Holt method has a forecasting equation and two
smoothing equations, which are for the level of the series and slope of the trend as given in
Equations (1)–(3).

x̂n+1 = l̂n + b̂n (1)

l̂n = λ1xn + (1 − λ1)xn (2)

b̂n = λ2

(
l̂n − l̂n−1

)
+ (1 − λ2)b̂n−1 (3)

In Equations (1)–(3), λ1 and λ2 are the smoothing parameters of mean level and slope,
respectively, and these parameters get values between zero and one. In these equations, the
initial values are obtained by applying simple linear regression to the series. In addition, in
these equations, trend and level update formulas are only based on a lag.

In this study, the Holt method is modified by using time-varying smoothing parame-
ters instead of fixed on time, and the smoothing parameters of mean level and slope are
obtained for each observation with first-order autoregressive models. The parameters of the
autoregressive models are estimated by using the harmony search algorithm (HSA). With
these contributions, the proposed method eliminates the initial parameter determination
problem. Moreover, the forecasts for the proposed method are obtained from sampling
distributions of forecasts.

The proposed method is applied to Istanbul Stock Exchange data sets between the
years 2000 and 2017 with different test lengths. The obtained results are compared with
many methods in the literature. The brief information for HSA is given in Section 2. The pro-
posed method is introduced, and the implementation results are given in Sections 3 and 4
respectively. The final section is for conclusion and discussion.

2. Harmony Search Algorithm

HSA algorithm was proposed by [16]. HSA is a heuristic algorithm that simulates the
notes of musicians. The principle of HSA is that the musicians in an orchestra play the
best melody harmonically with the notes they play. Just as a chromosome in the genetic
algorithm or a particle in particle swarm optimization represents a solution, a harmony
in a harmony memory represents a solution in the harmony search algorithm. In HSA,
each musician has a decision variable and each note in the memory of each musician
corresponds to a different solution of that decision variable. Each harmony consists of
different notes and each note corresponds to the decision variable. HSA aims to investigate
whether the obtained solution vector is better than the worst solution in memory. The HSA
is given below in steps in Algorithm 1.

Algorithm 1 The algorithm of HSA

Step 1. Determination of parameters to be used in HSA:
• XHM: Harmony memory;
• HMS: Harmony memory search;
• HMCR: Harmony memory considering rate;
• PAR: Pitch adjusting rate;
• n: the number of variables.
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Algorithm 1 Cont.

Step 2. Creating of the harmony memory.
HM for HSA is generated as in Equation (4).

HM =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

...
...

xHMS1 xHMS2 xHMS3 xHMSn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

x′1
x′2

x′HMS

⎤
⎥⎥⎦ (4)

Here, xij, i = 1, 2, . . . HMS ; j = 1, 2, · · · , n is expressed as a note value and is generated
randomly.

In HSA, each solution vector is denoted by x′i , i = 1, 2, · · · , HMS. In HSA, there are HMS
solution vectors. The representation of the first solution vector is given in Equation (5).

x′1 = [x11, x12, · · · , x1n] (5)

Step 3. Calculation of objective function values.
The objective function values are calculated for each solution vector generated randomly as

given in Equation (6).

⎡
⎢⎢⎢⎣

x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

...
...

xHMS1 xHMS2 xHMS3 xHMSn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

x′1
x′2

x′HMS

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f
(

x′1
)

f
(

x′2
)

...
f
(
x′HMS

)

⎤
⎥⎥⎥⎦ (6)

Step 4. Improvement of a new harmony.
While the probability of HMCR with a value between 0 and 1 is to select a value from the

existing values in the HM, (1-HMCR) value is the ratio of a random value selected from the
possible value ranges. The new harmony is obtained with the help of Equation (7).

xijnew =

⎧⎨
⎩

xijnew ∈
{

xij; i = 1, , 2, · · · , HMS
}

ifrnd < HMCR

xijnew ∈
{[

min(xij), max(xij)
]
; i = 1, 2, . . . HMS

}
otherwise

(7)

It is decided by the PAR parameter whether the toning process can be applied to each selected
decision variable with the possibility of HMCR or not as given in Equation (8).

xijnewpitch =

{
Yes rnd < PAR
No otherwise

(8)

In Equation (8), rnd is generated randomly between U(0, 1). If this random number is smaller
than the PAR value, this value is changed to the closest value to it. If the tonalization will be
made for each xijnew decision variable and the value of xijnew is assumed to be the kth value
within the vector of the value variable, the new value of xijnew(k) is xij ← xij(k + m) , and
m ∈ {· · · ,−2,−1, 1, 2, · · ·} is the neighboring index.
Step 5. Updating the harmony memory.

If the new harmony vector is better than the worst vector in the HM, the worst vector is
removed from the memory, and the new harmony vector is included in the HM instead of the
removed vector.
Step 6. Stop condition check.

Steps 4–6 are repeated until the termination criteria are met. Possible values for HMCR and
PAR in literature are between 0.7–0.95 and 0.05–0.7, respectively [17].

3. Proposed Method

Although the Holt method is used as an efficient forecasting method, it has many
problems that are obvious and need to be resolved. The first of these problems is the
determination of initial trend and level values. The second problem of the Holt method
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is that the trend and level update formulas are only based on a lag. To avoid these
problems and increase the forecasting performance of the Holt method, the advantages
and innovations of the proposed method are given step by step as below:

• The smoothing parameters are varied from observation to observation using first-order
autoregressive equations;

• The optimal parameters of the Holt method are determined with HSA;
• The forecasts are obtained by the Sub-sampling Bootstrap method.

The algorithm of the proposed method is also given in Algorithm 2.

Algorithm 2 The algorithm of the proposed method

Step 1. Determine the parameters of the training process:
• # observation of test set: ntest;
• HMS;
• HMCR;
• PAR;
• # bootstrap samples: nbst;
• bootstrap sample size: bss.

Step 2. Select bootstrap samples from the training set randomly.
Steps from 2.1. to 2.2 are repeated nbst times. x∗t,j presents jth bootstrap time series.

Step 2.1. Select a starting point of the block (spb) as an integer from a discrete uniform
distribution with parameters [1, ntrain-bss+1].
Step 2.2. Create bootstrap time series as given in Equation (9).

x∗t,j =
{

xspb, xspb+1, . . . , xspb+bss−1

}
, j = 1, 2, . . . nbst (9)

Step 3. Apply regression analysis to determine the initial bounds for level (L(0)) and trend (B(0))
parameters by using x∗t,j bootstrap time series as the training set by using Equations (10)–(12).

X = [1 1 · · · 1; 1 2 · · · bss]′bss∗2 (10)

Y = x∗t,j =
[

xspb, xspb+1, . . . , xspb+bss−1

]
′ (11)

β̂ =

[
β̂0
β̂1

]
= (X′X)−1X′Y (12)

(L(0) ∈ [
β̂0/2, 2β̂0

]
) and trend (B(0) ∈ [

β̂1/2, 2β̂1
]
)

Step 4. HSA is used to obtain the optimal parameters of the Holt method with autoregressive
coefficients for each bootstrap time series. Steps 4.1 and 4.4 are repeated for each bootstrap time
series.
Step 4.1. Generate the initial positions of HSA. The positions of harmony are
L(0), B(0), λ1(0), λ2(0), φ11, φ12, φ21 and φ22.

L(0) and B(0) are generated from U
(

β̂0/2, 2β̂0
)

and U
(

β̂1/2, 2β̂1
)
, respectively. λ1(0),

λ2(0), φ11 and φ21 are generated from U(0, 1). φ12 and φ22 are generated from U(−1, 1). The
creation of the harmony memory for the proposed method is given in Equation (13), and the
parameters that correspond to kth harmony are given in Table 2.

HM =

⎡
⎢⎢⎢⎣

x1
1 x2

1 x3
1 · · · x8

1

x1
2 x2

2 x3
2 · · · x8

2

...
...

...
...

...
x1

HMS x2
HMS x3

HMS · · · x8
HMS

⎤
⎥⎥⎥⎦ (13)
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Algorithm 2 Cont.

Step 4.2. According to the initial positions of each harmony, fitness functions are calculated. The
root of mean square error (RMSE) is preferred to use as a fitness function and is calculated as
given in Equation (14).

fi = RMSEi =

√√√√ 1
bss

bss

∑
t=1

(
x∗t,j − x̂∗t,j

)2
, i = 1, 2, . . . , HMS (14)

In Equation (14), x̂[?]t,j is the output for jth bootstrap time series data and kth harmony. x̂∗t,j is
obtained by using Equations (15)–(19).

λ1(t) = φ11 + φ12λ1(t − 1) (15)

λ2(t) = φ21 + φ22λ2(t − 1) (16)

L(t) = λ1(t)x∗t,j + (1 − λ1(t))(L(t − 1) + B(t − 1)) (17)

B(t) = λ2(t)(L(t)− L(t − 1)) + (1 − λ2(t))(B(t − 1)) (18)

x̂∗t+1,j = L(t) + B(t) (19)

Obtain RMSE values for each harmony, and save the best harmony which has the smallest
RMSE.
Step 4.3. Improve new harmony.

HMCR shows the probability that the value of a decision variable is selected from the current
harmony memory. (1-HMCR) represents the random selection of the new decision variable from
the existing solution space. x′i shows the new harmony, obtained as in Equation (20).

x′i =
{

x′i ∈
{

xi
1, xi

2, · · · , xi
HMS }

i f rand < HMCR
x′i ∈ X, otherwise

(20)

After this step, each decision variable is evaluated to determine whether a tonal adjustment is
necessary. This is determined by the PAR parameter, which is the tone adjustment ratio. The new
harmony vector is produced according to the randomly selected tones in the memory of harmony
as given in Equation (21). Whether the variables are selected from the harmonic memory is
determined by the HMCR ratio, which is between 0 and 1.

x′i =
{

x′i + rnd(0, 1) ∗ bw i f rnd < PAR

x′i otherwise
(21)

bw is a bandwidth selected randomly; rnd (0; 1) represents a random number generated
between 0 and 1.
Step 4.4. Harmony memory update.

In this step, the comparison between the newly created harmonies and the worst harmonies in
the memory is made in terms of the values of the objective functions. If the newly created
harmony vector is better than the worst harmony, the worst harmony vector is removed from the
memory, and the new harmony vector is substituted for it.

Calculate RMSE values for jth bootstrap time series data and kth harmony. Find the best
harmony which has the minimum RMSE value for jth bootstrap time series data.
Step 5. Calculate the forecasts for test data by using the best harmony for each bootstrap sample
and their statistics.

The obtained forecasts from the updated Equations for jth bootstrap time series at t time is
represented by Fi

t . Forecasts and their statistics are calculated just as in Table 1. In addition, the
flowchart of the proposed method is given in Figure 1.
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Table 1. Forecasts for bootstrap samples.

Time (t)/Bootstrap
Sample

1 2 . . . nbst Median
Standard
Deviation

1 F1
1 F2

1 . . . Fnbst
1 F̂1 SE

(
F̂1)

2 F1
2 F2

2 . . . Fnbst
2 F̂2 SE

(
F̂2)

...
...

... . . . ...
...

...
ntest F1

ntest F2
ntest . . . Fnbst

ntest F̂ntest SE
(

F̂ntest)

Figure 1. The flowchart of the proposed method.

Table 2. The parameters corresponding to kth harmony.

x1
k x2

k x3
k x4

k x5
k x6

k x7
k x8

k

L(0) B(0) λ1(0) λ2(0) φ11 φ12 φ21 φ22

4. Applications

To evaluate the performance of the proposed method, the proposed method is applied
to the Istanbul Stock Exchange (BIST) data sets observed daily between the years 2000 and
2017 with different test lengths as 10 and 20. To evaluate the performance of the proposed
method, the proposed method is compared with the ATA method proposed by [8], Holt
method, fuzzy regression functions approach (FF) proposed by [18], random walk (RW),
multilayer perceptron artificial neural networks (MLP-ANN) and adaptive neural-fuzzy
inference systems (ANFIS) method proposed by [19]. For a fair comparison of the methods,
we used both statistical and computational intelligence forecasting methods. While the
random walk was used as a simple forecasting method, the Holt and ATA methods were
used as statistical forecasting methods. Moreover, MLP-ANN, ANFIS, and FF methods
were used as computational intelligence forecasting methods. In the analysis process, the
number of bootstrap samples and the bootstrap sample size is given as 100 for each data
set. The RMSE and MAPE criteria were used for the comparison of the methods. The mean
absolute percentage error (MAPE) is one of the most widely used measures of forecast
accuracy, due to its advantages of scale-independency and interpretability [20]. The use of
RMSE is very common, and it is considered an excellent general-purpose error metric for
numerical predictions [21]. Table 3 gives the all-analysis results for each data set for the
RMSE criterion when the length of the test set is 10.
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Table 3. All analysis results for each data set for RMSE criterion when the length of the test set is 10.

Data ATA Holt FF RW MLP-ANN ANFIS PP

BIST2000 279.79 296.17 310.42 286.15 343.9 619.21 278.82
BIST2001 204.84 237.69 272.31 206.5 1106.89 710.82 189.75
BIST2002 325.08 319.78 357 331.87 620.78 399.13 332.13
BIST2003 354.79 355.55 380.82 349.79 1859.21 420.75 328.25
BIST2004 315.62 315.79 390.15 325.69 1807.8 641.43 313.7
BIST2005 316.75 315.36 328.84 342.69 2071.98 559.2 304.98
BIST2006 354.03 348.58 352.07 356.81 423.98 389.3 346.98
BIST2007 768.29 734.55 673.14 734.14 897.02 550.97 728.92
BIST2008 283.99 277.2 256.98 253.67 444.74 340.41 260.52
BIST2009 505.05 483.8 558.06 551.97 3117.96 736.78 473.4
BIST2010 577.68 594.9 583.52 591.88 725.15 588.36 576.4
BIST2011 697.64 710.04 849.68 726.5 1733.88 1037.87 737.83
BIST2012 355.5 350.46 368.26 358.17 3237.45 406.68 358.15
BIST2013 1905.64 1898.61 2105.05 1922.14 4369.35 2104.39 1871.45
BIST2014 1068.36 1025.18 1177.56 1059.97 2631.25 1435.01 1036.6
BIST2015 772.84 767.71 758.89 779.07 1080.69 714.69 751.41
BIST2016 431.86 433.52 450.67 434.01 520.1 424.34 652.25
BIST2017 861.26 869.23 1113.74 911.21 3777.62 1283.75 827.15

In Table 3, the proposed method has 59% success compared with the other methods in
terms of the RMSE criterion when the test set is 10. To see the actual comparison results of
the proposed method with other methods, we compare the rank values of each method
and obtain the average rank values. For this purpose, we rank each method according to
their success status for each time series analyzed. In such a ranking, the method with the
lowest RMSE value will be named as the best method, and the rank value of it will be taken
as 1. For this purpose, all methods were calculated according to rank order considering the
RMSE criterion when the length of the test set is 10, and average rank values were obtained
as in Figure 2.

Figure 2. The average rank values of each method for RMSE criterion when the length of the test set
is 10.

From Figure 2, it is seen that the proposed method has a minimum average rank value
compared with other methods, and the proposed method is the best method for RMSE
criterion when the length of the test set is 10. In addition, Table 4 gives the all-analysis
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results for each data set for the MAPE criterion given in Equation (22) when the length of
the test set is 10.

MAPE =
1

ntest

ntest

∑
t=1

∣∣∣∣Xt − X̂t

Xt

∣∣∣∣ (22)

Table 4. All-analysis results for each data set for MAPE criterion when the length of the test set is 10.

Data ATA Holt FF RW MLP-ANN ANFIS PP

BIST2000 0.0222 0.0233 0.0268 0.0236 0.0293 0.0507 0.0223
BIST2001 0.011 0.0124 0.0161 0.0112 0.0818 0.0506 0.0103
BIST2002 0.0253 0.0241 0.0267 0.0256 0.043 0.0287 0.0256
BIST2003 0.0163 0.0163 0.0178 0.0162 0.1008 0.0208 0.0154
BIST2004 0.0099 0.01 0.0129 0.0103 0.0735 0.0241 0.0099
BIST2005 0.0068 0.0069 0.0069 0.0074 0.0519 0.0126 0.0066
BIST2006 0.0068 0.0066 0.007 0.0067 0.0082 0.0076 0.0073
BIST2007 0.0098 0.01 0.0087 0.0095 0.0138 0.008 0.0095
BIST2008 0.0082 0.0075 0.0073 0.0071 0.0154 0.0093 0.0075
BIST2009 0.0067 0.0066 0.0077 0.0076 0.0595 0.0114 0.0071
BIST2010 0.006 0.0064 0.0058 0.0063 0.0085 0.0068 0.0061
BIST2011 0.0113 0.0116 0.0137 0.0118 0.0316 0.0165 0.0119
BIST2012 0.004 0.0039 0.004 0.0039 0.041 0.0042 0.004
BIST2013 0.022 0.0219 0.0254 0.0223 0.0608 0.0258 0.0216
BIST2014 0.0092 0.009 0.0101 0.0094 0.0304 0.0118 0.0089
BIST2015 0.0083 0.0082 0.0078 0.0082 0.0109 0.0087 0.0082
BIST2016 0.0049 0.0048 0.0047 0.0048 0.0051 0.0046 0.0062
BIST2017 0.0052 0.0053 0.0076 0.0058 0.0318 0.0092 0.0049

In Table 4, the proposed method has 39% success compared with the other methods in
terms of the MAPE criterion when the test set is 10. Looking at the rank evaluation results
for the MAPE criterion when the test set length is 10 given in Figure 3, it is seen that the
proposed method is in third place among all methods.

Figure 3. The average rank values of each method for MAPE criterion when the length of the test set
is 10.

Table 5 also gives the all-analysis results for each data set for the RMSE criterion when
the length of the test set is 20. In Table 5, the proposed method has a 61% success rate.
Considering the situations where the proposed method is not the best, it stands out as the
second-best method in many time-series analyses. Moreover, the rank evaluation results
for all methods for the RMSE criterion when the length of the test set is 20 are given in
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Figure 4. In addition, Table 6 gives the all-analysis results for each data set for the MAPE
criterion when the length of the test set is 20.

Table 5. All-analysis results for each data set for RMSE criterion when the length of the test set is 20.

Data ATA Holt FF RW MLP-ANN ANFIS PP

BIST2000 680.61 680.33 713.87 682.74 2868.94 825.58 681.58
BIST2001 315.19 326.20 372.36 312.96 1030.82 540.36 296.32
BIST2002 388.51 389.17 390.47 393.48 392.16 432.21 383.70
BIST2003 313.25 339.08 456.83 311.18 2201.77 558.18 288.38
BIST2004 329.12 329.30 366.48 335.16 1479.79 554.62 319.35
BIST2005 426.84 415.74 496.57 433.66 2940.74 632.79 463.17
BIST2006 539.71 551.20 581.55 547.72 742.07 625.98 556.77
BIST2007 814.90 783.40 789.45 774.91 854.08 660.30 762.16
BIST2008 575.72 571.80 589.64 542.31 766.02 624.59 541.21
BIST2009 492.91 510.09 518.55 516.25 2794.96 623.04 492.17
BIST2010 867.04 921.85 885.97 850.14 1193.33 965.97 864.93
BIST2011 757.81 728.63 849.50 790.69 1141.08 772.13 774.14
BIST2012 592.96 564.85 605.32 544.81 5641.93 1224.80 517.44
BIST2013 1687.26 1680.69 1888.99 1709.07 2453.56 1821.80 1669.36
BIST2014 1318.63 1315.91 1323.78 1315.91 1936.51 1610.11 1318.91
BIST2015 1242.98 1263.71 1223.85 1225.07 2322.70 1189.75 1213.33
BIST2016 650.22 662.26 648.96 599.52 699.81 728.46 604.62
BIST2017 1010.73 1011.04 1165.70 1031.37 2981.64 1134.55 833.03

Figure 4. The average rank values of each method for RMSE criterion when the length of the test set
is 20.

When the analysis results given in Table 6 are examined, even in the analyses in
which the proposed method is not the best method, the proposed method often appears
to be either the second-best or third-best method. We examine rank values to verify and
highlight these results given in Figure 5.

Considering the average rank obtained from all methods, it can be said that the
proposed method for the MAPE criterion has more successful results than other methods.
As a final comment, when all analysis results are examined, it can be said from both average
rank results and analysis results that the proposed method is a more successful method
than other methods used in the comparison.
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Table 6. All-analysis results for each data set for MAPE criterion when the length of the test set is 20.

Data ATA Holt FF RW MLP-ANN ANFIS PP

BIST2000 0.0540 0.0547 0.0615 0.0557 0.3091 0.0748 0.0546
BIST2001 0.0176 0.0182 0.0212 0.0175 0.0746 0.0355 0.0178
BIST2002 0.0261 0.0263 0.0275 0.0272 0.0260 0.0311 0.0269
BIST2003 0.0145 0.0147 0.0219 0.0146 0.1216 0.0242 0.0144
BIST2004 0.0104 0.0101 0.0121 0.0108 0.0587 0.0184 0.0107
BIST2005 0.0087 0.0082 0.0097 0.0091 0.0744 0.0134 0.0096
BIST2006 0.0098 0.0102 0.0109 0.0102 0.0143 0.0124 0.0105
BIST2007 0.0113 0.0108 0.0106 0.0104 0.0127 0.0095 0.0105
BIST2008 0.0180 0.0175 0.0193 0.0164 0.0223 0.0183 0.0167
BIST2009 0.0076 0.0079 0.0080 0.0080 0.0529 0.0097 0.0074
BIST2010 0.0101 0.0112 0.0103 0.0099 0.0129 0.0125 0.0100
BIST2011 0.0118 0.0110 0.0131 0.0124 0.0188 0.0117 0.0121
BIST2012 0.0063 0.0061 0.0064 0.0058 0.0728 0.0142 0.0056
BIST2013 0.0180 0.0179 0.0206 0.0182 0.0278 0.0202 0.0180
BIST2014 0.0121 0.0121 0.0122 0.0122 0.0203 0.0151 0.0120
BIST2015 0.0140 0.0145 0.0133 0.0135 0.0285 0.0129 0.0134
BIST2016 0.0065 0.0065 0.0059 0.0058 0.0068 0.0067 0.0058
BIST2017 0.0073 0.0073 0.0088 0.0077 0.0246 0.0087 0.0065

Figure 5. The average rank values of each method for MAPE criterion when the length of the test set
is 20.

5. Conclusions and Discussion

Although the Holt method is used as a traditional time series forecasting method, it is
known that it has some problems, such as the determination of the initial trend and level
values and determining the trend and level update formulas. In this study, to overcome
these problems, the parameters of the Holt method are optimized by using HSA, the
smoothing parameters are varied by using first-order autoregressive equations, and the
forecasting performance is improved by using the subsample bootstrap method.

When comparing the classical Holt method and the proposed method, it is clear
that time-varying smoothing parameters and HSA provide important improvements in
the forecasting results. The proposed method produces smaller RMSE values than the
classical Holt method by about 70% in all analyses. If we compare the computation time of
the proposed method with the classical Holt method, the proposed method needs more
computation time because of using bootstrap and HSA algorithms, as expected. However,
the computation time of the proposed method is very close to computational intelligence
forecasting methods, and the computation time is not a problem for today’s personal
computers. For the BIST series, the computation time is about three minutes.

72



Forecasting 2021, 3

In future studies, different artificial intelligence optimization techniques can be used
to determine the optimal parameters of the Holt method, or the forecasts can be obtained
by different bootstrap methods.
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Abstract: This article presents a real-time data analysis platform to forecast water consumption with
Machine-Learning (ML) techniques. The strategy fully relies on a web-oriented architecture to ensure
better management and optimized monitoring of water consumption. This monitoring is carried
out through a communicating system for collecting data in the form of unevenly spaced time series.
The platform is completed by learning capabilities to analyze and forecast water consumption. The
analysis consists of checking the data integrity and inconsistency, in looking for missing data, and
in detecting abnormal consumption. Forecasting is based on the Long Short-Term Memory (LSTM)
and the Back-Propagation Neural Network (BPNN). After evaluation, results show that the ML
approaches can predict water consumption without having prior knowledge about the data and the
users. The LSTM approach, by being able to grab the long-term dependencies between time steps of
water consumption, allows the prediction of the amount of consumed water in the next hour with an
error of some liters and the instants of the 5 next consumed liters in some milliseconds.

Keywords: load curve; unevenly spaced time series; long short-term memory (LSTM); back-
propagation neural network (BPNN); machine learning; water consumption

1. Introduction

Water consumption analysis is crucial as it assists building managers and operators to
adopt better strategies to plan usages [1]. Forecasting is an important part for continuous
monitoring and efficient management of consumption [2]. Furthermore, an accurate fore-
casting of consumption is essential for efficiently detecting and avoiding water leakages and
wastes in distribution networks and installations [3]. Various methods to predict near-real-
time water consumption and demand have been investigated. A complete literature review
has been proposed in [4]. Among then, statistical methods, filtering and signal processing
techniques, fuzzy logic, intelligent techniques and combinations of several models have
shown more or less success. More recently, innovative models such as Machine-Learning
(ML) techniques showed superior results when compared with classical models. Specifi-
cally, deep neural networks have emerged as efficient forecasting approaches. Regardless
of the method, the robustness of the forecasting performance mainly depends on not only
on the past water demand data but on contextual and environmental information (weather
conditions, well-identified user profiles, knowledge about the architecture of the water
distribution system, etc.), on redundancy of measurements and on the short, medium and
long-term planning decisions to be addressed. Water demand forecasting remains a major
research problem when no information is available behind the consumption of a single
water meter.

This article presents a real-time data analysis platform to forecast water consump-
tion with ML techniques only based on past water consumption, i.e., with no prior and
contextual information. The strategy fully relies on a web-oriented architecture to ensure
better management and optimized monitoring of water consumption [5]. It is a complete
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Advanced Metering Infrastructure (AMI) based on integrated Internet of Things (IoT) tech-
nologies [6] that offers the possibility of collecting, analyzing and monitoring daily water
consumption [7]. To predict water consumption, we also propose a framework based on
ML algorithms such as the Long Short-Term Memory (LSTM) [8] and the Back-Propagation
Neural Network (BPNN). The water consumption data are stored as unevenly spaced time
series constructed from the collected data issued from distributed smart meters. Then,
time series are handled in two different ways, with an explicitly and an implicitly sam-
pling [9]. With explicitly sampled time series, the ML approaches predict the quantity of
water consumed in the next coming hours [10]. With implicitly sampled time series, the
ML approaches predict the instants when the next liters will be consumed. Both cases
are achieved using the LSTM [8,11] and the BPNN [12]. The accuracy and usability of the
forecast are evaluated and compared. This study can be generalized for any other type of
consumption such as electricity and gas for example.

The rest of this article is organized as follows: Section 2 briefly presents appropriate ML
approaches for analyzing consumption data with different forecasting horizons. Section 3
details the architecture of the AMI for collecting data. Consumption data are presented
in terms of water volumes, indexes and dates of events. In other words, these data are
considered to be unevenly spaced time series or Load Curves (LC). A preprocessing strategy
is also developed in this section to handle and to compensate for missing and abnormal
water consumptions. The two ML strategy, for forecasting the number of consumed liters
in the next hour and the instants of the future consumed liters, are presented in Section 4.
This section also includes some experimental tests and evaluations. Finally, concluding
remarks are provided in Section 5.

2. Machine-Learning Algorithms for Water Consumption Forecasting

2.1. Forecasting with Machine-Learning Algorithms

Short-term forecasts, whether in water [2,13], in electricity [14,15] or even in gas [16],
have been reported in the literature with a variety of approaches and with different horizons.
However, very few of them have treated individual customers in domestic buildings [8]
with high resolution. In fact, the approach proposed in [17] is based on a model of non-
homogeneous Markov chains allowing knowledge of the dynamics of water consumption.
This model can predict behaviors of daily consumption based on other parameters such as
exogenous factors represented by the climate [18], the day type, etc. Another study [19]
deals with the water demand forecasting on weekly and hourly scales with an autoregres-
sive model based on a periodic component on time series data to refine daily demand
values and hours. This prediction uses a multitude of period models. Most of these studies
focus on forecasting consumption by introducing other parameters using different predic-
tive models depending on the nature of the input data and the sought objectives. Indeed,
we note that the provided forecast horizon mainly depends on the input databases of the
models. These database generally have annual, seasonal, monthly, weekly, daily or hourly
resolutions. Most of the work, even based on intelligent techniques, are based on additional
information. For example, the study in [20] uses support vector machines with monthly
water demands, number of users, and total water consumption bills. Ref. [21] discusses res-
idential water demand management based on pricing, restriction policies, climate, weather
and demographic characteristics. For now, there is no study based on learning architectures
such as direct or recurrent BPNN, Hopfield networks or LSTM to predict the water demand
based on historical data from only one single measurement point.

On the other side, we propose more precise forecasts with data issued from smart
meters with high resolution and no additional contextual information. In this paper, we
focus on forecasting water consumption from a private building without any knowledge
about appliances using water and the number of inhabitants.
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2.2. Forecasting Framework Based on LSTM

The LSTM [8] is a special type of recurrent neural network [8]. It is a sequential learn-
ing model which can establish temporal correlations between a previous instant t − 1 and
a current instant t. Consequently, the LSTM seems the most suitable model for forecasting
consumption processes, given its ability to deduce the intrinsic daily consumption resident
routines. The LSTM is based on the Back-Propagation Through Time (BPTT) learning
algorithm [8] to calculate the weights. It is made up of units called memory blocks. Each
memory block contains an “input gate”, an “output gate” and a “forget gate”, as shown in
Figure 1.

Figure 1. The LSTM unit architecture.

The behavior of each gate is represented by an equation. The input gate i(t) given
in (1) consists of transmitting the output h at the previous instant t − 1 and the input x at
instant t through a sigmoid function σ(x) = 1

1+e−x :

i(t) = σ(Wi.[h(t − 1), x(t)] + bi) (1)

A hyperbolic tangent function is applied to the input and the output data from the
previous step to create a vector of a new value C̃(t) to be an internal state. The update of
the internal state is carried out through:

C̃(t) = tanh(Wc.[h(t − 1), x(t)] + bc) (2)

The forget gate f (t) is calculated with another sigmoid function that takes for its input
the output h(t − 1) and the input x(t):

f (t) = σ
(

Wf .[h(t − 1), x(t)] + b f

)
(3)
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Finally, the output gate O(t) described by (5) is based on the state C(t). This state is
updated with a hyperbolic tangent multiplied with the output of a sigmoid:

C(t) = f (t)× C(t − 1) + i(t)× C̃(t) (4)

O(t) = σ(Wo.[h(t − 1), x(t)] + bo) (5)

Wi, Wc, Wf , Wo, and bi, bc, b f , bo represent respectively the weights and the biases at
the different levels in the LSTM memory block. They are adjusted iteratively with the
BPTT learning algorithm [8] until convergence. At each step of the learning process, the
performance of the LSTM can be evaluated by an error such as the Root Mean Square Error
(RMSE) [22] where yi, ỹi and n are respectively the reference, the estimated value and the
number of data:

RMSE =

√
1
n

n

∑
i=1

(yi − ỹi)2 (6)

This learning approach will be used in the following to forecast short-term
water consumption.

3. Proposed Architecture and ML Framework to Collect and Analyze Water
Consumption Data

3.1. Data Collecting with Smart Meters

All the data used in this study are collected in an online database from smart water
meters. Smart meters are IoT devices that are appropriate to build a sustainable and
advanced consumption data system [23]. Most water distributors collect data from smart
meters with a resolution of several minutes, for example every 15, 30 or 60 min, or even
once a day [5]. This implies that the capacities of smart water meters are clearly not fully
exploited [7]. This also means that the resolution of the consumption data is low. We
use smart meters with the communication strategy proposed and developed in [24] to
compress and to transmit the data with a very high resolution [7] according to industrial
specifications. This strategy allows the dating on the server side of each liter consumed
and reduces the energy consumption on the meter side. Indeed, emission duration that
consumes a lot of energy for the smart meters have been greatly reduced. This strategy
is embedded in the smart meters and transmits data in the form of frames with a Tmax
interval which does not exceed 5 min. This interval is completely adaptive and related to
the amount of consumed water [7]. Higher water consumption results in more data frames.
To guarantee the reception of frames with no missing data, a sliding window is proposed
which consists of RE = 6 packages. These packages are numbered and can be considered
to be independent broadcasts in the transmitted frame. This ensures the redundancy of the
data through successive frames. This principle is illustrated in Figure 2. The maximum
length of a frame, L f = RE × lp with lp the length of a package, is set depending on the
radio technology and frequency that are used. In our AMI, we chose a maximum value of
120 bytes for L f which is the limit of the frame size.
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Figure 2. Operating principle of the sliding window for ensuring the redundancy of transmitted data
from smart water meters through successive frames [7].

A web server receives all the transmitted frames from several smart meters. Here,
a script receives, decompresses, and retrieves the data from the frames for storage in an
SQL database [10]. This process runs continuously since 2014 and allows completion of the
database in real time and under real operating conditions. The database contains raw data
for each individual smart meter, i.e., the index which represents the volume of consumed
water in liter and the instant when each liter has been consumed in millisecond. This instant
is called a pulse or an event [7]. It is obvious that the data collected and stored according to
this platform are of high resolution and therefore precisely represent consumption habits.

At any time, it is possible to extract from the database with another script, the data
related to a well-defined smart meter by specifying the beginning and the end of a period.
This is called a set of row data.

3.2. Data Description

The collected data are of a great value and must be analyzed. For this, the raw data
must interpreted and therefore associated with some theoretical concepts and models.
Among them are unevenly spaced time series or Load Curves (LC).

3.2.1. Water Consumption Time Series

A time series is a sequence of temporal data [25]. The time stamp of the series can be
explicit such that a date is given for each data value or controlled by the appearance of the
data represented by events perfectly dated. This is referred to as an unevenly spaced time
series [9] defined by S in (7). In the context of water consumption, an event corresponds to
each consumed liter and S is thus a sequence of scalar values of an incremented variable
Yi+1 = Yi + 1. S therefore corresponds to the raw data extracted from the previously
described platform for one smart meter and is the result of a process observed during a
period T. The platform and AMI proposed by [7] offer the possibility of recording the
instants of consumption of each liter.

S = [Y1(t1), Y2(t2), ..., Yi(ti), ..., YT(tT)] (7)

3.2.2. Cumulated Water Consumption: The Index and the Load Curve

Each Yi represents the index of a smart meter which is the cumulated volume of
consumed water at each instant ti. The time between two instants ti and ti−1 is not constant.
The evolution of Yi during a period T is called a cumulative LC. An example is provided
by Figure 3, it is an alternative representation of S. LC are very useful for analyzing and
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comparing consumption over days, weeks, months. We than speak of daily LC, weekly LC
or monthly LC.

3.2.3. Sampled Water Consumption Data Series

The data collected from the platform is unevenly spaced in time. Each consumed
liter represents an event, the process of water consumption can also be seen as a process
generating dated event. To make the data compliant with most of the popular data analysis
tools and concepts, a sampling is proposed to make the series evenly spaced in time. The
sampling can be made in minutes or in hours and results in a sequence of 1440 data per
day or 24 data per day.

Figure 3. Example of a cumulative load curve (LC) which shows the raw data by red dots unevenly
spaced in time as recorded and transmitted by a smart sensor (the black curve is an interpolation)
and with results from the sequence of events corresponding to each consumed liter.

We also chose to derivate the cumulative LC in order work with sequences of n data
that represents the number of liters consumed in each minute or hour. Consequently, a
natural order of appearance constitutes an implicitly sampled chronological time series
such as:

C = [y1, y2, y2, ...yi, ...yn] (8)

3.3. Data Integrity Checking and Interpolation

Under real operating conditions, the integrity of the data must be checked. Indeed,
failures or malfunctions can lead to missing raw measurements in the database. We
therefore propose a preprocessing step of the raw data to verify the data and to complete
by interpolation eventually missing data. The whole proposed preprocessing strategy is
represented by Figure 4. The raw time series is extracted from the database for each day.
Since a forecast of water consumption is targeted with an accuracy of one hour, the data are
sampled with a resolution of minute (i.e., 1440 mn per day). This preprocessing is achieved
separately for each day. Then, periods without consumed liters, i.e., events, are identified
and corrected by interpolation.

Data analysis and forecasting with ML algorithms needs to be achieved with no
missing or inconsistent values. It is thus necessary to identify and separate abnormal
consumption (such as water leakage, occasional consumption) which can influence water
consumption) from normal and usual consumption. Abnormal water consumption is
always due to an unusual and occasional behavior from the users [25]. The detection
of abnormal water consumption is achieved as follows. A reference cumulative LC is
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calculated for each day of the week. This reference LC is completed with a minimum
LC and a maximum LC for each day. Generally, a load profile for one day j is strongly
correlated [26] with that for the previous day j − 1 and to the day for the previous week
(d − 7). The reference cumulative LC is calculated with:

Cj(ti) = avg(Cj−7(ti), Cj−1(ti)) (9)

Figure 4. Global architecture of the water consumption LC preprocessing.

The minimum and a maximum LC for each day are calculated by the same way by
changing the average avg() function in (9) by min() and max() functions. The detection of
normal consumption is based on the criteria given by:

abs

[
yj(t)− avg(

n

∑
i=1

(yj(t)))

]
≥ α × std(

n

∑
i=1

(yj(t)) (10)

where std() is standard deviation for each value of the LC and α is a numerical variable
chosen empirically, in our case α = 5. Additional tests can be achieved to see if the
instantaneous consumption is out of the range defined by the minimum and maximum
LC for the same day of the week and allow the detection of any additional consumption
that deviates significantly from the "normal consumption" [10]. It can be noticed that the
detection of abnormal and unusual consumptions is only based on water consumption data
and some statistical indicators [10]. Abnormal and unusual consumptions are corrected by
an interpolation during their duration and will not be taken into account in the learning
processes. At the end, we obtain a time series C̄j sampled in minutes which corresponds to
the LC Cj without loss of data and without abnormal and unusual consumptions.
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4. Water Consumption Forecasting

To evaluate the efficiency of the platform and the ML techniques, we focused on the
water consumption of a private building. The water consumption is collected from a smart
meter which is a single measurement point for the whole building. These are the only data
available from the building and the users. The objective consists of forecasting the number
of liters of consumed water with a horizon of one hour and to predict the instant of the
next consumed liter by different ML approaches.

All the algorithms have been developed with the Matlab R2018b environment on
a desktop computer with 4 cores (Intel i7 processors at 3.6 GHz) and 16 GB of memory.
Experiments and tests have been carried out under the same conditions to find the values of
the learning parameters by trial and error (learning rate value, number of neurons, number
of hidden layers, type of activation function) to provide the smallest error.

4.1. Hourly Water Consumption Forecasting

A three-month database (from October 2018 to December 2018) has been chosen
to forecast the number of consumed water liters in the next coming hour. The data
sequence is resampled with a resolution of one hour and is represented by Figure 5. This
consumption has been recorded in a domestic house in France occupied by two people
who consume on average 194 L per day (l/d). Household information will not be used by
the ML approaches.

Figure 5. Water consumption time series: (a) LC from 1 October to 31 December 2018, (b) close-up
view of the same time series for the first 24 h, (c) cumulative water LC over the whole period,
(d) number of liters consumed per day.

Two ML approaches have been implemented for a one-hour water consumption
forecasting, the LSTM and the BPNN. For this case, the series represented by Figure 5c
is the input of the forecast approaches. With the LSTM, input x(t) in Equations (1), (2),
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(4) and (5) is the preprocessed cumulative LC Cj. We use the Adam algorithm, i.e., an
optimization stochastic gradient descent for training deep learning approaches [27] to
handle the noisy data. Indeed, the Adam algorithm is suitable for data with a lot of noise.
We chose a learning rate value of 10−4 for the LSTM and 10−5 for the BPNN model and the
training ends with a maximum number of epochs chosen at 100.

The forecast performances with the two learning approaches are evaluated with the
RMSE and results are presented in Table 1. It can be seen that the LSTM can forecast the
water consumption in the next hour with a precision of 6 L while the BPNN predicts the
future consumption with a precision of 24 L (the consumption range is approximately
between 1 to 50 L per days).

Table 1. Hourly prediction of water consumption in liters with the LSTM and BPNN.

LSTM BPNN

Hidden Layer number 2 3

Number of neurons 100/100 200/100/100

Activation function relu/relu relu/relu/relu

Train RMSE (l) 0.19 3.54

Test RMSE (l) 6.05 20.19

Total execution time (ms) 19.81 24.05

4.2. Forecasting Events of Water Consumption in Milliseconds

We also forecast the coming events, i.e., the instants when the next liters will be
consumed. For this purpose, we chose a dataset composed of 4321 events dated in mil-
liseconds, each representing the time difference between two consecutive liters. Obviously,
this dataset provides more detailed information about the water consumption than in the
previous experiment. The dataset has been recorded between December the 2nd to the
20st, 2018 and is represented by Figure 6. The dataset is divided into three subsets for the
learning of the LSTM and the BPNN, the training, validation and test subsets which are
respectively distributed in a percentage of the dataset: 60%, 0.3% and 40%. The param-
eters of two learning approaches are summarized in Table 2. Their input vector x(t) is
composed of the time difference between two successive consumed liters, i.e., the values of
δi represented by Figure 3. The Adam algorithm is also used her to optimize the learning
of the LSTM and BPNN which use the same parameters as in the previous experiment
optimization because the data are noisy. The learning rate is lr = 10−4. The training ends
when the maximum number of epochs, 100 in our case, has been reached.

The results of two learning approaches are provided in Table 2. The instant of the
next consumed liter of water is predicted respectively with an error (test RMSE) of 13 ms
and 48 ms respectively with the LSTM and the BPNN. In addition, the forecast of the
instant of the 5 next liters have also been calculated and are respectively estimated to
occur at instants 450,925, 450,800, 451,200, 451,500 and 451,300 milliseconds. In other
words, the next consumed liters have been correctly predicted on 21 December 21 (2018)
at 00:08:07.487, 00:15:38.287, 00:23:09.487, 00:30:40,987 and at 00:38:12.287. The accuracy
objective of the predicted instants is justified by industrial specifications.
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Table 2. Event prediction of water consumption in ms with the LSTM and BPNN.

LSTM BPNN

Hidden Layer number 2 1

Number of neurons 200/120 150

Activation function relu/relu relu

Train RMSE (106 ms) 0.33 0.39

Test RMSE (106 ms) 0.13 0.48

Total execution time (s) 37.73 24.71

Figure 6. Time representation of the water consumption, (a) Time gap between 4321 events (i.e., con-
sumed liters) from 02/12/2018 09:11:21.750 until 20/12/2018 23:23:40.625, (b) Cumulated duration δ

as a function of consumed liters.

4.3. Discussion on the Hourly and Events Water Consumption Forecasting

Two forecasting tests have been experimented with the proposed water consumption
collecting platform, i.e., hourly and event forecasting. The first case consists of predicting
the amount of water consumed during the first hour that follows the period of the collected

84



Forecasting 2021, 3

dataset. In the second case, the instant of the next consumed liters is predicted. In both
cases, an LSTM and a BPNN architectures have been designed. Their performance has
been evaluated under the same conditions and have been compared in terms of precision,
computational resources and execution time. With very close resources and approximately
the same execution time, the forecasting error obtained with LSTM is 3 times lower than
with the BPNN. In both experiments, the LSTM is more appropriate than the BPNN to
grab the temporality of the data sting tests have been experimented with the proposed
water consumption collecting platform, i.e., hourly and event forecasting. This is because
of its property of selectively remembering patterns in time series for long durations of time.
Another reason is that the LSTM can better take into account the time-dependent structure
of the data, i.e., the non-stationarity of the water data. The LSTM is therefore well suited to
handle precise datasets over large periods of time such as water consumption.

5. Conclusions

In this study, we presented a web-oriented platform to collect in real-time water
consumption data and to predict them with machine-learning approaches. The data are
issued from smart meters and are transmitted to a server to be handled as unevenly
spaced time series with high resolution, i.e., in milliseconds. Data sets are then extracted,
preprocessed and eventually sampled to be used by machine-learning algorithms to predict
the next consumptions. The preprocessing of the data consists of detecting missing values
and in identifying abnormal consumption using a reference load curve for each day of
the week. Then, machine-learning approaches such as the LSTM and BPNN have been
implemented to forecast the next consumption. Two tests have been experimented for
hourly and event water consumption forecasting in a private building. The first case
consists of predicting the amount of water consumed during the hour that follows the
period of the collected data. In the second case, the instants of the next consumed liters
are predicted. By evaluating the performance of the LSTM and BPNN, it can be seen that
the LSTM is more accurate than the BPNN. Indeed, the LSTM can predict the amount of
consumed water in the next coming hour with an error of less than 6 L and is able to predict
the instants of the 5 next consumed liters with an error of less than 15 ms. This can be
considered to be very accurate prediction in the context of water consumption measurement
and forecasting. This web-oriented platform endowed by its learning capabilities is generic
and can be extended to other additional smart meters to measure and predict other variables
such as power or gas consumptions.
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Abbreviations

The following abbreviations are used in this manuscript:

AMI Advanced Metering Infrastructure
BPNN Back-Propagation Neural Network
BPTT Back-Propagation Through Time
LC Load Curve
LSTM Long Short-Term Memory
ML Machine Learning
RMSE Root Mean Square Error
SQL Structured Query Language
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Abstract: The increasing penetration of Renewable Energy Sources (RESs) in the energy mix is
determining an energy scenario characterized by decentralized power production. Between RESs
power generation technologies, solar PhotoVoltaic (PV) systems constitute a very promising option,
but their production is not programmable due to the intermittent nature of solar energy. The coupling
between a PV facility and a Battery Energy Storage System (BESS) allows to achieve a greater
flexibility in power generation. However, the design phase of a PV+BESS hybrid plant is challenging
due to the large number of possible configurations. The present paper proposes a preliminary
procedure aimed at predicting a family of batteries which is suitable to be coupled with a given PV
plant configuration. The proposed procedure is applied to new hypothetical plants built to fulfill
the energy requirements of a commercial and an industrial load. The energy produced by the PV
system is estimated on the basis of a performance analysis carried out on similar real plants. The
battery operations are established through two decision-tree-like structures regulating charge and
discharge respectively. Finally, an unsupervised clustering is applied to all the possible PV+BESS
configurations in order to identify the family of feasible solutions.

Keywords: battery energy storage system; battery sizing; photovoltaic power production;
performance ratio; electrical load; decision tree; k-means clustering

1. Introduction

The rising penetration of Renewable Energy Sources (RESs), together with the pro-
gressive digitization of grids, is leading to an energy scenario where power production is
increasingly decentralized [1] and those who were once only energy consumers become
producers themselves and are called “prosumers” [2,3].

Nowadays, RESs are widely connected to distribution grids thanks to the advantages
they offer: clean energy and additional generation to address the ever increasing electricity
demand [4]. Between RESs power generation technologies, solar PhotoVoltaic (PV) systems
are a promising option offering a significant potential for providing energy in a sustainable
way [5], directly generating it onsite [6]. However, solar energy is, by nature, intermittent
and not programmable [7]. For this reason, energy storage systems, endowed of a proper
management software, are needed [8].

Among all possible storage systems, the electrochemical ones represent an attractive
option [9]. Electrochemical technologies store energy through specific chemical compo-
nents. Being available in modules, the desired voltages and currents can be achieved by
connecting single modules in series and/or in parallel [10]. Currently, a growing frac-
tion of installed utility-scale PV systems incorporates Battery Energy Storage Systems
(BESS) [11,12]. This allows to achieve a flexibility improvement in power generation by
shifting production from the peak of non-programmable solar energy towards hours of
large consumption [13,14].
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When coupling a BESS with a PV power production system, a key design consideration
is constituted by the selection between DC- and AC-coupling. AC-coupled systems have
largely independent PV and batteries, each using its own inverter, and the coupling is
located on the AC side of the inverters. On the contrary, DC-coupled systems, where the PV
field the and battery share a common inverter, have the advantage of potentially reducing
costs from shared components [15,16].

In general, the design phase of PV+BESS hybrid systems requires a large number of
decisions due to the large number of possible configurations in terms of overall system
architecture as well as the sizing of various components [17]. Before constructing a new PV
power production facility, feasibility studies are needed to assess its viability from both
financial and technical perspectives [18]. In detail, simulations are carried out to assess
the energy production permitted by a given plant configuration in a given geographical
position [19] and to evaluate the expected investment costs [20].

The main objective of the present work is to provide a preliminary forecast that
identifies a family of batteries which is suitable, from both a technical and a financial point
of view, for a given scenario. Techno-economical simulations are carried out for new grid-
connected PV+BESS hybrid power production plants. Several scenarios are considered
in terms of PV plant configuration, load curves and battery technologies available on
the market.

2. Case Study and Procedure

In this paper, a procedure is proposed to forecast a family of batteries which are
suitable to be coupled with a given PV plant configuration.

The proposed procedure is applied to new hypothetical PV facilities installed on the
rooftop of two different buildings: a single-brand point of sale and a ceramics factory.
According the analyzed buildings, two different load types will be considered, namely a
commercial and an industrial load curves. The energy production is simulated on the basis
of an analysis carried out on real PV plants and thanks to irradiance databases available
online. The battery operation is managed by means of a specific control logic defined in
decision-tree-like diagrams considering all possible operating conditions for both charge
and discharge. Several PV+BESS configurations are simulated and, for each one, a set of
performance and economic indicators are computed. In the end, an unsupervised clustering
algorithm is applied to all the analyzed PV+BESS configurations, aimed at detecting the
family of battery solutions which are the most suitable according to the considered scenario.

In the following Sections, all aspects of the proposed procedure are thoroughly dis-
cussed: Section 2.1 analyzes the performance of several real PV plants in order to compute
a proper value of Performance Ratio to be used during the following power production
simulations; Section 2.2 describes the load curves corresponding to the industrial and the
commercial buildings involved in the analysis; Section 2.3 explains how to simulate the
PV power production; Section 2.4 provides a list of all the battery technologies considered
in couple with the PV plant; Section 2.5 displays and discusses two decision-tree-like
structures providing indications about the control logic of batteries during both charge and
discharge; Section 2.6 describes a set of useful parameters used to evaluate the technical
and economical viability of the considered PV+BESS configurations; Section 2.7 discusses
how to apply a clustering method to all the possible PV+BESS configurations in order to
find a group of batteries that are suitable for coupling with a given PV plant.

2.1. Plant Monitoring and Performance Ratio Calculation

The first part of the present study takes into account 22 monitored PV plants dis-
tributed all over the Italian territory with a total peak power installed of about 7 MW. These
facilities can be divided based on four different types of installation:

• Fixed tilt: the solar field presents a fixed tilt angle. In general, the modules are installed
either on concrete ballasts or metal structures placed on flat roofs and convection is
allowed on their back surface.
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• Flush mount: the modules are integrated on building roofs presenting a tilt larger
than 4–5° and convection is not allowed on their back surface.

• East-West: the solar field is halved in two sections: one exposed toward East and the
other towards West. The modules are generally installed on concrete ballasts.

• Carport: the modules are installed on parking structures and convection on their back
is allowed.

A single plant can be composed of multiple sections with different tilt, azimuth or
type of installation, that are considered independently.

Figure 1 reports the location of the considered PV facilities on the Italian territory
considering five different regions: North-West, North-East, Center, South and Islands.
Moreover, the chart highlights the fraction of plants corresponding to each installation type.

(a) (b)

Figure 1. Fraction of plants located in a certain region (a) and with a given configuration (b).

For each plant, the following characteristics are known: the nominal power, the peak
power of all plant sections, the tilt and azimuth angles of the modules, the temperature
coefficient of the module (accounting for temperature-related power losses) and the degra-
dation factor. Monitoring campaigns carried out for each of the considered facilities allowed
to collect hourly-basis data about the active energy produced at Alternating Current (AC)
side, the solar irradiation on module’s plane, the cell’s temperature on the back side of the
module and the ambient temperature. In case of plant sections with different exposure,
the monitored parameters are recorded independently for each section.

Different plants started their operation in different years. However, the start of
operation period does not always correspond with the starting date of monitoring: for
instance, the oldest facility started to produce in August 2012, while its monitoring started
in 2018.

Data from each PV facility are properly cleared out of inconsistent and unreliable
samples determined by erroneous measurement, like negative values of produced energy,
values of produced energy exceeding the corresponding value of irradiation, values of
produced energy larger than the maximum feasible ones (computed on the basis of the
plant nominal power increased by 5% to account for inverter overpower) and values of
solar irradiation lower than lunar irradiation (4 W/m2) or larger than 1200 W/m2.

The data available allow to compute a performance index which is crucial for further
analyses: the Performance Ratio (PR), which allows to compare the performance of PV
facilities with different configurations and geographical location [21]. PR represents the
overall effect of losses on the array’s rated output, due to array temperature, incomplete uti-
lization of the irradiation (soiling and shading losses) and system component inefficiencies
and failures [22]:

PR =
Yf ,t

Yr,t
(1)
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In the equation: Yf ,t represents the final PV system yield in the time interval t, hence
the portion of net energy output of the entire PV plant which was supplied by the array
per kW installed; Yr,t corresponds to the reference yield in the time interval t, hence the
ratio between total in-plane irradiation and module’s reference in-plane irradiance [23].

Starting from the historical data available, PRs are computed for each of the analyzed
plants, first on a daily basis and then on a yearly basis (starting from the daily values).
Then, the average value of both daily and yearly PR is computed for all the plants sharing
the same type of installation. In the present work, the yearly PR values will be useful to
provide some considerations about the performances of different types of plant, while the
averaged daily PR values are crucial in estimating the power production of new plants.

2.2. Load Curves

In the present work, two different types of building are chosen to hypothetically install
a new PV+BESS facility on their rooftop: one dedicated to commercial activities and the
other devoted to industrial production. The power requirements of the two structures,
given their different purposes, are described by distinct load curves.

The commercial load curve considered corresponds to a single-brand point of sale,
whose building covers an area of about 6100 m2. It is located in Italy, in the region of
Piemonte, in climatic zone E, where the heating system start-up is allowed from 15 October
to 15 April. The annual consumption of electric energy in 2019 (chosen as reference year) is
equal to 828 MWh. The hourly consumption is visualized in Figure 2, in form of heat map
covering all the hours and all the days of the reference year. Moreover, the seasonal loads
during a typical week are plotted in Figure 3.

Figure 2. Heat map corresponding to commercial loads.

As shown in the chart, the building is closed on the first day of the Year, on Easter,
on the 1st of May, in mid-August and on Christmas. During these periods, the photovoltaic
energy self-consumed onsite is expected to be very low because only related to security
equipment and perimeter lights. The maximum power absorbed is about 320 kW in
summer due to chillers operation. In general, among the seasons, the PV production fits
well the load: both the peaks in energy production and consumption are expected during
summer, while the lowest values are registered in winter. The daily load curves present a
peak in the late afternoon. During autumn and winter, another peak is observed also in
early morning, due to HVAC machines start-up.
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Figure 3. Seasonal commercial loads during a typical week.

The industrial load curve considered corresponds to a ceramics factory, whose struc-
ture covers an area of about 17,300 m2. It is located in Italy, in the region of Emilia-Romagna,
in climatic zone F. The industrial process covers the entire day and the corresponding con-
sumption is much larger the one related to conditioning and lighting systems. The annual
consumption of electric energy in 2019 (chosen once again as reference year) is 7.5 GWh.
The hourly consumption is visualized in Figure 4, in form of heat map covering all the
hours and all the days of the reference year. Moreover, the seasonal loads during a typical
week are plotted in Figure 5.

Figure 4. Heat map corresponding to industrial loads.

The power consumption ranges from 0 to 1280 kW. Saturdays and Sundays correspond
to the yellow lines, representing a power absorption of about 650 kWp. The production
is stopped during some periods in April, May, August and December. The load curve is
constant among weeks and the electric consumption is generally constant among all the
working days. The PV power production does not fit this type of load curve as good as the
commercial one.
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Figure 5. Seasonal industrial loads during a typical week.

2.3. PV Energy Production Simulation

A preliminary study on new PV plants is needed in order to estimate their potential
energy production. In this analysis, the input variables are: the plant geographical coor-
dinates, the peak power installable on a roof or on a specific area, the type of installation,
the tilt and the azimuth of the roof. Notice that, in case of a PV facility where different
sections present different exposures, the last four variables are considered independently
for each exposure. Different sections may differ also in the type of installation and, con-
sequently, in the mean daily PR. Finally, hourly irradiation data from the first to the last
day of the considered reference year are acquired from SoDa Helioclim database for each
section of the new plant, exploiting the information about the geographic coordinates,
the tilt angle and the azimuth angle.

The energy production is calculated hour by hour using the solar irradiation data and
the performance ratio:

EPV,i =
Hi

1000
· PRdaily,i · Pi (2)

In the equation: i stands for a generic plant section; Hi is the hourly solar irradiation on the
surface of the modules in a given section; PRdaily,i is the daily Performance Ratio derived
from the monitoring of real PV plants; Pi is the total peak power installed for a given
section. The total plant production in each hour is given by the sum of the energy produced
by each section.

The simulations are performed under the assumption of ideal rooftop, where either
fixed tilt, flush mount or East-West installations are possible. A total of six cases are
considered, one for each combination between the three different PV plant configurations
and the two possible load curves.

The tilt angle, the azimuth angle and the exposure are set for each configuration and
thus they are independent from the load curve. In detail:

• Fixed tilt plant exposure is set toward South.
• Flush mount configuration is divided in two sections with different exposure: the first

one is set toward South-West and the second one toward South-East.
• East-West type of plant is divided in two sections with opposite exposure.

The peak power of the plant is fixed: in case of commercial load, the peak power is 500 kWp,
while in the case of industrial load the peak power is 2 MWp. The characteristics of each
configuration are summarized in Table 1.

94



Forecasting 2021, 3

Table 1. New PV plants characteristics: (a) fixed tilt; (b) flush-mount; (c) East-West.

(a)

Exposure
Fixed Tilt

PDC
[kWp]

Tilt
[deg]

Azimuth
[deg]

Commercial 1 500 30 0
2 - - -

Industrial 1 2000 30 0
2 - - -

(b)

Exposure
Flush Mount

PDC
[kWp]

Tilt
[deg]

Azimuth
[deg]

Commercial 1 250 10 45
2 250 10 −45

Industrial 1 1000 10 45
2 1000 10 −45

(c)

Exposure
East-West

PDC
[kWp]

Tilt
[deg]

Azimuth
[deg]

Commercial 1 250 10 90
2 250 10 −90

Industrial 1 1000 10 90
2 1000 10 −90

2.4. Battery Energy Storage System Models

A list of the battery models to be analyzed is obtained choosing between the products
available on the market: different brands, sizes and technologies are adopted and compared
in the simulations. All the batteries considered present the possibility to be recharged
from the grid. All the batteries useful parameters are retrieved from catalogs. Two main
technologies are considered: LiFePo and Li-ion NMC batteries.

The maximum volume of the technical room where batteries are installed is arbitrarily
set at 50 m3: this constitutes an upper limit to the maximum number of battery modules
installable. The volume occupied from each battery pack accounts for the dimension of the
battery and the minimum space necessary for heat dissipation, reported in the data sheets.
The weight of the system is kept into account.

The batteries that are simulated in combination with the PV system are listed in
Table 2.

A total of 14 different battery models are chosen, and their corresponding 242 feasible
configurations are simulated in couple with each considered PV facility. Remembering
that 3 type of PV installation and 2 type of load are considered, a total of 1452 PV+BESS
systems are evaluated.
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Table 2. List of battery models considered and corresponding characteristics (extracted from data sheets).

Battery Capacity [kWh] Pnom [kW] Efficiency [%] Technology Max Series Price [€/kWh]

SonnenBatterie 10/11 10 4.6 0.98 LiFePo 9 650
SonnenBatterie10/27.5 25 4.6 0.98 LiFePo 9 650
Tesla PowerPack 232 130 0.89 N.A. 20 600
LG Chem R1000 M48189P3B 166.4 102 0.96 Li-ion NMC 30 500
LG Chem R1000 M48126P3B 110.9 135 0.96 Li-ion NMC 30 500
LG Chem R800 M48189P3B 137 84 0.96 Li-ion NMC 30 500
LG Chem R800 M48126P3B 91.3 112 0.96 Li-ion NMC 30 500
Pylontech Force H1 24.9 5 0.96 LiFePo 1 500
Pylontech Force H2 14.2 2.8 0.96 LiFePo 1 500
Kokam high energy rack 139 75 0.95 Li-ion 30 600
Kokam high energy 2P20S 13.9 7.5 0.95 Li-ion 12 600
Kokam high power 2P20S 11.5 12.5 0.95 Li-ion 12 600
Kokam ultra-high power 2P20S 10.2 11.1 0.95 Li-ion 12 600
BYD B-Box LVS 15.4 12 0.95 LiFePo 16 450

2.5. Battery Energy Storage System Control Logic

In the simulations, batteries are evaluated in terms of model and number, assuming
that more packs of the same model can be considered in series or parallel connection.
The battery simulation starts from a single pack of the first model of battery and ends at
the maximum number of packs of the last type. A BESS configuration is simulated only if
its volume is lower than the maximum volume of the technical room.

The batteries are connected to the grid, and therefore it is evaluated the convenience
of recharging the battery when price of energy is lower. In order not to have the battery
fully charged at the morning of a sunny day, the maximum state of charge achievable in F3
band is limited to the monthly difference between load and PV production divided by the
number of days in that month. Moreover, the batteries are assumed to be AC-coupled with
the PV system.

Real charge/discharge operations are always constrained by technical limits. However,
in a preliminary battery assessment like the one proposed here, there is no need to account
for these constraints. In real applications there is the necessity to identify as soon as possible
a group of batteries suitable for a given application. Then and only then a specific battery
model is chosen between the possible one (the choice is most of the times constrained by
the availability of the different models) and further detailed analyses are carried out by
means of specific software.

The battery operation is based on a precise control logic, capable of optimally manag-
ing the system. Decision-tree-like structure are constructed to visually represent the BESS
control logic adopted. In Table 3, the terms adopted in the decision-tree-like structures are
listed and explained.

The control logic of BESS charge is defined in the decision-tree-like structure reported
in Figure 6.

In particular, the charge is permitted in three different modes:

• I charge: if the battery is not fully charged and the PV energy surplus is larger than
the power of the battery, the state of charge in that hour increase of a quantity equal
to the max power of charge; in case the capacity is exceeded, the state of charge is set
at unity.

• II charge: if the battery is not fully charged and the PV energy surplus is positive and
smaller than the power of charge, the battery is charged with the available PV energy
in surplus; in case the capacity is exceeded, the state of charge is set at unity.

• III charge: if the battery is connected to the grid, the considered time window belongs
the F3 band, it is not Sunday or holiday, the PV surplus is equal to zero and the SoC
(State of Charge) is lower than the maximum SoC reachable in that month in F3 band,
the battery is charged from the grid at maximum power.
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Table 3. Notation adopted in decision-tree-like structures defining BESS charge and discharge
control logic.

Symbol Unit Description

h h Analyzed hour
h-1 h Previous hour
Cbattery kWh Nominal capacity of the battery
Pbattery kW Nominal power of charge and discharge
Ploss % Power losses during charge and discharge
C*h kWh Battery capacity at the analyzed hour
C*h−1 kWh Battery capacity at the previous hour
C*max,F3 kWh Maximum capacity allowed with grid charging
EPV,Surplus,h kWh PV energy that remains available for storage at the

analyzed hour
EPV+BESS,Surplus,h kWh PV energy injected to the grid at the

analyzed hour
Egrid,PV kWh Load demand after instantaneous self-consumption

that is requested from the battery at the analyzed hour
Egrid,PV+BESS kWh Load demand after self-consumption that is requested

from the grid at the analyzed hour

Figure 6. BESS charge control logic.

The control logic of BESS discharge is defined in the decision-tree-like structure
reported in Figure 7.
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Figure 7. BESS discharge control logic.

The battery discharge takes place in four different modes:

• I discharge: if the battery is grid-connected, the discharge is allowed only if the hour
is in F1 band, in F2 band or if the SoC exceeds the maximum SoC reachable in the
specific month in F3 band. Then, it is evaluated if the load, after the self-consumption,
needs power greater than the maximum power removable from the battery and if the
available SoC of the battery is enough to fulfill the demand. In the case the battery is
not grid-connected, only these last two conditions are evaluated. If these requirements
are verified, the battery is discharged at maximum power.

• II discharge: if the load requires more energy than the ones produced by the PV plant
and it is greater than the power of the battery, while the available SoC is not enough,
the battery is fully discharged and the load withdraws also energy from the grid. This
discharge mode is always allowed if the battery is not grid-connected, while, if it is
connected, it is also checked that the hour does not belong to F3 band.

• III discharge: this type of discharge is allowed at the same conditions of the first mode
of discharge, but accounts for load lower than the battery maximum power. When the
energy stored is enough, the load is balanced discharging the battery.

• IV discharge: if the load, after the self-consumption, is lower than the maximum
discharge power of the battery and the energy stored is lower than the requirement,
the battery is fully discharged and the remaining energy required for balancing the
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load is taken from the grid. This discharge mode is allowed evaluating if the battery
is connected to the grid or not, as discussed in the first type of discharge.

2.6. Characteristic Features for PV+Bess Configurations

The prediction of the feasible BESS configurations accounts for some key indicators:
the PayBack Time (PBT) of the battery capital expenditure, to be minimized; the number of
residual cycles at end of life, to be minimized; the self-consumption, the coverage and the
on-site self-production, to be maximized.

The Self-Consumption (SC) is defined as [24]:

SC =
EPV→load

EPV,y
(3)

In the equation: EPV→load is the PV energy consumed by the load; EPV,y is the total
annual PV production.

The coverage, sometimes also called self-sufficiency, is defined as [25]:

cov =
EPV→load

Eload,y
(4)

In the equation: EPV→load is the PV energy consumed by the load; Eload,y is the total
annual energy consumption.

The Self-Production (SP) is defined as [24]:

SP =
EPV,y

Eload,y
(5)

In the equation: EPV,y is the annual PV production; Eload,y is the total annual
energy consumption.

The PayBack Time (PBT) is computed as [26]:

PBT =
BESS investment cost

Annual economic saving
(6)

The annual economic saving is the amount of money saved thanks to the presence of
the BESS with respect to the same facility without any energy storage. In order to calculate
it, a database with hundreds of electricity bills is exploited. The bills are divided according
to zone, voltage (medium or low) and type of contract (peak-off peak, monorary, fixed
multi-hourly and variable multi-hourly). Then, economic savings are calculated on the
basis of the mean value of bills expenditures varying in function of energy.

Notice that the computed values of PBT refer only to the storage system and not to the
entire power generation facility, including the PV plant. The OPEX (OPerating EXpense)
related to the storage system consist of batteries O&M (Operation & Maintenance) costs (for
instance related to maintenance interventions, remote monitoring etc.) and insurance costs.
However, considering the purpose of the current preliminary analysis, all those factors can
be neglected: they would be estimated equally for all the considered battery models and
therefore they would not have any influence on the identification of the optimal capacity.

2.7. Battery Sizing Optimization by Means of Unsupervised Clustering

Finally, an unsupervised clustering based on k-means algorithm [27] is applied to all
the analyzed BESS configurations. This final step aims at identifying a family containing
all the feasible BESS solutions. K-means divides the dataset into a fixed number (k) of
clusters according to some feature variables describing each sample. In this analysis, each
sample corresponds to a possible BESS configuration. The feature variables chosen to fulfill
the above-mentioned task are: the total photovoltaic energy stored in the battery within
one year, the self-consumption, the number of residual cycles and the payback time.
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In order to properly choose the number of clusters k, the Silhouette index [28] is
exploited. This index provides a measure of how similar each sample is to samples in
its own cluster, when compared to samples in other clusters and thus constitutes a tool
to evaluate the quality several possible partitions of the available dataset. In practical
terms, the Silhouette index is computed in function of the number of cluster k, and then
the k corresponding to the highest Silhouette value is selected as number of clusters to be
identified with k-means clustering.

The Silhouette plot for the BESS configurations coupled with the commercial load,
representing the Silhouette value in function of the number of clusters k, is displayed
in Figure 8. The number of clusters to be identified by k-means algorithm is equal to 2,
coinciding with the largest Silhouette value.

Figure 8. Silhouette plot for the commercial load scenario.

The silhouette plot for the BESS configurations coupled with the industrial load,
representing the Silhouette value in function of the number of clusters k, is displayed
in Figure 9. The number of clusters to be identified by k-means algorithm is equal to 3,
coinciding with the largest Silhouette value.

Figure 9. Silhouette plot for the industrial load scenario.

3. Results and Discussion

All the considered plants, their geographical position, their type of installation and
their annual PR value are listed in Table 4. The observed annual PR ranges from 0.69 to
0.91. The two types of installation generally showing better performances are the fixed tilt
and the East-West configurations, except for some outliers. The case of carport installation
has little relevance in the current analysis: data are available only for one plant and the PR
is calculated over a time period of only eight months.
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Table 4. Location, type of installation and annual Performance Ratio for each of the considered
PV facilities.

Plant Name Location Installation Type Annual PR [%]

01_TARANTO South Fixed tilt 74
02_PALERMO Islands Fixed tilt 84
03_CUNEO North-West Flush Mount 80
04_CAGLIARI Islands Carport 77
05_CASAMASSIMA South Fixed tilt 81
06_SAN ROCCO AL PORTO North-West Fixed tilt 74
07_SERIATE North-West Fixed tilt 79
08_LISSONE North-West Fixed tilt 76
09_VICENZA_01 North-East Flush Mount 70
10_VICENZA_02 North-East Fixed tilt 86
11_CASALECCHIO DI RENO North-East Fixed tilt 75
12_PALERMO FORUM Islands Flush Mount 74
13_MESAGNE South East-West 91
14_CURNO North-West East-West 85
15_ROZZANO North-West East-West 83
16_VERONA North-East East-West 84
17_SAVIGNANO SUL RUBICONE North-East Fixed tilt 87
18_ROMA Center East-West 76
19_SANTA CATERINA South Fixed tilt 84
20_S. GIOVANNI TEATINO South Fixed tilt 81
21_CARUGATE North-West Fixed tilt 69
22_SOLBIATE ARNO North-West Fixed tilt 84

As already described, the PR value for single plants is averaged over all the plants
characterized by a specific type of installation. The result of this operation is reported in
Figure 10. The box plot shows, for both fixed tilt and East-West configurations, an average
annual PR higher than 0.80. However, the variability of the performances observed with
fixed tilt PV facilities is much larger than that of East-West PV plants.

Finally, Figure 11 displays an heat map representing the daily average values of PR in
the reference year in function of the plant configuration, computed averaging the daily PR
values of single plants.

The new PV+BESS hybrid plants simulations return the forecast of the total amount
of energy self-consumed, sold to the grid, stored in the battery or acquired from the grid
in order to balance the demand. It is then possible to discuss the results in terms of PBT
of the battery. As expected, increasing the number of battery packs in series, thus the
capacity of the storage system, the energy self-consumed by the load grows but also the
PBT increases significantly.

The results reported in Table 5 identify the BESS configuration that minimizes the PBT
for each PV system configuration.

Most of the configurations identified result in a PBT approximately equivalent to
the lifetime of the battery, equal to 15 years. In the last two cases, the PBT that is even
larger than the battery lifetime. The cost of energy storage technologies is still too high
to conclude that nowadays it is convenient to install a BESS system for large buildings.
However, if the investment cost per kWh of capacity decreases, it will be possible to install
a large capacities and to achieve a significant advantage also in terms of additional self-
consumption. Changing the PV installation type for the commercial load, the choice of
battery models remains unchanged, as well as the PBT. In case of industrial load, the same
battery model with the same number of modules shows a decrease in PBT for the fixed tilt
configuration thanks to higher annual economic savings.
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Figure 10. Annual PR averaged in function of the PV plant configuration.Figure 10. Annual PR averaged in function of the PV plant configuration.

Figure 11. Daily PR (computed on the chosen reference year) averaged over all the plants character-
ized by a given configuration.

Table 5. BESS configurations with minimum PBT.

Commercial Industrial
Fixed Tilt Flush Mount East-West Fixed Tilt Flush Mount East-West

Model Kokam ultra-high Sonnen Kokam ultra-high LG Chem R800 Kokam ultra-high Kokam high
power 2P20S Batterie10/11 power 2P20S M48126P3B power 2P20S energy rack

N◦ modules 2 2 2 5 5 5
Residual cycles 960 945 991 980 408 443

Self-consumption [%] 55 58 59 74 80 79
Coverage [%] 44 43 44 28 26 26

PBT [y] 14.5 14.5 14.6 14.3 18.7 18.3

The results reported in Table 6 identify the BESS configuration that minimizes the
number of residual cycles for each PV system configuration.

Most of battery models optimized in terms of number of residual cycles are different
from the ones optimized in terms of PBT. Focusing on the industrial load case, the fixed tilt
configuration with the battery storage could be an interesting solution in case of decreasing
in investment cost for batteries, because it has the minimum PBT between batteries with
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the optimal value of residual cycles. The last configuration has a PBT which is way too
high for the feasibility of the investment.

Table 6. BESS configurations with minimum number of residual cycles.

Commercial Industrial
Fixed Tilt Flush Mount East-West Fixed Tilt Flush Mount East-West

Model Kokam high Kokam high Kokam high BYD B-Box BYD B-Box BYD B-Box
power 2P20S power 2P20S power 2P20S LVS LVS LVS

N◦ modules 10 7 3 2 9 12
Residual cycles 22 33 45 2 16 1

Self-consumption [%] 58 60 59 74 80 83
Coverage [%] 45 44 44 28 26 27

PBT [y] 20.5 23.7 21.4 16.8 25.9 51.6

The results obtained from k-means clustering application are reported in the following.
As already discussed, the clustering procedure exploits the total photovoltaic energy stored
in the battery within one year, the self-consumption, the number of residual cycles and the
payback time as relevant features to characterize each possible BESS configuration.

Figure 12 represents all the 242 possible BESS configurations for the case of commercial
load with a fixed tilt PV installation divided in two clusters. The clustering results does not
show significant differences for other types of installation. As discussed before, the number
of clusters is chosen on the basis of the Silhouette index and is equal to 2. The feature space
is represented by three different points of view: on the PBT/residual cycles plan, on the
self-consumption/residual cycles plan and on the self-consumption/PBT plan. The last
diagram represents the overlap between clusters in terms of PBT. All values on the axes are
standardized in the range between −1 and 1.

The purple cluster represents the family of BESS that are best suited to be coupled
with the analyzed PV facility configuration. The trend of self-consumption over the PBT
confirms what stated before: increasing the capacity of the battery, the self-consumption
increases but, as a drawback, the PBT increases as well.

Figure 13 represents all the 242 possible BESS configurations for the case of industrial
load with a fixed tilt PV installation divided in two clusters. Even when k-means is applied
to the industrial scenario, the results are similar among different PV installation types,
as observed for the commercial case. The number of clusters is chosen on the basis of the
Silhouette index and is equal to 3. The feature space is represented in the same way as
the commercial case and all values on the axes are standardized in the range between −1
and 1.

The large number of batteries with high capacity (and consequently high PBT) and
low number of residual cycles, in the top left region of the upper diagrams, is related
to the high electric consumption typical of an industrial load. Once again, the purple
cluster represents the family of BESS that are best suited to be coupled with the analyzed
PV facility configuration. The green cluster correspond to BESS configurations with low
number of residual cycles and high PBT, while the orange cluster represents high-capacity
batteries that are strongly oversized and thus not suited for the considered PV facility.
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Figure 12. Possible BESS configurations divided in clusters (commercial load).

Figure 13. Possible BESS configurations divided in clusters (industrial load).

4. Conclusions

In recent years, the technological development and the increasing market compet-
itiveness of RESs-based power production systems determined favorable conditions to
switch from electricity generation in large centralized facilities to small decentralized
energy systems.

In this scenario, PV facilities find profitable conditions for the grid connected users
when the produced energy is self-consumed. Due to the intermittent and stochastic
nature of the solar source, PV plants require the addition of an energy storage system to
compensate fluctuations and to meet the energy demand even during night hours.

In this paper, a procedure is developed to forecast a family of batteries which is
suitable to be coupled with a given PV plant configuration and is applied to some new
PV facilities.
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The PV+BESS hybrid plant energy production simulation is possible by:

• Knowing the geographical coordinates of the installation site and tilt and azimuth of
the roof.

• Assuming the peak power installable on a roof and an installation type.
• Estimating a proper PR value, computed through data from real operating plants with

similar installation characteristics and size.

Two different types of load curve are considered in the current work, namely:

• A commercial load curve, corresponding to a single-brand point of sale.
• An industrial load curve, corresponding to a ceramics factory.

The battery operations are managed by means of a control logic defined in decision-
tree-like diagrams. The two diagrams, provided in the current work, consider all possible
operating conditions during both charge and discharge. The main strategies behind the
defined control logic are:

• Optimizing PV self-consumption, beneficial in markets whose value of electricity
(€/kWh) is high.

• Charging the battery in the time bands with lower price of electric energy.

For each possible PV+BESS configuration, performance features, like the number of
residual cycles at the end of lifetime and the self-consumption, and economic features,
as the payback time, are computed. The self-consumption is defined as the ratio between
PV energy consumed by the load and total annual PV production. On the other hand, PBT
is based on the annual economic savings allowed by the presence of an energy storage
system compared to the case of PV plant without battery.

The following observations are derived from the analysis performed:

• The knowledge of the annual distribution of electrical loads is crucial to determine
which season or time window with high power demand justifies the existence of
the storage, reducing the energy purchased from the grid. Energy-intensive applica-
tions, characterized by high loads even during night, enhance the profitability of the
PV+BESS configuration.

• At present, the billing savings in themselves might not be enough to encourage the
use of PV+BESS hybrid systems. Besides, their profitability strongly depends on the
electricity tariff structure and energy policy of a country, in addition to PV and storage
systems costs.

Finally, a clustering algorithm based on k-means algorithm is applied to all the con-
sidered PV+BESS configurations, aimed at detecting the family of battery solutions which
is the most suitable according to the scenario considered. The number of clusters to be
identified is established by means of the Silhouette index. As expected, the cluster of the
best solutions contains all those configurations characterized by low PBT and number of
residual cycles.

Possible future developments of the present work consist in adopting different clus-
tering criteria and different features to possibly improve the identification of the family of
batteries that are suitable for a given application.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Alternating Current
BESS Battery Energy Storage System
DC Direct Current
DoD Depth of Discharge
HVAC Heating, Ventilation and Air Conditioning
NMC Nickel Manganese Cobalt
O&M Operation & Maintenance
OPEX OPerating EXpense
PBT PayBack Time
PR Performance Ratio
PV PhotoVoltaic
RES Renewable Energy Source
SC Self-Consumption
SoC State of Charge
SP Self-Production
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Abstract: Thunderstorms are one of the most damaging weather phenomena in the United States,
but they are also one of the least predictable. This unpredictable nature can make it especially
challenging for emergency responders, infrastructure managers, and power utilities to be able to
prepare and react to these types of events when they occur. Predictive analytical methods could
be used to help power utilities adapt to these types of storms, but there are uncertainties inherent
in the predictability of convective storms that pose a challenge to the accurate prediction of storm-
related outages. Describing the strength and localized effects of thunderstorms remains a major
technical challenge for meteorologists and weather modelers, and any predictive system for storm
impacts will be limited by the quality of the data used to create it. We investigate how the quality
of thunderstorm simulations affects power outage models by conducting a comparative analysis,
using two different numerical weather prediction systems with different levels of data assimilation.
We find that limitations in the weather simulations propagate into the outage model in specific and
quantifiable ways, which has implications on how convective storms should be represented to these
types of data-driven impact models in the future.

Keywords: power outages; machine learning; thunderstorms; numerical weather prediction

1. Introduction

Weather-related power outages, and the severe weather events that cause them, pose
a persistent threat to the functioning of the infrastructure and economy of the United States.
These types of power outages affect millions of people and cost the U.S. economy tens
of billions of dollars every year; moreover, the rate at which they occur appears to be
increasing [1]. Anticipating the damages that storms can cause is a critical step in electrical
utility managers’ storm outage management process. They need reliable information before
a storm to be able to stage repair crews and effectively prepare for the damages that the
storm will cause [2]. As such, there has been a recent surge in research and development
activity into methods to predict storm damages and weather-related power outages.

Arguably, the most destructive types of storms in the United States are thunderstorms,
including the associated convective phenomena (tornadoes, microbursts, hail, etc). While
hurricanes often receive special attention because they are larger and more dramatic,
thunderstorms are more common and cause more damage to the electrical infrastructure
every year than any other type of weather. Indeed, investigations of major outage events
reported to the Department of Energy have found that convective storms are responsible
for the majority of weather-related outage events, the greatest number of customer outages,
and the most outage hours [3,4]. Additionally there is every indication that the severity
of thunderstorms is going to increase in the future. Changes in the climatic patterns of
thunderstorms can already be seen in a time series analysis [5], and long-term climate
projections suggest that, because of climate change, thunderstorms are likely to become
stronger, more frequent, and more damaging [6,7].
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Despite the demonstrated risk that thunderstorms present to the electrical infrastruc-
ture, they have not received much attention in the recent research for modeling weather-
related power outages. While there are some outage modeling approaches that are gen-
eralized to a range of types of weather [8–11], much of research in this field has been
focused on other types of storms. The vast majority of the work has focused on tropical
storms and hurricanes, which can have particularly dramatic impacts [12–16], but sev-
eral mature modeling approaches, specifically for extratropical storms [17–19], have also
been developed.

In the existing general outage models, thunderstorms are sometimes included in
the analysis [9,10,20,21], but the weather characteristics of these storms are treated in a
similar fashion to other, more structured types of weather. There are also some studies that
infer a focus on thunderstorms by including information about lightning strikes [11,22,23],
but do not have an explicit focus on thunderstorms because they also include other types
of weather events in their analysis.

This lack of focus on thunderstorms may be a result of the technical difficulty associ-
ated with describing and simulating them. Convective storms are particularly challenging
for established numerical weather prediction (NWP) models and meteorological forecasts.
While the increased horizontal resolution of convective-allowing configurations can lead
to improved simulations, even with state-of-the-art high-resolution NWP models, reli-
able deterministic forecasts of thunderstorms longer than several hours are elusive [24–26].
As Yano et al. describe, there may be limitations to modern NWP models’ ability to simulate
convective storms because of the wide-spread use of assumptions and parameterizations
that are reasonable for synoptic-scale weather patterns but are much less applicable to
more complex convective phenomena [26]. These potential limitations of NWP simulations
are long standing, and multiple strategies for mitigating them have emerged. Assimilating
radar or even lightning observations into initial conditions of simulations can be used
to improve short-term predictions [27,28]; forecasting systems that leverage this type of
data assimilation for rapidly-updating nowcasts are currently operational [29]. In addition,
for forecasts longer than several hours, stochastic predictions from convective-allowing
ensembles have shown an improved forecasting skill by being able to capture the range of
potential outcomes, instead of one deterministic scenario [30–32].

Similar approaches and findings can be seen in the few studies in the literature that
specifically focus on predicting thunderstorm-related power outages. In Alpay et al.,
the authors take a rapid-refresh nowcasting approach to modeling thunderstorm-related
outages, using an LSTM neural network trained on data from a rapidly updating radar-
ingesting weather model from NOAA [33]. The works of Shield and Kabir et al. both
describe a thunderstorm outage prediction system trained on weather data from the
National Digital Forecast Database for an area in Alabama [34,35]. Shields investigates
the limitations of the model he develops and identifies that it has better skill at a synoptic
scale, which illustrates the difficulty of forecasting with thunderstorms [34]. Kabir et al.
take a more stochastic approach and develop a quantile regression model, which allows
the communication of the significant uncertainties associated with predicting the impacts
of thunderstorms [35].

While this previous work attempts to manage the known limitations of weather
simulations of thunderstorms, how these limitations propagate from weather simulations
into machine-learning based impact models remains poorly described. The problem
of poor inputs for a computational algorithm has been recognized since the dawn of
computation [36], but the effects in this context are not fully understood. In this paper,
we attempt to shed light on this matter by analyzing the quality of the weather data from
two different weather simulation systems with differing amounts of data assimilation,
determine how outage models trained on these different sets of weather data differ in skill
and accuracy, and what information the outage models learn from. This knowledge is
critical to build an understanding of the limitations of the data used to build impact models
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for thunderstorms and to suggest how improved representations of weather will improve
the quality of the insights that can be derived from them.

2. Materials and Methods

This study involved the creation and comparison of two separate machine-learning
models designed to predict thunderstorm-related power outages, using data from NWP-
based weather simulations and a wide range of other data sources in a region covering
three states: Connecticut, Massachusetts, and New Hampshire, and five distinct electrical
utility service territories: Eversource Connecticut (CT), Eversource Western Massachusetts
(WMA), Eversource Eastern Massachusetts (EMA), Eversource New Hampshire (NH),
and AVANGRID United Illuminating (UI). For geographical details of the modeling domain,
refer to Figure 1.

Figure 1. The location of the outage model grid cells by service territory as well as the location of the
airport weather stations used in the meteorological analysis.
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2.1. Data

The outage models developed in this analysis use data describing 372 thunderstorm
events that occurred in the utility service territories from 2016 to 2020, as well as a range of
environmental characteristics, such as vegetation and drought status, as well as proprietary
outage and infrastructure data provided by the power utilities, aggregated to the grid
cells of the weather simulations. We included as many thunderstorm events that could
be observed in weather station reports from each utility service territory, and aggregated
the data to the RTMA grid cells of each service territory for each thunderstorm event.
For details about the amount of data used from each territory, see Table 1.

Table 1. The amount of data available for training the thunderstorm-related outage models.

CT WMA EMA NH UI Total

Number of Storms 74 82 69 91 56 372
Territory Grid Cells 2019 638 820 2128 169 5774

Total Entries 149,406 52,316 56,580 193,648 9464 461,414

2.1.1. Weather

The core of the analysis centers around datasets produced by two separate NWP
gridded weather simulation systems: a hybrid NOAA analysis system, and a WRF 2 km
simulation system. The NOAA analysis dataset is a combination of data from the Real-
Time Mesoscale Analysis (RTMA) [37] and Stage IV Quantitative Precipitation Estimates
(Stage IV) [38]. RTMA is a weather analysis product that produces a gridded estimate of
weather conditions by statistically downscaling a 1 h short-term forecast and adjusting it
with weather station observations. It produces a high-resolution, near real-time estimate
of temperature, humidity, dew point, wind speed and direction, wind gusts, and surface
pressure for the entire United States. The RTMA data were sourced from the archive hosted
on the Google Earth Engine [39]. Stage IV is a Quantitative Precipitation Estimate (QPE)
dataset created by the National Weather Service and the National Centers for Environmental
Prediction (NWS, NCEP), using a blend of NEXRAD radar and the NWS River Forecast
Center precipitation processing system [40]. It takes gridded precipitation estimates derived
from radar scans, adjusts the values based on rain gauge data, and aggregates the data to
produce gridded hourly estimates of precipitation for the continental United States. It is
popular for analytical purposes and is often used as a reference to analyze the accuracy of
satellite and other precipitation estimates [38]. By using a blend of RTMA and Stage IV, we
are able to have a reasonable estimate of the average hourly weather conditions in each
grid cell during each storm used in this analysis. For the sake of brevity, this dataset will
sometimes be referred to as the “RTMA” system.

We compare this hybrid NOAA analysis dataset with another weather dataset devel-
oped from a configuration of the Weather Research and Forecasting Model (WRF), similar
to one that was used in several outage predictions models [17,18], but with an increased
horizon resolution to potentially help resolve convection. This model is initialized with
the North American Mesoscale Forecast System analysis [41], which has 2 km horizontal
grid spacing with one 6 km external domain. For configuration details, please see Table 2.
These WRF simulations use a different projection than the RTMA system, so the results
were resampled with bilinear interpolation to match the spatial characteristics of the RTMA
analysis product.
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Table 2. Details of the WRF simulation configuration.

Horizontal Resolution 2 km
Vertical Levels 51

Horizontal Grid Scheme Arakawa C Grid
Nesting One 6km Nested Domain

Microphysics Option Thompson Graupel Scheme [42]
Longwave Radiation Option RRTM Scheme [43]
Shortwave Radiation Option Goddard Shortwave Scheme [44]

Surface-Layer Option Revised MM5 Scheme [45]
Land-Surface Option Noah Land-Surface Model [46]

Planetary Boundary Layer Yonsei Scheme [47]

For outage modeling purposes, 24 h time series of a common set of weather variables
generated from both weather simulation systems were processed to generate descriptive
data features for each thunderstorm in this analysis. The weather variables considered
are dew point temperature, specific humidity, air temperature, surface pressure, wind
speed, wind gust speed, wind direction, and hourly precipitation rate. Established weather
parameters that directly describe convective potential, such as CAPE and CIN, were
unfortunately not available for this study because they are not published in RTMA, which
is primarily a surface analysis product. For each of the included variables, the mean, max,
minimum, standard deviation, 4 h mean during peak winds, and total were calculated for
each storm, except for wind direction for which we took the median value. The median
was taken to limit its sensitivity to outliers. Several additional features were calculated: the
number of hours of winds above various wind speeds, calculated using various thresholds
applied to wind speeds and gusts; typical wind direction by taking the mean of the
median wind direction of included storms; and the difference between the typical wind
direction and the median wind direction for that storm. To preserve its characteristics, all
computation and analysis of wind direction was performed via the circular library in
R [48]. Additionally, we included an additional set of features describing the time series of
wind stress exerted on the trees by taking the product of the leaf area index (see below)
and the square of the wind speed. For details, please see Appendix A, which contains a
detailed table of all data features used for modeling.

2.1.2. Infrastructure and Outage Data

Proprietary data of the infrastructure and historical outages are made available for
this study for the five utility service territories. Using rgdal and rgeos [49,50] for the
area within each outage model grid cell, we calculated the length of overhead power
lines, the number of utility poles, the number of fuses and cutouts, and the number of
circuit reclosers.

The historic outage data describes the time and location of where damage occurred
to the power distribution grid for a period of five years (2016 to 2020). Based on this
information, we were able to calculate the number of damage locations within each outage
model grid cell associated with each storm. A damage location is a physical location where
repair crews are dispatched to repair damage after a storm. In the vast majority of cases,
this meant counting the damage locations that were identified in the 24 h storm period,
but in several cases, additional “nested” storm-related outages were recognized by utility
operators after the storm period, so a longer window was sometimes used. These damage
data were extracted from the utility outage management system, which is a software tool
used by most large utilities to identify outages and dispatch repair crews.
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2.1.3. Environmental Data

Because weather-related power outages are the result of interactions between the
weather, the infrastructure and the environment, a range of environmental information was
considered for this analysis. We processed the environmental data in several different ways
depending on spatial resolution. When working with datasets with a resolution higher than
the 2.5 km RTMA grid, for each grid cell, the raster data were sampled from a 60 m buffer
around the overhead lines in that cell, and we calculated the representative percentage
for the categorical data, or the average and standard deviation for the numerical data.
We applied this process to a range of datasets, including the following: categorical land
cover from the 2016 National Land Cover Database (NLCD) [51], 2016 NLCD Tree Canopy
Coverage [52], vegetation height estimates from the Global Ecosystem Dynamics Investi-
gation (GEDI) lidar instrument on the International Space Station [53], USGS 3DEP DEM
elevation [54], and several other datasets, which required special processing. For example,
we sampled the soils dataset developed by Watson et al. [18] from the USDA SSURGO
database [55] to describe the soil characteristics (density, porosity, hydraulic conductivity,
composition, and saturation). Additionally, because that previous work suggests that
systemic biases caused by differences in the elevations of the weather predictions and the
infrastructure may be present, we used the difference between those two elevations as an
additional feature, elvDiff.

As seen in other outage modeling work [15,16], high-resolution data from the Indi-
vidual Tree Species Parameter Maps (developed to support the USDA National Insect and
Disease Risk Map) were used to calculate information about the density of the forest and
the presence of various tree species [56]. However, because these data contain information
about 264 individual tree species, we aggregated the basal area and stand density index
of the species data by wood type (hardwood or softwood). Additionally, we were able
to calculate the mean and standard deviation of the basal area (BA), stand density index
(SDI), quadratic mean diameter (DQ), total frequency (TF), and trees per acre (TPA) for
all trees, and generate statistics for the area around the infrastructure as described in the
previous paragraph.

Data at the courser resolutions were handled more simply by sampling the data using
the centroid of the grid cell. This included data describing the climatological leaf area
index generated by Cerrai et al. [9], and a collection of drought indices published by the
West Wide Drought Tracker [57]. While drought data was used in outage modeling in the
past [12,15], we included more information, including the 1, 3 and 12 month Standardized
Precipitation Index (SPI) of the month of the storm, as well as 12 month SPI from 1 to
5 years before the storm occurred. This information was included to capture not only the
immediate drought conditions, but also any lingering effects of long-term drought stress
on the vegetation.

2.2. Outage Modeling

To generate a robust outage prediction system based on the 131 data features, gener-
ated via the processes described in the previous section, additional steps were taken to
confirm each variable’s importance for the modeling outage, tune the model’s hyperpa-
rameters, and test the system’s performance via cross-validation. All modeling processes
were coded in R [58], using a range of support libraries.

Variable importance for modeling was initially confirmed via a Boruta variable selec-
tion process. This process involves calculating the variable importance in a random forest
model, and comparing each variable’s importance against the importance of a randomized
variable with the same distribution of values. Over many iterations, this process can
confirm the importance of each variable in a dataset in comparison to random noise [59].
This was implemented via the Boruta R library [60].

Based on experience and the previous literature [9,10,18], we chose the Bayesian
Additive Regression Tree (BART) model for this analysis [61], implemented via the BART

R library [62]. While this is a quantile regression algorithm, we simplified outputs to
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deterministic predictions for each storm by taking the mean of the outputs of the model.
The hyperparameters used by the BART algorithm (sparse parameters a and b, shrinkage
parameter k, the number of trees, the number of posterior draws, and the number of
iterations used to initialize the Monte-Carlo Markov Chains) were tuned for this dataset
via differential evolution [63] implemented via the DEoptim library [64]. It was used to find
the optimal configuration of the BART algorithm based on the mean root mean square
logarithmic error (RMSLE) of a fixed 5-fold cross-validation of the RTMA system dataset.
To maintain comparability, these optimized hyperparameter values were consistently
applied to all models and experiments in this analysis. RMSLE was chosen because it is
less sensitive to extreme errors.

2.3. Analysis

To understand the differences between the hybrid NOAA analysis dataset, the WRF
simulation dataset, and the outage prediction models built on them, we evaluated each
weather simulation’s ability to represent the local weather conditions by comparing its
predictions against weather station observations. Then, to understand the different qualities
of the two outage models, as well as evaluate the importance of individual and groups of
variables in the outage models, we compared the cross-validation results, using traditional
and spatial error metrics.

More specifically, to evaluate the two-gridded weather simulations, data were col-
lected from METAR and SPECI reports via the Integrated Surface Data archive maintained
by the National Centers for Environmental Information [65]. Any data flagged with qual-
ity issues were removed, and all observations reported were averaged for every hour to
produce a 24 h time series. Any station or variable with more than two hours of missing
data were removed from the analysis. Then, the same summary statistics used to generate
the outage model features (mean, minimum, maximum, standard deviation, total, 4 h
mean during peak winds) were calculated based on the weather station observations. Any
mean or maximum gust values reported as zero by the weather stations were also removed
from consideration.

For this analysis, all weather stations in the proximity of the outage prediction service
territories were considered, with the exception of Northern New Hampshire. We removed
that area from consideration because it is dominated by the White Mountains, and the
complex topography would cause biased results. See Figure 1 for the detailed weather
station location information used in this analysis. While additional data cleaning steps are
common when this process is used for weather model evaluation, we determined that this
would not be appropriate because the localized differences between the weather station
observations and gridded NWP data are of interest.

The outage model performance was evaluated using leave-one-date-out cross-validation.
This validation process simulates the operational predictability of the outages caused by
each weather event by iteratively isolating the information of each storm event, and testing
the model’s ability to predict it. More specifically, for each storm date and time present in
the database of storms, we reserved the data from that date and time, trained the outage
model on the remaining data, and tested that trained model on the reserved data. This
way, we had a comprehensive evaluation of all storms in our database, but prevented
any spatial or temporal correlations in the weather data from influencing the model
performance. While 372 thunderstorm events were considered in this analysis, because of
overlapping times, each outage model was only trained and tested 226 times for this
cross-validation. To evaluate the overall cross-validation results, we calculated the median
absolute percent error (MdAPE), mean absolute percent error (MAPE), centered root mean
squared error (CRMSE), correlation coefficient (R2), and the Nash–Suttcliffe efficiency
(NSE) [66]. For definitions of these error metrics, please see Appendix C.

Because the spatial predictability of thunderstorm outages is also of interest, we also
applied the fraction skill score (FSS) to evaluate the spatial skill of the outage models. FSS
uses a threshold, or a series of thresholds, to generate binary rasters of predictions and
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actual values, and compares the two within a series of neighborhoods [67]. A skillful model
is able to predict a similar fraction of values above the threshold as the actual in a small
area. This metric is becoming a widely accepted method to evaluate the spatial skill of
precipitation forecasts, especially in the U.S. [68]. Under ideal conditions, an FSS value
greater than 0.5 indicates a “useful” skill, but depending on the conditions of the baseline
performance (FSSuni f orm), it is subject to change as defined by the following equation:

FSSuni f orm = 0.5 + FSSrandom/2 (1)

where FSSrandom is the total of the derived binary raster, divided by the number of cells in
the domain [67]. For precipitation, the threshold tends to increase with smaller domains
and as the prevalence of precipitation increases [69]. For this analysis, we calculated
the FSS for each storm by service territory for a range of scales (3 × 3 to 21 × 21 cells),
and outage thresholds between upscaled outage predictions and actual outages via the
validation library [70]. Upscaling the predicted and actual values for the FSS calculation
was important because the resolution of our model and the frequency of actual damages
is such that the actual values are extremely zero-inflated and very sparse (96.3% zeros,
and mean of 0.048 damages per grid cell). The outage model predictions however, tend to
be small (median of 0.0292 and 0.0314 for RTMA and WRF systems respectively) and are
more evenly distributed. This difference in spatial distribution was minimized by applying
boxcar smoothing to a small 3 × 3 neighborhood on both the actual and predicted outages
for each event and territory via the SpatialVx library [71]. While this process effectively
degrades the precision of the analysis, it generates more continuously distributed values
that are more comparable, while not affecting the total number of damage locations for
each event.

To measure the variable importance of each outage model, we applied the variable
permutation technique described by Fisher et al. [72] via the DALEX library in R [73]. This
technique is model agnostic and uses a loss function to measure model performance
as the input variables are perturbed. This allows for a quantitative understanding of
each variable’s influence on the model performance. Doing this evaluation via cross-
validation would be prohibitively complex and computationally expensive, so to evaluate
the variable importance within the outage models, all available data were used to train
the models before variable importance was measured. In addition, because there is a
significant random component in this analysis, we calculated this variable importance over
ten iterations for both outage models, and calculated the confidence intervals. The loss
metric used to evaluate variable importance, root mean squared logarithmic error (RMSLE),
was chosen because it is robust to the inclusion of zeros and is less sensitive to rare cases
of extreme errors, which can be present because of the statistical distribution of actual
outages as described above. However, because it is a logarithmic error metric, differences
in RMSLE can often appear small, despite being significant.

3. Results

3.1. Weather Analysis

As demonstrated in Figure 2, the NOAA analysis dataset represents almost all weather
parameters used in the outage models more accurately than the WRF simulation dataset.
Very significant differences are seen between the quality of the precipitation parameters,
as well as several wind and gust features. Both systems are able to represent parameters
associated with synoptic scale processes, such as temperature, humidity, and surface
pressure dynamics, much more accurately than mesoscale and microscale processes, such
as wind and precipitation. Some surface pressure parameters appear to be poorly captured,
but this is likely due to differences in elevation between the NWP data and weather station
data, which are not accounted for in this evaluation. In general, these results are quite
consistent with what we would expect from the state of the art of NWP of a deterministic
24 h simulation of thunderstorms. For detailed metrics, see Appendix B.

116



Forecasting 2021, 3

Figure 2. Point-to-point comparison of the NOAA analysis parameters (RTMA, (Top)) and the WRF simulation parameters
(WRF, (Bottom)) versus weather station observations for select variables, describing 24 h thunderstorm events.

3.2. The Outage Models

The RTMA-based outage model performs slightly better than the WRF-based model
based on all metrics used in our analysis as seen in Table 3 and Figure 3.

Table 3. Error metrics of the event-level performance of the cross-validation of the outage predic-
tion systems.

MdAPE MAPE CRMSE R2 NSE

RTMA 31% 46% 50 0.39 0.37
WRF 35% 50% 51 0.36 0.35

Figure 3. Scatterplots of cross-validation predictions versus actual outages for all thunderstorm
events for RTMA- (red, (left)) and WRF (blue, (right))-based outage prediction systems.

While a direct comparison is not particularly fair because of the differences in the
events used in the analysis and the domains of the models, both outage models presented
here perform reasonably well in comparison to other outage prediction models of a similar
architecture. Wanik et al. [10] describe a warm weather outage model that has a slightly
higher MdAPE (35.1 to 38.7%). In Cerrai et al. [9], the best overall outage model has an
overall MdAPE of 43%, a MAPE of 59% and an NSE of 0.53. In Yang et al. [17], their
conditional outage prediction system designed for severe events has a MdAPE of 38%,
MAPE of 46%, and NSE of 0.79. In Watson et al. [18], their best performing rain/wind
storm model has a MdAPE of 38%, MAPE of 57%, and an NSE of 43%. The thunderstorm
outage models described here have competitive APE metrics, but have a comparatively
low NSE, in part because of one under-predicted extreme event.
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Overall, the cross-validation results indicate that the models presented here are sensi-
tive to the overall severity of the different thunderstorms. The model has a good dynamic
range, especially if one considers that the median daily outages for CT, WMA, EMA, NH,
and UI are 35, 6, 20, 22, and 25, respectively. The models shown here demonstrate a
dynamic range of around 10 times the typical daily outage level for each service territory,
depending on storm severity.

3.2.1. Spatial Skill

As seen in Figure 4, the RTMA-based outage model has slightly better spatial per-
formance than the WRF-based model, but the differences between the outage models are
small in comparison to the differences between the events and territories. While many
thresholds were evaluated, we show the results for a threshold of 0.111 damage locations,
which correspond to having one damage location smoothed out in a 3 × 3 pixel area
(approximately 7.5 km2).
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Figure 4. FSS for all events by territory for the RTMA- and WRF-based outage models with a moderate outage risk threshold
(0.111 damage locations), plotted for neighborhood sizes 3 × 3 to 21 × 21 grid cells. The colored lines are FSS values for
each event; the black line indicates the average FSS over all events; and the horizontal dark grey line indicates the average
FSSuni f orm.

3.2.2. Outage Model Variable Importance

The grouped variable importance analysis of the outage models in Figure 5 shows that,
while infrastructure-related variables are the most important by far, there are differences
between the two models as to which weather parameters contribute the most to the models.
While the RTMA-based system finds precipitation information to be very useful, the WRF-
based system has stronger preference for winds, temperature, and humidity than the
RTMA model. The WRF model also appears to fit more on such environmental variables
as land cover, vegetation, and elevation, which do not vary storm-by-storm in a given
service territory. The results of an individual variable importance analysis is displayed in
Appendix A. Although the importance of any one variable to the model is relatively small,
given the large number of variables used, and the logarithmic error metric used to measure
the dropout loss only makes the differences appear smaller, there are some interesting
differences between the two models. Most notably, the maximum precipitation rate is
one of the least important variables in the WRF model but is the second most important
variable in the RTMA model.
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Figure 5. Grouped variable importance as measured by dropout loss (RMSLE) over 10 iterations of
permuted groups of variables. The 95% confidence intervals are also shown for both the RTMA-based
outage model (red, (left)), and the WRF-based outage model (blue, (right)).

4. Discussion

Based on these results, several conclusions can be made about the predictability of
thunderstorm-related power outages. Firstly, while the NOAA analysis data represent local
weather conditions more accurately than the WRF simulation, many weather features used
in the outage prediction models have significant errors in both systems. Rather than these
errors being simulation or forecasting errors, because of the amount of observational data
assimilated into the NOAA analysis system, they are likely due to the representativeness
error caused by depicting complex and locally variable phenomena as deterministic and
uniform in the 2.5 km × 2.5 km area. This type of error has been documented in the
literature for precipitation and winds [74–77], and the errors in the RTMA data for winds
and the Stage IV are comparable to the magnitude of representativeness error found in
these works.

Secondly, because the NOAA analysis data have higher quality weather data than
the WRF simulations, it is unsurprising that the RTMA outage model is more accurate
than the WRF-based one. However, what is surprising is how modest the performance
differences between these outage models are. Even with the large amount of observational
data incorporated into the RTMA and Stage IV analysis products, which have much fewer
simulation errors present than the WRF simulations, the outage model is unable to predict
thunderstorm-related outages with greater accuracy.

This suggests that the randomness of storm damages is quite significant, and more
precise outage predictions may require significantly more precise information. One possi-
bility is that additional factors that are not considered in this study, such as the age of the
infrastructure, limit the outage model. However, there are also differences between the two
models that suggest other possibilities. As described above, the spatial resolution of the
representation of the weather data is a readily apparent source of imprecision in our data.
Although all data used in these models, including the environmental and infrastructure in-
formation, may suffer from similar representativeness errors, we can see that some weather
variables are better represented at 2.5 km × 2.5 km than others. How the precision of the
weather data affects the outage models can be understood with a more detailed analysis of
the variable importance.

By comparing the R2 values of the weather feature evaluation and the importance of
the weather variables in the outage models, we find that there is a weak but real correlation
between the two (0.23 ± 0.07 for RTMA, 0.29 ± 0.07 for WRF). This indicates that the
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outage models have a preference for precise and accurate weather information. This may
be obvious, but this preference also appears regardless of whether or not the weather
phenomena directly causes power outages. Both RTMA and WRF outage systems find
temperature and humidity to be somewhat important to its predictions, although these
variables are not direct causes of outages in thunderstorms. They are more indicators of
convective potential and are, thus, indirectly related to power outages, but because of their
accurate representation, the machine learning algorithms of the outage models find them
useful for understanding the risk of weather-related damage.

At the same time, there is also a distinct preference for variables that have a more
direct causative relationship with weather-related outages. This can best be seen in how
the RTMA system has a strong preference for precipitation variables. maxPREC is the 2nd
most important variable of all for that model, despite it having only a moderate correlation
with local conditions (R2 of 0.5298). It can also be seen in how both models find useful
information in wind and gust variables, despite the most precisely predicted variable in
that group, avgWIND, only having a moderate correlation with local conditions (R2 of 0.6346
and 0.5879 for RTMA and WRF, respectively). This is because both wind and precipitation
are good indicators of the location and intensity of a convective storm, and more direct
indicators of the risk of weather-related damages. Indeed, in the case of the RTMA system,
the strong preference for precipitation information comes with a comparatively weaker
preference for most other variable groups.

This suggests that if the precision of the precipitation and wind information could
be increased further, we can expect corresponding increases in the accuracy of outage
prediction models for thunderstorms. Additionally, if we consider how the apparent lack
of precision in these data is likely from representativeness error, as described above, future
directions for research become apparent.

Lastly, the spatial skill of the outage prediction system appears to vary significantly
from storm-to-storm as well as territory-by-territory. It is beyond the scope of this paper
to speculate about the storm-to-storm variability in the FSS scores, which may also be
a function of the accuracy and precision of the weather simulations, but the distinct
differences in spatial predictability of outages in different service territories is suggestive
of distinct differences between them. It has been documented for precipitation that the FSS
calculations change significantly depending on the size of the domain. However, in the
case of outages, this effect is likely only moderate because the average value of FSSuni f orm
does not vary much between territories. The most apparent and potentially impactful
difference for outage models between the territories is the densities of the infrastructure.
As seen in Figure 5 and Appendix A, infrastructure is a very influential variable for outage
modeling, and while all the service territories included in this study contain some urban
areas, some are much more consistently urbanized than others. As such, the mean density
of overhead lines for each territory varies widely with a minimum of 8.5km per grid cell in
WMA, and a maximum 27.5 km per grid cell in UI. If the mean density of the overhead
lines and mean FSS as shown in Figure 4 for each territory are compared, we see that the
Pearson correlations between the two are 0.927 for RTMA, and 0.946 for WRF: a very strong
correlation between the overall spatial predictability of outages and the density of the
infrastructure in the region. This is a clear indication of the influence that the infrastructure
density has over the spatial predictability of power outages. However, this also may be an
indication of over-fitting on the infrastructure features. Infrastructure is by far the most
important variable group in this analysis, but in the case of the RTMA outage model, better
spatial skill comes with a corresponding lower importance of infrastructure.

5. Conclusions

While the two thunderstorm-related outage models shown here are acceptably skilled
at predicting the total number of damages for each storm event, they have difficulty pre-
dicting the location of storm impacts. Both the models based on the NOAA analysis dataset
and the WRF simulation dataset appear to fit strongly on the amount of infrastructure
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present in an area and a combination of weather variables that are either directly related
to storm damages but imprecisely represented (precipitation, winds), or are more general
indicators of convective potential but more precisely represented (temperature, humidity).

Because predictions of the weather conditions and power outages appear to have
similar limitations for thunderstorms, there are established analytical methods that could
be readily applied to improve the modeling of power outages and other impacts associated
with thunderstorms. Just as weather ensembles allow meteorologists to predict the potential
intensity of thunderstorms beyond the capabilities of deterministic forecasts, an outage
model coupled to a weather ensemble may allow us to predict the potential impacts in a
similar way. Because of the high uncertainties, rapidly-refreshing outage models, such as
that described in Alpay et al. [33], may be more useful in an operational decision-making
context for thunderstorm preparedness.

If one considers how strong convective storms are an increasing threat, globally,
there is an implicit call to accelerate investment in global weather prediction and the
observation infrastructure. The impact models presented here, even with their limitations,
are only possible because of the availability of high-resolution nowcasting products in the
United States. While recent developments in global convective-allowing NWP systems are
encouraging [78], for this type of impact modeling to be applied in other countries, more
work in this space is needed.

Based on our findings, we can expect that as better representations of local weather
conditions during thunderstorms are developed both in the United States and globally,
outage model accuracy, overall as well as spatially, will improve; the outage models will
learn more and more of the phenomena directly linked to weather-related power outages,
such as strong winds and extreme precipitation, instead of the synoptic patterns that are cor-
related to them. To progress along that path, a more granular understanding of the weather
conditions that cause damage in convective storms and how they can be represented is
needed. Further research involving an analysis or modeling of storm impacts based on
microscale numerical weather prediction, large eddy simulations, or even observations
from radar or lidar instruments could be very informative about how weather information
can be generated in a way that improves our ability to understand and anticipate the
impacts of convective storms.
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RMSLE Root Mean Squared Logarithmic Error
NSE Nash–Sutcliffe Efficiency
MAPE Mean Absolute Percent Error
CRMSE Centered Root Mean Squared Error
FSS Fraction Skill Score
CT Eversource Connecticut
WMA Eversource Western Massachusetts
EMA Eversource Eastern Massachusetts
NH Eversource New Hampshire
UI AVANGRID United Illuminating
SPI Standardized Precipitation Index
LAI Leaf Area Index
DEM Digital Elevation Model
NLCD National Land Cover Database
3DEP 3D Elevation Program
GEDI Global Ecosystem Dynamics Investigation
SSURGO Soil Survey Geographic Database
ITSP Individual Tree Species Parameter
WWDT West Wide Drought Tracker
MODIS Moderate Resolution Imaging Spectroradiometer
METAR Meteorological Aerodrome Reports
SPECI Aviation Selected Special Weather Report
NOAA National Oceanic and Atmospheric Administration
NCEP National Centers for Environmental Prediction
USDA United States Department of Agriculture
USGS United States Geological Survey
MRLC Multi-Resolution Land Characteristics

Appendix A. Data Features

Table A1. Description of variables used in outage prediction models. The dropout loss of the top ten variables for each
model are in bold. Higher dropout loss indicates greater importance.

Name Description Source Variable Group RTMA Drp. Loss WRF Drp. Loss

ohLength Length of Overhead Line Utility Company Infrastructure 0.153695 0.155182

poleCount Number of Utility Poles Utility Company Infrastructure 0.152473 0.153222

fuseCount Number of Fuses Utility Company Infrastructure 0.152181 0.153253

reclrCount Number of Reclosers Utility Company Infrastructure 0.152233 0.153057

prec11 Percent NLCD 11—Open Water NLCD 2016 [51] Land Cover 0.151933 0.152713
prec21 Percent NLCD 21—Developed, Open NLCD 2016 [51] Land Cover 0.152056 0.152876
prec22 Percent NLCD 22—Developed, Low NLCD 2016 [51] Land Cover 0.151910 0.152749
prec23 Percent NLCD 23—Developed, Medium NLCD 2016 [51] Land Cover 0.152079 0.152963

prec24 Percent NLCD 24—Developed, High NLCD 2016 [51] Land Cover 0.151989 0.152700
prec31 Percent NLCD 31—Barren NLCD 2016 [51] Land Cover 0.151927 0.152714
prec41 Percent NLCD 41—Deciduous Forest NLCD 2016 [51] Land Cover 0.151974 0.152783
prec42 Percent NLCD 42—Evergreen Forest NLCD 2016 [51] Land Cover 0.151936 0.152731
prec43 Percent NLCD 43—Mixed Forest NLCD 2016 [51] Land Cover 0.151861 0.152732
prec52 Percent NLCD 52—Shrub NLCD 2016 [51] Land Cover 0.151933 0.152704
prec71 Percent NLCD 71—Grassland NLCD 2016 [51] Land Cover 0.151928 0.152699
prec82 Percent NLCD 82—Cultivated Crops NLCD 2016 [51] Land Cover 0.151933 0.152715
prec95 Percent NLCD 95—Herbaceous Wetlands NLCD 2016 [51] Land Cover 0.151934 0.152713
avgCanopy Mean Percent Tree Canopy Cover NLCD Tree Canopy 2016 [52] Vegetation 0.152329 0.152956

stdCanopy Standard Deviation of Canopy Cover NLCD Tree Canopy 2016 [52] Vegetation 0.151968 0.152736
avgVegHgt Mean Vegetation Height GEDI 2019 [53] Vegetation 0.152037 0.152906
stdVegHgt Standard Deviation of Vegetation Height GEDI 2019 [53] Vegetation 0.151945 0.152771
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Table A1. Cont.

Name Description Source Variable Group RTMA Drp. Loss WRF Drp. Loss

avgHardBA Mean Hardwood Basal Area ITSP [56] Vegetation 0.151903 0.152714
stdHardBA Standard Deviation of Hardwood BA ITSP [56] Vegetation 0.151939 0.152722
avgHardSDI Mean Hardwood Stand Density Index ITSP [56] Vegetation 0.151963 0.152686
stdHardSDI Standard Deviation of Hardwood SDI ITSP [56] Vegetation 0.151919 0.152698
avgSoftBA Mean Softwood Basal Area ITSP [56] Vegetation 0.151914 0.152702
stdSoftBA Standard Deviation of Softwood BA ITSP [56] Vegetation 0.151881 0.152691
avgSoftSDI Mean Softwood Stand Density Index ITSP [56] Vegetation 0.151927 0.152677
stdSoftSDI Standard Deviation of Softwood SDI ITSP [56] Vegetation 0.151891 0.152684
avgBA Mean Total Basal Area ITSP [56] Vegetation 0.151950 0.152737
stdBA Standard Deviation of Total Basal Area ITSP [56] Vegetation 0.151910 0.152776
avgSDI Mean Total Stand Density Index ITSP [56] Vegetation 0.151951 0.152698
stdSDI Standard Deviation of Total SDI ITSP [56] Vegetation 0.151981 0.152767
avgDQ Mean Total Quadratic Mean Diameter ITSP [56] Vegetation 0.151929 0.152718
stdDQ Standard Deviation of Total DQ ITSP [56] Vegetation 0.151936 0.152760
avgTF Mean of Total Frequency ITSP [56] Vegetation 0.152247 0.153137

stdTF Standard Deviation of TF ITSP [56] Vegetation 0.151984 0.152783
avgTPA Mean of Trees per Acre ITSP [56] Vegetation 0.151881 0.152653
stdTPA Standard Deviation of TPA ITSP [56] Vegetation 0.151932 0.152690
LAI Leaf Area Index MODIS [9,79] Vegetation 0.152083 0.152848
avgDEM Mean Elevation 3DEP [54] Elevation 0.151837 0.152660
stdDEM Standard Deviation of Elevation 3DEP [54] Elevation 0.151924 0.152720
elvDiff Difference of avgDEM and weather elevation 3DEP [54], RTMA [37], WRF [80] Elevation 0.151931 0.152706
spi1 One Month Standardized Precipitation Index WWDT [57] Drought 0.151987 0.153005

spi3 Three Month Standardized Precipitation Index WWDT [57] Drought 0.152001 0.152830
spi12_0 12 Month SPI, current WWDT [57] Drought 0.151998 0.152773
spi12_1 12 Month SPI, 1 year prior WWDT [57] Drought 0.152137 0.152853
spi12_2 12 Month SPI, 2 years prior WWDT [57] Drought 0.152075 0.152831
spi12_3 12 Month SPI, 3 years prior WWDT [57] Drought 0.152155 0.152853
spi12_4 12 Month SPI, 4 years prior WWDT [57] Drought 0.152027 0.152809
spi12_5 12 Month SPI, 5 years prior WWDT [57] Drought 0.151939 0.152801
hydNo Percent not hydric soils SSURGO [55] Soil Type 0.151954 0.152771
siltTotal Percent Silt Content SSURGO [55] Soil Type 0.151943 0.152747
clayTotal Percent Clay Content SSURGO [55] Soil Type 0.151929 0.152717
rockTotal Percent of Rock Content SSURGO [55] Soil Type 0.151966 0.152738
soilDepth Depth of Soil SSURGO [55] Soil Type 0.151847 0.152661
orgMat Percent of Organic Material SSURGO [55] Soil Type 0.151949 0.152743
soilDens Soil Density SSURGO [55] Soil Type 0.151950 0.152730
kSat Saturated Hydraulic Conductivity SSURGO [55] Soil Type 0.151945 0.152732
satP Soil Porosity SSURGO [55] Soil Type 0.151961 0.152716
avgTMP Mean Air Temperature RTMA [37], WRF [80] Temperature 0.152191 0.152650
stdTMP Standard Deviation of Air Temp RTMA [37], WRF [80] Temperature 0.152156 0.152819
maxTMP Maximum Air Temperature RTMA [37], WRF [80] Temperature 0.152685 0.153235

minTMP Minimum Air Temperature RTMA [37], WRF [80] Temperature 0.151925 0.152873
sumTMP Sum of Air Temperatures RTMA [37], WRF [80] Temperature 0.152029 0.152741
peakTMP Mean Temp during peak winds RTMA [37], WRF [80] Temperature 0.152020 0.152780
avgDPT Mean Dew Point Temperature RTMA [37], WRF [80] Dew Point 0.151976 0.152767
stdDPT Standard Deviation of Dew Point RTMA [37], WRF [80] Dew Point 0.152013 0.152804
maxDPT Maximum Dew Point Temperature RTMA [37], WRF [80] Dew Point 0.151926 0.152687
minDPT Minimum Dew Point Temperature RTMA [37], WRF [80] Dew Point 0.151941 0.152832
sumDPT Sum of Dew Point Temperatures RTMA [37], WRF [80] Dew Point 0.152012 0.152792
peakDPT Mean Dew Point during peak winds RTMA [37], WRF [80] Dew Point 0.152007 0.152723
avgPRES Mean Surface Pressure RTMA [37], WRF [80] Pressure 0.151914 0.152716
stdPRES Standard Deviation of Pressure RTMA [37], WRF [80] Pressure 0.152297 0.152797
maxPRES Maximum Surface Pressure RTMA [37], WRF [80] Pressure 0.151950 0.152735
minPRES Minimum Surface Pressure RTMA [37], WRF [80] Pressure 0.151946 0.152737
sumPRES Sum of Surface Pressures RTMA [37], WRF [80] Pressure 0.151943 0.152706
peakPRES Mean Pressure during peak winds RTMA [37], WRF [80] Pressure 0.151960 0.152694
avgSPFH Mean Specific Humidity RTMA [37], WRF [80] Humidity 0.152062 0.152817
stdSPFH Standard Deviation of Spec. Humidity RTMA [37], WRF [80] Humidity 0.152018 0.152836
maxSPFH Maximum Specific Humidity RTMA [37], WRF [80] Humidity 0.151949 0.152751
minSPFH Minimum Specific Humidity RTMA [37], WRF [80] Humidity 0.152082 0.152905
sumSPFH Sum of Specific Humidities RTMA [37], WRF [80] Humidity 0.152163 0.152752
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Table A1. Cont.

Name Description Source Variable Group RTMA Drp. Loss WRF Drp. Loss

peakSPFH Mean of Spec. Humidity during peak winds RTMA [37], WRF [80] Humidity 0.151984 0.152767
avgWIND Mean 10m Wind Speed RTMA [37], WRF [80] Wind/Gust 0.151961 0.152710
stdWIND Standard Deviation of 10m Wind Speed RTMA [37], WRF [80] Wind/Gust 0.151954 0.152750
maxWIND Maximum 10m Wind Speed RTMA [37], WRF [80] Wind/Gust 0.151977 0.152748
minWIND Minimum 10m Wind Speed RTMA [37], WRF [80] Wind/Gust 0.151997 0.152745
sumWIND Sum of Wind Speeds RTMA [37], WRF [80] Wind/Gust 0.151972 0.152716
peakWIND Mean wind speed during peak winds RTMA [37], WRF [80] Wind/Gust 0.151948 0.152742
avgGUST Mean Wind Gust Speed RTMA [37], WRF [80] Wind/Gust 0.152045 0.152836
stdGUST Standard Deviation of Wind Gust Speed RTMA [37], WRF [80] Wind/Gust 0.151985 0.152769
maxGUST Maximum Wind Gust Speed RTMA [37], WRF [80] Wind/Gust 0.152040 0.152752
minGUST Minimum Wind Gust Speed RTMA [37], WRF [80] Wind/Gust 0.152089 0.152746
sumGUST Sum of Wind Gusts RTMA [37], WRF [80] Wind/Gust 0.151988 0.152746
peakGUST Mean Wind Gust Speed during peak winds RTMA [37], WRF [80] Wind/Gust 0.152039 0.152748
avgLFSH Mean Leaf Stress MODIS [9,79], RTMA [37], WRF [80] Wind/Gust 0.151991 0.152744
stdLFSH Standard Deviation of Leaf Stress MODIS [9,79], RTMA [37], WRF [80] Wind/Gust 0.151961 0.152738
maxLFSH Maximum Leaf Stress MODIS [9,79], RTMA [37], WRF [80] Wind/Gust 0.151980 0.152743
minLFSH Minimum Leaf Stress MODIS [9,79], RTMA [37], WRF [80] Wind/Gust 0.151963 0.152755
sumLFSH Sum of Leaf Stresses MODIS [9,79], RTMA [37], WRF [80] Wind/Gust 0.152024 0.152760
peakLFSH Mean Leaf Stress during peak winds MODIS [9,79], RTMA [37], WRF [80] Wind/Gust 0.151961 0.152826
wgt5 Hours of Winds >5 m/s RTMA [37], WRF [80] Wind/Gust 0.151974 0.152793
cowgt5 Continuous Hours of Winds >5 m/s RTMA [37], WRF [80] Wind/Gust 0.151952 0.152770
ggt13 Hours of Gusts >13 m/s RTMA [37], WRF [80] Wind/Gust 0.151967 0.152997

ggt17 Hours of Gusts >17 m/s RTMA [37], WRF [80] Wind/Gust 0.151932 0.152729
ggt22 Hours of Gusts >22 m/s RTMA [37], WRF [80] Wind/Gust 0.151934 0.152717
coggt13 Continuous Hours of Gusts >13 m/s RTMA [37], WRF [80] Wind/Gust 0.151935 0.152804
coggt17 Continuous Hours of Gusts >17 m/s RTMA [37], WRF [80] Wind/Gust 0.151940 0.152736
coggt22 Continuous Hours of Gusts >22 m/s RTMA [37], WRF [80] Wind/Gust 0.151945 0.152719
typWDIR Typical (mean) wind direction of all storms RTMA [37], WRF [80] Wind/Gust 0.152005 0.152712
medWDIR Median Wind direction of storm RTMA [37], WRF [80] Wind/Gust 0.152002 0.152806
difWDIR Difference between typWDIR and medWDIR RTMA [37], WRF [80] Wind/Gust 0.151966 0.152745
avgPREC Mean Hourly Precipitation Rate Stage IV [38], WRF [80] Precipitation 0.152209 0.152784
stdPREC Standard Deviation of Precip. Rate Stage IV [38], WRF [80] Precipitation 0.152403 0.152731
maxPREC Maximum Hourly Precipitation Rate Stage IV [38], WRF [80] Precipitation 0.152844 0.152773
sumPREC Total Precipitation Stage IV [38], WRF [80] Precipitation 0.152187 0.152746
peakPREC Mean Precip. Rate during peak winds Stage IV [38], WRF [80] Precipitation 0.152311 0.152726

Appendix B. Weather Correlations

Table A2. Correlation between RTMA and WRF weather datasets, and METAR and SPECI observations.

Name Variable Group RTMA—METAR R2 WRF—METAR R2

avgTMP Temperature 0.9836 0.9129
stdTMP Temperature 0.9119 0.6448
maxTMP Temperature 0.9707 0.8686
minTMP Temperature 0.9443 0.8592
sumTMP Temperature 0.9119 0.8459
peakTMP Temperature 0.7814 0.6480
avgDPT Dew Point 0.9798 0.9461
stdDPT Dew Point 0.9092 0.7349
maxDPT Dew Point 0.9608 0.8966
minDPT Dew Point 0.9511 0.8897
sumDPT Dew Point 0.9234 0.8921
peakDPT Dew Point 0.8348 0.7189
avgPRES Pressure 0.1700 0.1588
stdPRES Pressure 0.9766 0.9392
maxPRES Pressure 0.1498 0.1363
minPRES Pressure 0.2200 0.2038
sumPRES Pressure 0.0015 0.0013
peakPRES Pressure 0.1708 0.1469
avgSPFH Humidity 0.9735 0.9274
stdSPFH Humidity 0.8878 0.6932

124



Forecasting 2021, 3

Table A2. Cont.

Name Variable Group RTMA—METAR R2 WRF—METAR R2

maxSPFH Humidity 0.9470 0.8648
minSPFH Humidity 0.9500 0.8799
sumSPFH Humidity 0.9204 0.8735
peakSPFH Humidity 0.8219 0.7002
avgWIND Wind/Gust 0.6346 0.5879
stdWIND Wind/Gust 0.3217 0.1736
maxWIND Wind/Gust 0.3327 0.2667
minWIND Wind/Gust 0.5053 0.3046
sumWIND Wind/Gust 0.6057 0.5643
peakWIND Wind/Gust 0.3632 0.3246
avgGUST Wind/Gust 0.5915 0.5056
stdGUST Wind/Gust 0.1411 0.0627
maxGUST Wind/Gust 0.2484 0.1067
minGUST Wind/Gust 0.0060 0.0091
sumGUST Wind/Gust 0.5789 0.4957
peakGUST Wind/Gust 0.1487 0.0625
avgLFSH Wind/Gust 0.5512 0.5444
stdLFSH Wind/Gust 0.3583 0.2756
maxLFSH Wind/Gust 0.2845 0.2249
minLFSH Wind/Gust 0.4397 0.2735
sumLFSH Wind/Gust 0.5382 0.5385
peakLFSH Wind/Gust 0.2939 0.2786
wgt5 Wind/Gust 0.4230 0.4820
cowgt5 Wind/Gust 0.3837 0.3517
ggt13 Wind/Gust 0.4432 0.2149
ggt17 Wind/Gust 0.0352 0.0137
ggt22 Wind/Gust NA1 0.0000
coggt13 Wind/Gust 0.4110 0.1665
coggt17 Wind/Gust 0.0396 0.0105
coggt22 Wind/Gust NA1 0.0000
typWDIR Wind/Gust 0.0054 0.1378
medWDIR Wind/Gust 0.3357 0.0304
difWDIR Wind/Gust 0.2362 0.0219
avgPREC Precipitation 0.6056 0.0886
stdPREC Precipitation 0.5589 0.0622
maxPREC Precipitation 0.5298 0.0538
sumPREC Precipitation 0.5585 0.0862
peakPREC Precipitation 0.1989 0.0279
1 Not enough variance to compute.

Appendix C. Error Metrics

MAPE =
1
N

N

∑
i=1

|P − A|
A

× 100 (A1)

CRMSE =

√√√√ 1
N

N

∑
i=1

[(Pi − P̄)− (Ai − Ā)]2 (A2)

NSE = 1 − ∑N
i=1(Pi − Ai)

2

∑N
i=1(Pi − Ā)2

(A3)

R2 =

⎛
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i=1(Pi − P̄)(Ai − Ā)√
∑N

i=1(Pi − P̄)2 ∑N
i=1(Ai − Ā)2

⎞
⎠

2

(A4)

RMSLE =

√√√√ 1
N

N

∑
i=1

(log(Pi + 1)− log(Ai + 1))2 (A5)
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Abstract: Smoking causes substantial amount of mortality and morbidity. This article presents
the findings from simulation models that projected the impact of five potential Tobacco Endgame
strategies on smoking prevalence in Ontario by 2035 and expected impact of smoking prevalence
“less than 5 by 35” on tax revenue. We used Ontario SimSmoke simulation for modelling the expected
impact of four strategies: plain packaging, free cessation services, decreasing the number of tobacco
outlets, and increasing tobacco taxes. Separate models were used to project the impact of increasing
the minimum age to legally purchase tobacco to 21 years on smoking prevalence and impact of price
and tax increase to achieve “less than 5 by 35” on taxation revenue. The combined effect of four
strategies in Ontario SimSmoke Model are expected to reduce smoking prevalence by 8.5% in 2035.
Increasing tobacco taxes had the greatest independent predicted decrease in smoking prevalence
(2.8%) followed by raised minimum age for legal purchase to 21 years (2.4%), decreasing tobacco
outlets (1.5%), free cessation services (0.7%), and plain packaging (0.6%). Increasing tobacco excise tax
and prices are projected to have minimal impact on taxation revenue, with a decrease from 1.5 billion
to 1.2 billion annual tax receipts.

Keywords: tobacco endgame; policy; simulation model; tobacco tax revenue

1. Introduction

Great strides have been made in tobacco control in Canada and globally over the past
few decades through implementation of various measures, including those endorsed by the
international Framework Convention for Tobacco Control [FCTC] [1]. Nevertheless, smok-
ing prevalence remains substantial: 18.1% of Canadians over 12 years of age, representing
5.4 million Canadians, were current smokers in the year 2014 [2]. The overall burden of
smoking related illness and death from cancer and from respiratory and cardiovascular
diseases continues to be devastating. In 2002, 37,000 Canadians died from tobacco associ-
ated illnesses–the size of a small town being wiped off the map each year [3]. Canadians
lose an estimated 515,607 person years of life every year as a result of premature mortality
from tobacco smoking [3]. The idea of a “Tobacco Endgame” is based on the perspective
that “control” of tobacco will never be enough to deal with the epidemic of tobacco related
diseases and that the focus must be shifted to develop strategies to reach a future that is free
of commercial tobacco. This notion of “endgame” is qualitatively different from tobacco
control strategies currently in place. This recognition is becoming more widespread and is
increasingly leading to the view that a strategy for an “endgame” for commercial tobacco
is required.

In October 2016, a Tobacco Endgame for Canada Summit was convened with over
80 experts, researchers, government officials, advocates, and health professionals in atten-
dance to discuss possible strategies to the target goal “less than 5 by 35”; that is, to achieve
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less than 5% smoking prevalence by 2035. In this report, we describe the findings from
simulation models that assessed the impact in Ontario of five potential Tobacco Endgame
strategies [4]. They include:

1. Plain packaging for all tobacco products.
2. Free cessation services for all (both pharmaceutical and behavioural therapy).
3. Decreasing the number of outlets selling tobacco products.
4. Increasing tobacco taxes.
5. Increasing the minimum age to legally purchase tobacco to 21 years.

In addition, we also modeled the impact of tax and price increase to achieve “less
than 5 by 35” on government taxation revenue. Cigarette taxes bring in significant revenue
to governments at the national and provincial level. Apart from sales taxes, in 2014–2015
Canadian Federal and Provincial governments received $8.2 billion from the sale of to-
bacco [5]. There is concern expressed by those opposed to tobacco elimination that reducing
the number of smokers would decrease government revenue and that this would be of
such a magnitude that it could not happen. However, there is overwhelming Canadian
and international evidence that increases in tobacco taxes can reduce tobacco use and
increase government tax revenue [6–13]. At current taxation and tobacco use rates, taxes on
tobacco products have the dual effect of decreasing the demand for tobacco and increasing
government revenue. In fiscal year 2014–2015, the federal government collected more than
$3 billion in cigarette taxes [14]. In Ontario and Québec, Canada’s largest provinces, the
provincial governments collected more than $1 billion each.

If Canada achieves “less than 5 by 35” through non-tax interventions, total taxes
collected on the sale of tobacco products would dwindle substantially. Given that in 2014,
18.1% of Canadians aged 12 and older smoked either daily or occasionally [2], it could be
expected that annual tobacco tax receipts decrease by as much as 75% from 2035. Moreover,
during the period of transitioning from 18% to 5% smoking prevalence, the cumulative
amount of tax losses year over year would be far from negligible. Achieving “less than
5 by 35”, however, need not be achieved solely on the back of non-tax interventions.
In the case, albeit extreme, that “less than 5 by 35” is achieved solely through tax and
price increases, the cumulative tax revenue gains during the transition period could be
considerable. Irrespective of the substantial cost savings gained from reductions in health
care spending and reductions in indirect costs to society detailed above, there might be
minimal changes in government revenue during the period of transition to “less than 5”, if
increased tax rates are a component of an endgame strategy.

The purpose of this paper is to evaluate the expected impact of endgame policies and
understand the expected tax revenue impact of reducing smoking prevalence to less than 5%.

2. Materials and Methods

2.1. Ontario SimSmoke Model

Four of the Tobacco Endgame strategies were modelled using the Ontario SimSmoke
simulation model. The Ontario SimSmoke model is adapted from the SimSmoke sim-
ulation model of tobacco control policies, previously developed for the U.S. and other
countries [15–17]. The model uses population, smoking rates, and tobacco control policy
data for Ontario. It assesses, individually and in combination, the effect of seven types
of tobacco control policies (taxes, clean air, mass media, advertising bans, warning labels,
cessation treatment, and youth access policies) on smoking prevalence and associated
future premature mortality [18]. Each policy parameter in the model is accorded an effect
size developed for the SIMSMOKE model based on literature reviews and expert panel.
These existing parameters were then either maximized to represent full implementation of
the intervention or the parameter effect sizes themselves were adapted according the new
assumptions. Modifications were made to the Ontario SimSmoke policy levels or policy
effect sizes to assess the impact of each Tobacco Endgame strategy on smoking prevalence
in Ontario between 2019 and 2035. The following represent the changes in the SIMSMOKE
model to represent the effect of the endgame scenarios.
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To simulate the impact of plain packaging, the comprehensive marketing ban (both
direct and indirect) policy level in Ontario SimSmoke was increased to 90% (up from 25%)
as a proxy measure for plain packaging in which the package itself was assumed to be the
primary method of direct consumer marketing in Ontario..

Free cessation services were modeled adapting two parameters in Ontario SimSmoke.
The first parameter incorporated free cessation services (pharmacotherapy and behavioural
therapy) in all primary care and hospital settings,. The second parameter expanded the
number of settings offering free cessation to also include offices of health professionals,
community, and ‘other.’ Free cessation services are currently limited in Ontario.

Analyses conducted by Chaiton, Mecredy, and Cohen [19] identified an increased risk
of relapse among smokers who resided within 500 m from a tobacco outlet (Hazard ratio:
1.41) compared to those who lived further away. As a proxy measure for decreasing the
number of outlets selling tobacco products, the policy effect sizes in Ontario SimSmoke
for the five cessation treatment policies (treatment availability, treatment access, quitlines,
quitlines with treatment access, and brief interventions) were increased by a value of 1.41.

Price elasticities were doubled in the Ontario SimSmoke model to assess the impact
of increased tobacco taxes on smoking prevalence. Specifically, the policy effects were
increased to −0.6 for youth less than 18 years (60% reduction in smoking), −0.4 for young
adults aged 18 to 24 (40% reduction in smoking), −0.3 for adults aged 25 to 34 years
(30% reduction in smoking) and −0.2 for adults aged 35 years or more (20% reduction in
smoking).

2.2. Ontario Population Model

Our final endgame model, increasing the minimum age of legal purchase to 21 years
and tax revenue, was modelled separately from the SIMSMOKE model. In this model, we
simulated the impact of minimum age laws by using a population program in which the
baseline status quo rate of change in smoking prevalence was estimated to be 1.1% per
year. We adjusted our model for effects in age group less than 19 and eliminated the effect
of cessation in our model. This model was also used to evaluate the effect of taxation using
a separate model that simulates the impact of tax and price increases required to achieve
“less than 5 by 35”.

Based on the analyses conducted by Callaghan et al. [20], it was assumed that the
rate of onset for new smokers aged 20–22 would be 2.7 percentage points lower than it
would have been under the standard projection for each year if the minimum age ban took
effect immediately. No changes in prevalence were modelled for older ages at the time on
the implied onset of the law; however, the effect was carried through as the cohort aged.
Additionally, it was assumed that the increased age of onset would be associated with
increased cessation in this cohort (natural rate of decrease adjusted from 0.011 to 0.022). No
adjustment was made for any effects in youth younger than 19 who might be affected by
reduced access to tobacco. No adjustment was made for any additional social normative
effects.

This model obtained smoking prevalence from 2014 Canadian Community Health Sur-
vey (CCHS) [2]. We used Statistics Canada medium growth population projection scenario
(M1: medium-growth, 1991/1992 to 2010/2011 trend, CANSIM Table 052-0005) [21]. The
number of people aged 20–22 was obtained from the Ontario Ministry of Finance for years
2018–2035 [22]. Smoking prevalence and daily number of cigarettes consumed per smoker,
by age: We used the most recent cycle (2014) of a large national survey, the CCHS, and
obtained point estimates for smoking prevalence and intensity. Excise tax rate and revenue:
We obtained current tobacco excise tax rates and more recent estimates of tobacco excise
tobacco tax revenue from provincial Ministries of Finance. Total cigarette tax paid sales:
As a measure of tax-paid sales, we used cigarette wholesale data as reported by tobacco
manufacturers to Health Canada. Underlying trend: Smoking prevalence in Canada has
steadily decreased since the mid-1960s. In 1965 about half of all Canadians aged 15 and
above smoked. By the early 2010s, only about 20% did [23]. This steady decline was due to
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many factors such as information on the harmful effects of active smoking and secondhand
smoke, tobacco control policies such as smoke free policies, advertising bans and taxation,
and changes in anti-smoking sentiment. Although it is difficult to disentangle the effects of
each of these factors, it seems reasonable to assume that the downward trend in smoking
prevalence observed between the early 2000s and the present would not abruptly end in
the near future. In the last decade for which data are available, smoking prevalence, on
average, declined annually by about 2% to 3% depending on the province. We assumed an
underlying trend of 2.5% in annual decrease in both smoking prevalence and daily number
of cigarettes consumed per smoker.

2.3. Tax Revenue

This model that simulates the impact of tax and price increases required to achieve
“less than 5 by 35” by examining the impact on taxation revenues under three different
scenarios: (1) excise taxes are increased only to keep up with inflation; (2) “less than 5 by
35” is achieved solely through excise tax increases; and (3) “less than 5 by 35” is achieved
through non tax intervention and excise tax increases that raise prices by 5% in real terms
annually. We used accepted parameters of elasticity for changes in tobacco prices for adults
(−0.4) and twice that for youth [13]. The model accounts for population growth, inflation,
and tax evasion. We used data for the province of Ontario to simulate the impact of tax and
price increases required to achieve “less than 5 by 35” on tax revenue. At the current tax
rates, it is expected that Ontario will collect about $1.5 billion in 2016. All monetary figures
below are in constant 2016 dollars. To estimate the changes on tax revenue, we made the
following baseline model parameters and assumptions.

Own-price elasticity: There is overwhelming evidence that individuals respond to
changes in tobacco prices. In high-income countries such as Canada and the United States,
it is generally accepted that a 10% increase in prices would reduce total consumption
by about 4%; and that half of the reduction comes from a reduction in the number of
smokers and half from a reduction in consumption among continuing smokers [13]. It
is also generally accepted that youth respond more to changes in prices—about twice as
much as older adults [13]. Consequently, as a baseline assumption for own-price elasticity
for cigarettes, we used −0.4 for adults (20 years of age and above) (−0.2 for own-price
prevalence elasticity and −0.2 for own-price consumption elasticity), and twice that for
youth (12 to 19 years of age).

Pass-through rate: Tax changes do not necessarily lead to price changes as man-
ufacturers are rarely required to pass on the full extent of tax increases to consumers.
Manufacturers often under- or over-shift tax changes. In mature cigarette markets such as
Canada, manufacturers typically over-shift tax increases [24]. As a baseline assumption,
we assumed that tobacco manufacturers over-shift tax increases by 10%.

Prices: In order to estimate the effect of tax changes on smoking, it is necessary to first
estimate the effect of tax changes on current prices. We used $0.40 per cigarette stick.

Expected inflation: As a measure of expected inflation, we used 2% annual increases
to reflect the Bank of Canada’s 2% inflation-control target [25].

Cigarette tax evasion: Although cigarette tax evasion has many causes, high taxes
undeniably create an incentive for tobacco users and manufacturers to elaborate ways to
evade tobacco taxes. While the illegal nature of cigarette tax evasion makes it intrinsically
difficult to measure accurately, cigarette tax evasion in some Canadian regions such as
southern Ontario is not negligible [26]. Our model allows for a portion of the effect of tax
and price increases on tobacco use and consumption to be directed towards contraband
cigarettes.
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3. Results

3.1. Smoking Prevalence Modelling

Results from the Ontario SimSmoke simulation model indicate that each of the Tobacco
Endgame strategies predicts a greater reduction in smoking prevalence by 2035 compared
to the status quo scenario (Table 1 and Figure 1).

Table 1. SimSmoke Model Predicted Smoking Prevalence, for Both Sexes, Ages 15–85, With and
Without Tobacco Endgame Policies, Ontario, 2018–2035.

Policy 2018 2019 2020 2025 2030 2035

Status Quo Policies a 15.5% 15.4% 15.2% 14.4% 13.6% 12.9%
Independent Policy Effects

Plain packaging 15.5% 14.8% 14.7% 13.8% 13.0% 12.3%
Free cessation services in primary care and hospitals 15.5% 14.8% 14.7% 13.8% 13.0% 12.2%
Free cessation services everywhere 15.5% 14.7% 14.5% 13.6% 12.8% 12.1%
Decreased tobacco availability 15.5% 13.7% 13.5% 12.7% 12.0% 11.4%
Increased taxation 15.5% 12.7% 12.5% 11.7% 10.8% 10.1%

Combined Policy Effects
All above 15.5% 10.9% 10.7% 9.9% 9.1% 8.5%

a Status quo represents the policy levels prior to the first projection year (2019). Source: Ontario SimSmoke.

Figure 1. SimSmoke Model Predicted Smoking Prevalence, for Both Sexes, Ages 15–85, With and Without Tobacco Endgame
Policies, Ontario, 2018–2035. Status quo represents the policy levels prior to the first projection year (2019). Note: Full data
table for this graph provided in the Appendix A (Table A1) Source: Ontario SimSmoke.

Increased taxation had the greatest independent impact on smoking prevalence. By
2035, smoking prevalence is projected to reach 10.1% with increased tobacco taxes, while
the status quo prevalence is projected to be 12.9% in 2035 (a 2.8 percentage point reduction).

Decreased tobacco availability is projected to reduce smoking prevalence by 1.5 per-
centage points in 2035, from 12.9% with the status quo scenario to 11.4% with fewer tobacco
outlets.
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Offering free cessation services in primary care and hospital settings (i.e., Ottawa
Model of Smoking Cessation model) is projected to reduce smoking prevalence to 12.2%
in 2035, while free cessation services offered in primary care, hospitals, offices of health
professionals, community and ‘other’ settings is projected to further reduce smoking
prevalence to 12.1% in 2035. Both cessation policy models project lower smoking prevalence
in 2035 compared to the status quo scenario (12.9% in 2035; a 0.61 and 0.78 percentage
point reduction, respectively).

Plain packaging is projected to reduce smoking prevalence by 0.6 percentage points in
2035, from 12.9% with the status quo scenario to 12.3% with plain packaging.

The combined effect of all four Tobacco Endgame strategies modelled in Ontario
SimSmoke is projected to reduce smoking prevalence to 8.5% in 2035, a 4.4 percentage
point reduction compared to the status quo scenario (12.9% in 2035).

In the model assessing the impact of a higher minimum age for legal purchase,
population smoking prevalence was expected to decline 3.7 percentage points by 2035 to
13.2% from an imputed value of 16.9% under the baseline status quo scenario. Increasing
the minimum legal purchase age to 21 would be expected to reduce smoking prevalence to
10.5% (8.0% among the 20–34 year olds; 2.7 and 5.2 percentage point decrease, respectively).
Eliminating the effect on cessation in the model would predict a 2035 prevalence of 11.2%
(10.8% among the 20–34 year olds; 2.0 and 2.4 percentage point decrease, respectively)
(Figure 2).

 
Figure 2. Model Predicted Smoking Prevalence, for Both Sexes, With and Without Increased Minimum Age Tobacco
Purchasing Law, Ontario, 2018–2035.

3.2. Taxation Revenue Models

Average number of cigarettes per day was expected to be 4.0 cigarettes smoked per
day among the 5% who were expected to continue smoking on average by 2035 down from
13.3 cigarettes a day in 2014.

Scenario 1. “Less than 5 by 35” achieved through non-tax interventions (excise taxes
assumed to keep up with inflation):

- Tax revenue, 2035: $163 million
- Tax revenue, 2016–2035: $12,605 million
- Tax revenue, average, 2016–2035: $630 million
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Scenario 2. “Less than 5 by 35” achieved solely through excise tax increases (assuming
an underlying annual downward trend in smoking prevalence and consumption of 2.5%).
Note that such a scenario requires that taxes increase annually by more than 20%:

- Tax revenue, 2035: $5054 million
- Tax revenue, 2016–2035: $68,884 million
- Tax revenue, average, 2016–2035: $3444 million

Scenario 3. “Less than 5 by 35” achieved through non-tax interventions and excise tax
increases that raise prices by 5% in real terms, annually:

- Tax revenue, 2035: $673 million
- Tax revenue, 2016–2035: $24,261 million
- Tax revenue, average, 2016–2035: $1213 million

4. Discussion

The modelling results presented in this report highlight the effects of five key Tobacco
Endgame strategies to reduce the smoking prevalence in Ontario by the year 2035. In-
creasing the tobacco taxes had the greatest independent predicted decrease in smoking
prevalence by the year 2035 (2.8%), followed by increasing the minimum age for legal pur-
chase to 21 years (2.4%) and decreasing the number of tobacco outlets (1.5%). Offering free
cessation services and introducing plain packaging on all tobacco products each reduced
the smoking prevalence by less than 1% compared to the status quo. Notably, none of
the Tobacco Endgame strategies (either independently or combined) projected a smoking
prevalence that was less than 5% by 2035.

Regarding impact of tax interventions on government revenue, our model shows that
if Canada achieves “less than 5 by 35” through non-tax interventions, annual tobacco tax
receipts would decrease from about $1.5 billion to about $160 million in 2035. However,
if tax rates increase such that prices increase by 5% annually (in excess of inflation)—a
policy pursued by France from 1991 to the early 2000s—average annual tax revenue would
amount to about $1.2 billion and the cumulative taxes collected between 2016 and 2035
would near $25 billion.

The scenario 2 model showing the potential prices needed to achieve “less than 5 by 35”
through taxation alone demonstrates the need for a comprehensive policy for the Tobacco
Endgame that relies on both tax and non-tax interventions. Allowing for a portion of the
effect of tax and price increases on tobacco use and consumption to be directed towards
contraband cigarettes, as expected, reduces tax receipts, but does not invalidate any of
the key findings. Similarly, our results are not sensitive to the use of a more conservative
own-price elasticity estimates of −0.3. Taxation revenue should not be a barrier to the
endgame. The analysis shows that with a sensible taxation policy, fiscal cost impact over
the period of implementation is minimal compared to the health care and social costs of
tobacco which currently are estimated at $16.2 billion per year [27]. Ultimately, however, it
is important to recognize that the massive health and mortality burden due to tobacco is
not worth sustaining for any amount of profit or revenue.

Caution should be taken when interpreting the projections presented in this report as
they depend on the reliability of the data, and the estimated parameters and assumptions
used in the models. A reduction in smoking prevalence and consumption in excess of
current trends would inevitably lead to future populations that are larger than projected
by Statistics Canada’s medium growth population projections. There is strong evidence
that higher incomes increase the demand for tobacco products [13]. However, income
growth in Canada is projected to be relatively low [28]. Consequently, income effects are
unlikely to affect the above results. Our approach examines the effect of changes in tobacco
excise rates on tobacco excise revenue and not on harmonized sales tax (HST) which is a
non-tobacco specific tax applicable on any taxable supplies in Canada, as ex-smokers and
continuing smokers that reduce their consumption will very likely divert their spending
towards goods and services that are also subject to HST. Our approach does not address
the issue of tax avoidance such as brand switching. Because governments in Canada rely
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entirely on tobacco specific excise taxes and not on specific ad valorem taxes, which differs
between brands of tobacco products. More broadly, the endgame potential interventions
here are only a possible subset of innovative strategies that could change the landscape of
tobacco control. For instance, this study does not consider the role of e-cigarettes, reduced
nicotine, or structural changes to the tobacco industry. These other interventions may
have a greater impact on smoking prevalence or health burden than the intervention set
considered here.

5. Conclusions

Simulation models project that increasing tobacco taxes would result in the greatest
decrease in smoking prevalence, and that reducing smoking prevalence to “less than 5
by 35” by both non-tax interventions and excise tax increase would result in minimal
impact on government tax revenue. However, despite significant projected decrease in
smoking prevalence, achieving “less than 5 by 35” might not be possible through the five
key Tobacco Endgame strategies, either independently or combined.
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Appendix A

Table A1. SimSmoke Model Predicted Smoking Prevalence, for Both Sexes, Ages 15–85, With and Without Tobacco Endgame
Policies, Ontario, 2018–2035.

Policy 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

Status Quo Policies a 15.5% 15.4% 15.2% 15.0% 14.9% 14.7% 14.5% 14.4% 14.2% 14.0% 13.9% 13.7% 13.6% 13.4% 13.3% 13.1% 13.0% 12.9%

Independent Policy Effects

Plain packaging 15.5% 14.8% 14.7% 14.5% 14.3% 14.2% 14.0% 13.8% 13.6% 13.5% 13.3% 13.1% 13.0% 12.8% 12.7% 12.5% 12.4% 12.3%

Free cessation
services in primary
care and hospitals

15.5% 14.8% 14.7% 14.5% 14.3% 14.2% 14.0% 13.8% 13.6% 13.5% 13.3% 13.1% 13.0% 12.8% 12.7% 12.5% 12.4% 12.2%

Free cessation
services everywhere 15.5% 14.7% 14.5% 14.3% 14.2% 14.0% 13.8% 13.6% 13.5% 13.3% 13.1% 13.0% 12.8% 12.6% 12.5% 12.3% 12.2% 12.1%

Decreased
tobacco availability 15.5% 13.7% 13.5% 13.4% 13.2% 13.1% 12.9% 12.7% 12.6% 12.4% 12.3% 12.1% 12.0% 11.8% 11.7% 11.6% 11.5% 11.4%

Increased
taxation 15.5% 12.7% 12.5% 12.4% 12.2% 12.0% 11.8% 11.7% 11.5% 11.3% 11.1% 11.0% 10.8% 10.6% 10.5% 10.3% 10.2% 10.1%

Combined Policy Effects

All above 15.5% 10.9% 10.7% 10.6% 10.4% 10.2% 10.1% 9.9% 9.7% 9.6% 9.4% 9.3% 9.1% 9.0% 8.9% 8.7% 8.6% 8.5%
a Status quo represents the policy levels prior to the first projection year (2019). Note: Data table is for Figure 1.
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Abstract: Energy efficiency topics have been covered by several energy management approaches in
the literature, including participation in demand response programs where the consumers provide
load reduction upon request or price signals. In such approaches, it is very important to know in
advance the electricity consumption for the future to adequately perform the energy management.
In the present paper, a load forecasting service designed for office buildings is implemented. In the
building, using several available sensors, different learning parameters and structures are tested for
artificial neural networks and the K-nearest neighbor algorithm. Deep focus is given to the individual
period errors. In the case study, the forecasting of one week of electricity consumption is tested. It
has been concluded that it is impossible to identify a single combination of learning parameters as
different parts of the day have different consumption patterns.

Keywords: building energy management; forecast; neural network; SCADA; user comfort

1. Introduction

Energy consumption forecast is very important in the context of energy consumption
management towards improved energy efficiency. The forecast’s accuracy may be im-
proved based on retraining with a fixed size of training, discarding older information while
retaining new information. The selection of sensors from smart technologies is another
aspect that provides more training data that are expected to decrease the forecast errors [1].

The electricity markets face possible generation costs caused by environmental is-
sues [2,3]. Smart grids are implemented in many of these markets, supporting efficient
energy use [4]. Solutions involving smart grids consist of an adequate consumer schedule
aimed to reduce the electricity consumption in particular periods [5]. These solutions are
contextualized when markets launch demand response programs to make the consumption
schedule adequate to reduce electricity costs interpreted by peaks [6].

Smart buildings play an important role in the electricity sector to satisfy occupants’
electric needs and exploit operational flexibilities. Therefore, the launch of model opti-
mization evidences the need to control the microgrids’ power flows [7]. To deal with the
situation, it requires solutions from demand response programs, reducing the energy costs
using the smart grid opportunities to readapt the consumption to play an important role in
load management and energy efficiency [8].

The optimization of electrical energy is possible with data monitored from a measure-
ment system that captures real-time data and automatic forecasting [9,10]. With regard to
forecasting, several machine learning algorithms can be used [11–14]. An artificial neural
network (ANN) is described by layers containing neurons with weighted connections
starting in an input layer, at least one hidden layer, and an output layer [15]. An alternative
technique, K-nearest neighbor (KNN), performs data searches and associations in a large
resource space with non-linear mapping support [16].
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Various types of time-scaled forecast data may be evidenced in the field of energy,
with Short Time Load Forecasting (STLF) being a good option. ANN is recommended for
many short-term applications, including the prediction of daily peaks by using the training
data with past data framed on past years [17]. KNN is suggested for both classification
and regression tasks, and in the suggested approach, it is used for regression problems that
involve energy predictions. The reduction of data complexity is a relevant aspect evidenced
in the algorithm, possible with the nearest neighbors’ readaptation to several subsets of
data [18]. An even more innovative algorithm is suggested in [19] featuring a KNN-ANN
model that uses the K-nearest neighbors process while adding a backpropagation function
known to be a particular aspect of an artificial neural network (ANN). The application
of the KNN-ANN model is suggested for a stock price prediction problem. The NPower
Forecasting Challenge, taken in the year 2015 edition evidenced in [20], challenges the
participants to perform daily energy predictions of a customer group. Several algorithms,
including artificial neural network and Random Forest, are suggested. In another study,
students’ classification in algorithms like artificial neural network and Support Vector
Machines is analyzed and their limitations are studied [21].

A research area of high interest is the energy efficiency of buildings—more specifically,
the power distribution network that connects the equipment to end-users. The energy
efficiency is highlighted on several worldwide applications including Supervisory Control
And Data Acquisition (SCADA) and IoT systems [22]. These technologies allow the
monitoring and management of consumption data on all the types of building from
residential to commercial level. Thess data are relevant for the forecasting of data in the
field of energy that are associated with electricity markets and policy formulations [23].

The forecasting of energy consumption with daily profile data usually improves the
financial profit of consumers considering the monthly electricity bills reducing the peaks
of energy detected in particular periods. The accuracy of energy forecasting algorithms
depends on infrastructure and planning [24]. There are three ways to model an energy fore-
casting system mentioned in [25], including physics-based, data-driven, and hybrid models.
While pros and cons are in question, the data-driven method has been proven as the best
option for merging buildings in the smart grids. An additional factor that may improve
the forecast reliability is to use sensor data that performs different measures according
to each device according to smart meters [26,27]. The validation of forecasting models is
another factor that should be taken into account in several smart buildings [28]. Real-time
automatic energy forecasts with access to electric energy are recommended to be performed
with data monitored in a building to achieve energy management optimization [29]. In [30],
the component estimation technique is used for electricity consumption forecasts; his-
toric consumption data were used. In [31], the impact of data quality in the electricity
consumption forecast is discussed. The main focus is given to the dataset cleaning.

This paper provides a methodology to improve electricity consumption forecasting
accuracy with sensor data measured by different devices, including presence, temperature,
consumption, and humidity. The forecasting algorithms, namely ANN [32] and KNN [33],
are implemented as a service and are the recommended options for the decision-making
approaches to be used in the present paper. The innovative scientific aspect relies on
the specific manipulations of data to overcome anomalies in data, including missing and
excess occurrences. Second, the systematic analysis of different learning parameters is
implemented to define the most relevant parameters in different periods of the day. This
major aspect is usually treated in the literature by analyzing overall average forecasting
errors without looking in detail at particular periods [34]. This aspect refers to a limitation
in the recent literature, including the one published by the authors of the present paper
in [1]. The forecasts are done for intervals (referred to as periods) of 5 min.

After this introduction, the proposed method is explained in Section 2, describing
what is done at each stage. Proceeding to Section 3, the results of using the method are
presented. The discussion is made in Section 4, and the main conclusions are presented in
Section 5.
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2. Materials and Methods

This section illustrates and explains the different phases of a method. The parame-
terization definition, the data reduction, the training and forecasting tasks, and the error
calculation are parts of the tasks presented in Figure 1. The presented method is very impor-
tant to support a building’s participation, namely an office building, in demand response
programs [35]. Addressing consumer comfort, a SCADA system can make autonomous de-
cisions for participation in demand response programs issued by the distribution network
operator [36].

 

Figure 1. Proposed methodology diagram.

The innovative aspect of the present method is highlighted in green in Figure 1. As
can be seen in the green arrow, the forecasting provides feedback to the training service
regarding the accuracy of different learning parameters in different periods of the day. The
test service is adapted to accommodate the fact that different periods of the day are related
to different consumption patterns, so the test service must be run for each period. Different
time frames are considered in the “Test service for different periods”, namely: weekly
Symmetric Mean Absolute Percentage Error (SMAPE) accuracy; daily SMAPE accuracy;
period of day SMAPE accuracy; specific period accuracy. SMAPE is defined in Equation (3).
The periods in a day for SMAPE in this paper are considered to be three periods: 00:00 to
08:00; 08:00 to 17:00; and 17:00 to 24:00.

The tuning process performs parametrization of data required for later use on fore-
casting tasks with the support of analysis, studies, optimizations, and data manipulations.
Two main aspects describe this process. The first one evaluates the data content analyzing
the best possible forecasting technique that should provide better results in that specific
situation. The second one performs data transformations to the initial dataset reducing the
original version of data to a more accurate version fed by the forecasting technique that
should provide more accurate forecasts. There is a balance between the completion and
simplicity of data to avoid wrong interpretations. Therefore, data structure and reliability
are two main aspects to improve the accuracy of the algorithm.

The real-time data consist of all monitored and persistent data that the building
technologies track in the system more concretely with consumption and sensors data.
The correlation process has the goal of analyzing which sensors are more associated with
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consumption. Both the tasks of providing a sample and the correlation study influence the
participation towards reducing the dataset.

Despite reducing the dataset to the entire historic series, the same rules apply for
real-time data. The forecasting methodology studies which technique is better for the
sampling of data. Both the reduced version of the dataset and the forecasting method are
sent to the training service.

The cleaning operation makes data more accurate for further use on forecasting tasks.
It goes through several phases, starting with reorganizing all data in a unique spreadsheet
with data split into several fields, including year, month, day of the month, days of the week,
hours, and minutes. The criterion applied for missing information is to make sequential
copies of previous records.

Outliers treatments are applied to detect erroneous readings made by technology de-
vices. The outlier’s detection occurs with the support of the mean and standard deviation
operations, as seen in Equations (1) and (2). The conditions implicit in the outlier’s detection
with the support of the mean and standard deviation are presented in Equation (3), suggest-
ing scenarios where a point is outside of an interval between two values: the average minus
or plus of a product between the error factor and the standard deviation. In the present
paper, consumptions above 4800 W or below 300 W are considered outliers. These values
have been established according to the authors’ knowledge about building consumption.

A =
∑n

t=n−F P(t)
F

(1)

• A—average consumption in F;
• n—current moment;
• P—consumption;
• t—index of time;
• F—frame (time interval) used for calculation.

S =

√
1
F
×

n

∑
t=n−F

(P(t)− A)2 (2)

• S—standard deviation consumption in F;
• F—frame used for calculation.

The service ends by extracting the cleaned data into a suitable structure that is under-
standable by the forecasting technique.

The forecast service is triggered the first time after the end of the training service.
There are alternative ways, including testing requests or scheduling a new iteration after
the error calculation process. The forecasting service reads the test parameters that are
synchronous with each iteration with the support of a schedule that forecasts different
contexts according to the forecasting technique [11–16] determined in the tuning service
representing the total target consumptions. The test service is triggered the first time by
default after the forecasting service ending. This service goal is to calculate the forecasting
errors in each context which interprets how distance is the actual value from the forecast
counterpart. The errors are calculated based on three possible metrics: Weight Absolute
Percentage Error (WAPE), Symmetric Mean Absolute Percentage Error (SMAPE), and Root
Mean Square Percentage Error (RMSPE). This paper highlights the use of SMAPE, as seen
in Equation (3), as it has been identified as the adequate one for this application [37].

SMAPE =
1
F
∗

n

∑
t=n−F

|PF(t)− P(t)|
(P(t) + PF(t))/2

(3)

• PF—forecast consumption;
• F—frame used for calculation;
• t—period.
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Following this, a trigger is activated, sending a new retrain request [1] to rerun the
training service with more updated information that will discard previous data while
also retaining new ones until the trigger point while keeping the same size data. In the
present paper, artificial neural network (ANN) and K-nearest neighbor (KNN) forecasting
algorithms are used [23]. ANN features a set of artificial neurons connected and structured
in layers with a learning process that resembles the biological brain. The layers’ structures
describe an input and output layer separated by a hidden layer that performs calculations
iteratively, learning a logic that associated the input to output data. The neurons transmit
data to other neurons with signals according to the edges and layers’ structures. The data
received from the neurons are propagated afterward to other neurons following a process
where the output of each neuron is computed through a non-linear function of the sum
of inputs. All the combinations composed of neurons and edges are associated with a
weight that adjusts during the learning process [15]. An alternative technique, K-nearest
neighbor (KNN), performs data searches and associations in a large resource space with
the support of non-linear mapping. This alternative is a method used both for classification
and regression applications. In both cases, the input consists of different subsets named
neighbors described by the historical data’s closest examples.

The output differs from the classification and regression applications following dif-
ferent logics. For classification, the output consists of a class component that associates
the nearest neighbor with the most common features. For regression, the output con-
sists of a property of an object value calculated through the average of the set of nearest
neighbors [16]. In [1] and [15], the authors have explored using different algorithms in
the forecasting of office building consumption, namely ANN, KNN, Random Forest, and
SVM. It has been concluded that ANN and KNN are adequate for the specific application
under study in this paper. Other deep learning and ensemble learning algorithms can
be explored in future work. Nonetheless, the present paper’s main idea is to show that
different algorithms can be more advantageous in different periods of the day or the week.

3. Results

This section presents the case study, including scenarios and the respective results.
The building’s historical data have been used as input data, so that the building has been
divided into three zones [1]. In Figure 2, the topology of the building can be seen, with
the respective three zones and the nine rooms (R1 to R9). In the bottom-right of Figure 2
is shown the detail of Zone 1. The zones of the building have been defined according to
the sub-metering installed in the building. It matches the electrical switchboard coverage
zones. In this way, the sensors data and consumption data are aggregated according to
these zones. For this case study, the historical data of Zone 1 are selected. The selected
historical data span the period from 22 May 2017 to 17 November 2019 with 5 min time
intervals. It should be noted that the building is equipped with energy meters to record
the consumption data and PV generation data as well. Additionally, there are different
building sensors such as seven light power indicators, four movement sensors, three door
status indicators, one air quality sensor, one temperature sensor, one humidity sensor, and
one CO2 sensor.

The input data are a matrix structure composed of twelve columns evidencing at-
tributes associated to specific five-minute periods. A total of 262,060 rows evidencing the
total number of observations from 22 May 2017 to 17 November 2019 were separated by
five-minute intervals. The historic dataset represented by 22 May 2017 to 8 November 2019
contains 260,054 rows while the target week represented by 11 to 17 November contains
2006 rows. The initial ten columns identify consumption values, while the remaining two
identify additional values obtained from enhanced sensors data, more specifically CO2 and
light intensity. The ten-input consumption featuring five-minute field values that precede
the output counterpart corresponds to a period of fifty minutes. The CO2 and light inten-
sity resemble a single value placed in the five minutes preceding the output consumption.
This dataset has been categorized based on the weeks, so focused time period includes
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130 weeks. Figures 3–5 show the building’s present input data in 130 weeks, related to
the power consumption, CO2 concentration, and intensity of lights, respectively. It means
that each line represents the consumption data of one specific week in 2016 periods (5 min
time interval).

 

Figure 2. Building zones.

 

Figure 3. Power consumption of building from 22 May 2017 to 17 November 2019 is categorized
based on the weeks.

 

Figure 4. CO2 concentration data from 22 May 2017 to 17 November 2019 are categorized based on
the weeks.
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Figure 5. Light intensity data from 22 May 2017 to 17 November 2019 are categorized based on
the weeks.

Several other environment data and parameters, such as the weather data, can impact
the forecasting model’s accuracy; the authors have discussed this in [1]. It has been
concluded that, for the office building under study, as the researchers have a very specific
routine, weather data do not contribute to improving the accuracy of the forecasting. This
case study’s main purpose is to forecast the consumption of 7 days based on the proposed
training dataset. Additionally, 60 scenarios have been tested on different parameters such as
number of entries, learning rate, number of neurons, clipping ratio, epochs, early stopping,
and validation split on the forecasting results. Figure 6 shows the real consumption of
7 days of the test dataset. It should be noted that each day includes 288 periods (5 min
interval), and each color represents one day.

 

Figure 6. Actual power consumption of 7 days of the week with 5-minute time intervals.

The CO2 concentration and intensity of lights have been presented in Figures 7 and 8,
respectively, to propose the real data in the last week.

Table 1 introduces the characteristics of 60 scenarios with different parameters. Addi-
tionally, the calculated error of each forecasting can be seen on the right side of the table
based on the ANN and KNN approaches. As shown in Table 1, the rank of calculated
errors has been presented by dark color to bright color so that dark green cells show
the lower error and white cells present the higher errors. To present the details of these
error calculations, three scenarios (A, B, and C) have been selected to be illustrated by
figures. The characteristics of these three cases can be seen in Table 1. The characteristics of
scenarios A and C are equal. However, the applied techniques for the forecast are different.
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Figure 7. CO2 concentration data of 7 days of the week with 5 min time intervals.

Figure 8. Light intensity data of 7 days of the week with 5 min time intervals.

Table 1. Error calculation based on artificial neural network (ANN) and K-nearest neighbour (KNN) approaches for 60
different scenarios.

Learn.
Rate

#
Neurons

Clipping
Ratio

Epochs
Early

Stopping
Validation

Split
Days of

the Week

SMAPE_ANN
(Entries)

SMAPE_KNN
(Entries)

10 50 100 10 50 100

0.001 32 5 500 20 0.2 – 2.77 * 2.75 4.14 3.60 *** 5.27 7.57
0.001 32 5 500 20 0.2 x 3.37 2.73 5.83 3.61 5.27 7.57
0.001 32 6 200 10 0.3 – 2.75 5.75 3.29 3.60 5.27 7.57
0.001 32 6 200 10 0.3 x 2.53 ** 3.63 5.24 3.61 5.27 7.57
0.001 128 5 500 20 0.2 – 3.63 3.52 5.97 3.60 5.27 7.57
0.001 128 5 500 20 0.2 x 2.56 2.72 3.72 3.61 5.27 7.57
0.001 128 6 200 10 0.3 – 4.17 3.07 3.98 3.60 5.27 7.57
0.001 128 6 200 10 0.3 x 3.38 3.10 3.44 3.61 5.27 7.57
0.005 32 5 500 20 0.2 – 6.26 3.97 5.41 3.60 5.27 7.57
0.005 32 5 500 20 0.2 x 2.78 8.64 5.29 3.61 5.27 7.57
0.005 32 6 200 10 0.3 – 5.31 6.42 7.76 3.60 5.27 7.57
0.005 32 6 200 10 0.3 x 3.66 2.74 6.94 3.61 5.27 7.57
0.005 128 5 500 20 0.2 – 4.31 4.66 3.99 3.60 5.27 7.57
0.005 128 5 500 20 0.2 x 4.04 4.21 6.74 3.61 5.27 7.57
0.005 128 6 200 10 0.3 – 4.26 4.24 8.11 3.60 5.27 7.57
0.005 128 6 200 10 0.3 x 6.36 5.06 7.91 3.61 5.27 7.57
0.005 64 5 500 20 0.2 – 5.10 4.52 5.64 3.60 5.27 7.57
0.005 64 5 500 20 0.2 X 3.03 3.44 5.94 3.61 5.27 7.57
0.005 64 6 200 10 0.3 – 5.40 7.00 6.48 3.60 5.27 7.57
0.005 64 6 200 10 0.3 x 3.49 4.79 11.38 3.61 5.27 7.57

* Scenario A; ** Scenario B; *** Scenario C.
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Each scenario focuses on seven days, shown by three figures based on the focused time.
Figure 9 indicates 96 periods related to the 00:00 to 08:00 (5 min time interval), Figure 10
focuses on 108 periods from 08:00 to 17:00 (5 min time interval), and Figure 11 is related
to the 84 periods from 17:00 to 24:00 (5 min time interval). The three referenced figures
are related to scenario A. In Appendix A, the figures are presented related to scenario B
(Figures A1–A3) and the figures related to scenario C (Figures A4–A6). The values selected
for each parameter have been defined by the authors based on the experiments made on
the ranges of each parameter that affect the results of forecasting. Additionally, the authors
wanted to determine the influence of using the day-of-the-week information as input data
to decide if it contributes or not to improving the accuracy.

Figure 9 presents the calculated SMAPE of scenario A in the first part of the day:
96 periods of 5 min are presented, related to the period between 00:00 and 08:00.

Each period of 5 min includes seven points in the graph, corresponding to the con-
sumption for seven days of the week. Figure 10 presents the calculated SMAPE of scenario
A in the second part of the day (from 08:00 to 17:00). Figure 11 presents the calculated
SMAPE of scenario A in the third part of the day.

 
Figure 9. Forecast errors based on ANN approach in scenario A from 00:00 to 08:00.

 

Figure 10. Forecast errors based on ANN approach in scenario A from 08:00 to 17:00.
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Figure 11. Forecast errors based on ANN approach in scenario A from 17:00 to 24:00.

The discussion of the results obtained will be presented in Section 4, focusing on the
results already presented and Appendix A.

Regarding the error analysis in each day, Table 2 presents the SMAPE errors for each
method. The data used in Table 2 relate to ten entries: learning rate (0.005), number of
neurons in intermediate layers (64), clipping ratio (5.0), number of epochs (500), early
stopping (20), validation split (0.2). The day of the week is not considered.

Table 2. SMAPE of ANN and KNN methods for each day.

Method Full Period Monday Tuesday Wednesday Thursday Friday Saturday Sunday

ANN 2.69 2.61 3.04 3.45 2.62 5.16 1.13 0.81

KNN 3.95 3.41 4.94 4.67 5.52 6.85 1.38 0.94

It can be seen that for every single day, ANN is always providing a more accurate
forecast. However, as can be seen in the period-by-period analysis, KNN can have better
accuracy in specific periods of the day or week.

4. Discussion

Looking at Figures 9–11 and Figures A1–A6 it is possible to see that the same method
with the same parameters is not more accurate for all the periods. Focusing on the first
period of the day, from 00:00 to 08:00, it can be seen that scenario C is the one with the
highest dispersion of SMAPE for each period. Looking at Table 1, scenario C is the one
with higher SMAPE between the three scenarios. However, for the period between 08:00
and 17:00, scenario C’s results are not the worst ones, mainly compared with scenario A
(Figures 9 and A2). Finally, regarding the third part of the day, from 17:00 to 24:00, scenario
C is the worst one. Scenario B has a regular behavior along this period. However, scenario
A is the best one at the end of this period (in the last third of this period). Comparing ANN
and KNN, it can be seen that it is impossible to decide on the best one as scenario C is very
accurate in a specific period of the day.

It has been found that, generally, the number of entries should be 10, as increasing
the number of entries does not provide better results. Regarding the learning rate, it has
been found that lower learning rates were more accurate in the results. The same comment
applies to the number of neurons. Regarding the clipping ratio and the epochs, the early
stopping, the validation split, and the days of the week, it is not possible to make a selection,
as both values provide good results in different scenarios.

These results and discussion lead us to conclude that the definition of the ANN and
KNN features must be done contextually, as different contexts bring different consumption
patterns, and therefore, deserve different configurations in algorithms.
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5. Conclusions

This paper has presented a forecasting service used in an office building aiming
to support decisions regarding energy management towards efficiency. Two algorithms
for forecasting have been used, namely artificial neural network and K-nearest neighbor,
testing different algorithms and data features. It has been found that, for different periods
of the day, which means different contexts regarding consumption patterns, different
algorithm parameters can have higher accuracy levels. This means that it is not possible to
say that a single algorithm is more accurate for the office building under study. In other
words, one should select KNN for some periods of the day and ANN for other periods of
the day, as discussed in Section 4.
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Appendix A

This appendix presents six figures that are added to the results.

 

Figure A1. Forecast errors based on ANN approach in scenario B from 00:00 to 08:00.

 

Figure A2. Forecast errors based on ANN approach in scenario B from 08:00 to 17:00.
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Figure A3. Forecast errors based on ANN approach in scenario B from 17:00 to 24:00.

 
Figure A4. Forecast errors based on the KNN approach in scenario C from 00:00 to 08:00.

 

Figure A5. Forecast errors based on the KNN approach in scenario C from 08:00 to 17:00.
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Figure A6. Forecast errors based on the KNN approach in scenario C from 17:00 to 24:00.
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Abstract: The intermittent and uncontrollable power output from the ever-increasing renewable
energy sources, require large amounts of operating reserves to retain the system frequency within its
nominal range. Based on day-ahead load forecasts, many research works have proposed conventional
and stochastic approaches to define their optimum margins for reliability enhancement at reasonable
production cost. In this work, we aim at delivering real-time load forecasting to lower the operating-
reserve requirements based on intra-hour weather update predictors. Based on critical predictors
and their historical data, we train an artificial model that is able to forecast the load ahead with great
accuracy. This is a feed-forward neural network with two hidden layers, which performs real-time
forecasts with the aid of a predictive model control developed to update the recommendations
intra-hourly and, assessing their impact and its significance on the output target, it corrects the
imposed deviations. Performing daily simulations for an annual time-horizon, we observe that
significant improvements exist in terms of decreased operating reserve requirements to regulate the
violated frequency. In fact, these improvements can exceed 80% during specific months of winter
when compared with robust formulations in isolated power systems.

Keywords: renewable energy sources; load forecasting; frequency regulation; artificial neural net-
work; model predictive control

1. Introduction

The power generation sector has seen rapid growth, mainly due to the increasing
industrialization, domestic appliances and transportation demand [1]. The global challenge
for modern power systems is to satisfy the growing electricity demand, whilst supplying
uninterruptible and high-quality services. For several years now, this requirement has been
fulfilled mostly by using fossil fuels because of their concentrated energy, which makes
their output dispatchable and easy to adjust according to the load needs [2]. Based on
well known load curves, the system operators could appropriately plan-ahead adequate
operating reserves to allow for deviation corrections between the expected and actual
load demand. However, the continuous burning of fossil-fuels poses a serious threat
to the global environment and consequent climate change, calling for emission-free and
renewable energy sources in the forthcoming years.

On the other hand, the introduction of renewable power generation produces a num-
ber of critical changes on the unit commitment and economic dispatch problem formulation.
The intermittent and volatile behavior of renewable resources impose further variations
on net demand and thus, the clarity of the operating reserves must be carefully scheduled.
In addition, their uncontrollable and unpredictable power output increases the reserve
requirements and probable deficits are reflected as frequency deviations between the nomi-
nal values. Consequently, the simultaneous increase in electricity demand and reduction in
contributions of conventional sources create a lot of power integration and fluctuation is-
sues, which undoubtedly disturb the overall system security, stability and reliability. Since
the renewable energy sources do not contribute in flexibility, at a relatively low penetration
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level, they are commonly treated as negative loads providing comparable fluctuations
with the existing net load fluctuations. As their penetration level grows, the conventional
generating units occur inadequate for load following [3]. Over the last decade, researchers
have extensively applied conventional and stochastic optimization techniques to define the
optimal operating reserve margins and enhance the overall system reliability at reasonable
costs. Based on predefined load curves, the various approaches broadly used can be di-
vided into robust, deterministic and stochastic. The deterministic formulations recommend
constant shares to represent the forecast errors in load demand. Without investigating the
comparative performance of different risk considerations, the deterministic approaches
rely solely on a set of uncertain parameters, offering poor reliability/cost trade-offs. To
strengthen the robustness, a conservative formulation may propose a 5% upward and
downward deviation space, while more robust approaches involve up to 10% margins for
islanded systems [4]. More recently, a variety of solutions have relied on stochastic mecha-
nisms, distinguishing the formulations into random scenario reduction, distributionally
robust and uncertainty-set classifications [5,6]. Aiming at the minimization of the expected
cost over a probability distribution that is represented by scenarios, these frameworks are
versatile [7,8]. However, they require significant computational efforts and it is difficult to
retrieve temporal and spatial correlations within scenario-trees [9].

The vast majority of the literature in relating fields concentrates on household or
small area level load forecasting (i.e., distribution transformer) due to the significantly
limited availability of regular patterns. In their effort to address the imposed uncertainty,
the existing methods can be divided into three main categories. The methods of the first
category make use of clustering or classification techniques to correlate similar customers,
day types or weather conditions, targeting on the reduction of uncertainty variance [10].
A second category focuses on the elimination of the imposed uncertainties at the meter-
level by utilizing aggregated smart-meter data [11], whereas the rest of the methods
fall in the last category and refer to uncertainty separation within the regular patterns,
relying on spectral analysis such as Fourier transformation, wavelet and empirical mode
decomposition [12]. Beyond the aggregated level, load forecasting methods are based
on sophisticated mechanisms and machine learning techniques. A tutorial review of
probabilistic electric load forecasting is provided in [13]. The authors in [14] presented a
comparison between hybrid and artificial intelligence models including support vector
machines, expert systems, fuzzy logic, regression trees and artificial neural networks, while
the notable time series models of long short-term memory (LSTM) systems, recurrent (RNN)
and convolutional (CNN) neural networks combined with different regression techniques
are discussed in [15]. Although highly flexible and effective, RNN-based approaches
outperform traditional forecasting models in terms of root mean square error (RMSE) and
mean absolute percentage error (MAPE) [16,17].

The existing methods aim at day-ahead forecasts or make use of RNN systems to
only minimize the forecast error against the actual load. To the best of our knowledge,
there has not yet been a comprehensive solution that targets real-time forecasts to improve
the performance using updated input values. Most approaches utilize temperature as
the only weather-dependent variable and no research work is targeted on the real-time
estimation of reserve margins. In this work, we propose a radically different framework
to determine the operating reserves based on a real-time load forecast. Identifying their
vital role in day-ahead power optimization tasks, we aim at the dynamical update of the
predefined daily demand based on a model predictive control. Specifically, we make use of
independent input predictors to achieve the dependent target, namely the daily load. Based
on annual data with respect to some selected predictors, we train a neural network via
non-linear regression. During the particular day, the updated values of the predictors are
assigned to the model, which assesses their impact and its significance on the output target
and re-use them to estimate the new demand ahead. Together with the power balance,
they constitute a system-wide constraint that affects the overall system security and total
achieved production cost. The obtained results show that significant improvements exist
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in terms of decreased operating reserve requirements. Considering the performance of the
trained neural network, the determined operating reserves account for the mean squared
error (MSE) and the actual deviation of the selected predictors. Based on real-time updates,
the load forecasting can achieve lower costs, while the system security is preserved.

The rest of the paper is organized as follows. The following section includes the
problem formulation and the importance of accurate reserve definition. Section 3 deals
with the methodology followed to develop the proposed, real-time load forecast model.
All precise descriptions in relation with the different models used are included. In addition,
the considered test system is presented along with the main parameters used for predic-
tions. In Section 4, the realizations of our solution are presented and their findings are
discussed in detail, while the obtained improvements are listed by their relevance. Finally,
the conclusions are drawn in Section 5.

2. Problem Formulation

In order to achieve a comprehensive view regarding the impact of operating reserves
on total generation cost, we first define the generic objective function of unit commitment
task with the aid of Equation (1).

f= min
T

∑
t=1

N

∑
i=1

[
F
(

Pt
i
)
+

(
1 − Ut−1

i

)
SUi

]
Ut

i (1)

Denoting the total time intervals with T and the total number of available generating
units with N, the power contribution of a generator i during the time slot t is expressed via
Pt

i ·Ut
i defines whether a generator is “on” or “off” during that interval, whereas the cost to

start-up is represented by SUi. The power balance constraint is provided in Equation (2). In
general, the summed power of the committed units must satisfy the load demand Pd [18].
Each deviation from the absolute power balance (zero equivalent) violates the nominal
frequency (50 or 60 Hz) of the system according to Newton’s Second Law of Equation (3).

N

∑
i=1

Ut
i · Pt

i = Pt
d (2)

Tm − Te = J
dω

dt
(3)

In case of an imbalance between the mechanical torque Tm and electrical torque Te,
the rotating mass will experience an angular acceleration or deceleration dω/dt, which
is reflected as a change in frequency. It is noted that the frequency change is smaller for
a system with high inertia (J) compared to a system with low inertia [19]. To guarantee
the system stability, different reserve types are needed according to their time of response.
For clarification purposes, we express the equation of motion (4) in power terms so that
P = T · ω is preserved.

Pm − Pe = M
dω

dt
(4)

where M = J · ω is the angular momentum of the rotating system. Turning to the specifica-
tion of the minimum technical and operational characteristics that each user connected to
the Transmission System must comply, the frequency range during normal conditions is
stated between 49.8 and 50.2 Hz and it can be extended to 47–52 Hz during disturbances.
A disturbance event is defined as an incident that causes deviations equal or greater than
0.5 Hz from the nominal fo. The operating reserves are separated into spinning and non-
spinning. Spinning reserves are the first acting and derived from the synchronized units
to the system [20]. They include the restraint and recovery reserves, which are available
within 3 and 20 s and operable for 20 s and 20 min, respectively. Following are the sup-
plemental and replacement reserves which need to be available for 6 h. A last category
involves the contingency reserves that are operable within 6–24 h. These categories fall in
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the non-spinning reserve classification. Day-ahead schedules must satisfy a further system-
wide, coupling constraint, namely the spinning reserve margins SRt. The formulation of
such inequality constraints (both upward SRu p and downward SRdown) is expressed via
the following respective equations:

N

∑
i=1

Ut
i · Pt

i,max ≥ Pt
d + SRt

up (5)

N

∑
i=1

Ut
i · Pt

i,min ≤ Pt
d − SRt

down (6)

where Pi,min and Pi,max denote the minimum and maximum capacity limits of each generator
i. Assuming a robust formulation with SR margins in the order of 10% of the instant load, it
is worth noting that this expensive requirement forces more generators to start-up, leading
to sub-optimal unit commitment schedules and uneconomic power dispatch.

To lower the expensive spinning-reserve requirements, we propose the intra-daily
forecast of load demand. In contrast to day-ahead estimations, which may deviate from real-
time values, intra-daily forecast with 15 min updates of selected predictors may improve
the accuracy and consequent required reserves. Electricity load follows daily patterns,
which are repeated according to the human activity and weather conditions. In this
regard, we exploit an accurate hours-ahead system for load forecast using neural networks.
Our purpose is to enhance the system security and reliability, whilst minimizing the SR
requirements by making use of a model predictive control, which performs updates every
15 min to supply the neural networkIn more detail, a number of predictors x are imported
in the feed-forward network along with the target y to form our data set xi, yi|i = 1, . . . , n.
The model is trained using the largest share of the historical data for training, while the
rest is equally distributed for validation and testing. The developed model exploits a
two-hidden-layer neural network employed as follows:

h1 = σ(
K

∑
k=1

wkxk + β1) (7)

h2 = σ(
L

∑
l=1

wlh1l + β2) (8)

y =
M

∑
m=1

wmh2m + βy (9)

where σ(·) is the sigmoid activation function and h the output of the hidden layers. K, L, M
are the number of predictors, neurons at the first and second hidden layer, respectively [21].
Figure 1 depicts a graphical representation of the proposed network.

During the realization of power dispatch, the selected predictors ẋ(t) re-enter the
forecast model at t and the remaining T − t sequence is updated based on the model
predictive control explained as follows:

I =
T

∑
j=t

wxP [rp(j)− xp(j)]2 +
T

∑
j=t

wy[Δy(j)]2 (10)

The predicted parameters rj constitute the reference of the model and each deviation
from the actual values is recursively corrected to minimize I· Δy indicates the impact of the
actual deviation on the new, forecasted values when xj are reused for load forecast. The sig-
nificance of Δy is regulated by penalizing with wy, while wx reflects the importance of each
selected predictor p. Finally, the equality constraint of Σw = 1 must be preserved [22,23].
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Figure 1. Proposed Neural Network.

3. Test System and Methodology

The considered system concerns the isolated power community of the island of Cyprus.
This is a representative, small-to-medium scale network consisting of 20 generators to
supply a 1100 MW peak demand (usually occurred in July) with an annual load factor of
56% [24]. Due to its isolation, small area and remoteness, electricity supply for more than
875 thousand people inhabited in the island, mainly relies on imported fossil fuels, the
price of which is 3–4 times higher than that in the mainland [4]. As a result, the extremely
high SR requirements of up to 10% of the hourly load pose a critical increase on total
production cost. To decide which predictors to include in our forecaster, we first tried to
extract a physical relationship between them and our target, namely the load demand.
Based on actual data obtained from the Cyprus Energy Regulatory Authority (CERA), we
demonstrate the hourly load for a representative week for each season in Figure 2.

Figure 2. Weekly load demand per season.

Apart from the seasonality and human activity, similar patterns have been observed
within the same periods of different years. This way, we choose to express the seasonality
by the hour and date, whereas the human activity is represented through the day-type.
The repetition of this activity is shown with the aid of three further predictors, such as
the daily load of the previous day, week and year. These six predictors form our constant
parameters. In Figures 3–5, we provide the fluctuation of temperature and relative humidity
which are our further two, variable predictors. Figures 3 and 4 show an hourly histogram
relating to the year 2019, while their seasonal values are offered in Figure 5. As can be
seen, they both present non-linear relations with time and in order to make easy and
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accurate predictions, a better resolution is needed. This can be achieved by performing
week-to-week comparisons of their hourly variation during different seasons.

Figure 3. Annual variation of relative humidity.

Figure 4. Annual variation in temperature.

(a) (b)
Figure 5. Seasonal variation of (a) relative humidity; (b) temperature.

Undoubtedly, ambient temperature affects the human comfort and their overall activ-
ity. However, relative humidity is the parameter that ultimately determines the rate with
which heat is drawn away from the body and thus how does the absolute temperature
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“feels like” by humans [25,26]. Figure 6 offers the most important values of temperature
and relative humidity for the most energy-intensive weeks in 2019’s winter and summer.

(a) (b)
Figure 6. Winter and summer comparisons of hourly load demand and (a) relative humidity; (b) temperature.

The relative humidity possesses higher values, which tend to decrease during the
daylight. On the other hand, the temperature shows an adverse trend, which during the
summer shows a linear relationship with load but during winter, it is inversely proportional
to the load demand. Therefore, it is obvious that both variables project a fluctuation to
load forecast and consequently, they must be updated during the realization of power
dispatch. Utilizing actual data from 2010–2019, we train a neural network based on non-
linear regression between the following predictors: (1) day (or date), (2) hour, (3) day-type
(weekday = 0, weekend = 1, holiday = 2), (4) previous day load, (5) previous week 24h-
load, (6) previous year 24h-load, (7) relative humidity and (8) temperature, and the target
of actual load demand. The respective settings of our network include 20 neurons per
hidden layer. The forecasting model exploits 70% of the historical data for training, 15% for
validation and 15% for testing.

Regarding the model used for predictive control, the selected predictors refer to
the updated temperature and relative humidity forecasts for the intra-hour periods of
15-minutes, equally weighted by 25%. The remaining 50% is given to the change in the
manipulated, depended variable Δy. In contrast to traditional models that regulate their
inputs to approximate the referenced values and minimize their impact, in our realization,
we set the updated values as the predicted (reference) and we regulate the controlled
temperature and humidity to estimate their impact through the forecaster. Then, the model
is updated with the new values and dynamically accepts the updates to perform the next
cycle until the end of the assessed day. We illustrate our proposed configuration in Figure 7.
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Figure 7. The proposed real-time load forecast model.

4. Results and Discussion

Aiming at the minimization of expensive SR margins for frequency regulation, we
apply our proposed solution introducing the actual data obtained from CERA. We make use
of a feed-forward neural network with two hidden layers of 20 neurons and a Levenberg–
Marquardt algorithm for the curve fitting. This algorithm relies on the minimization of
the squared sum of some imposed parameters β [27]. For a given set of n empirical pairs
(xi, yi), this problem can be formulated as follows:

β̂ = argmin
β

n

∑
i=1

[yi − f (xi, β)]2 (11)

After the introduction of the predictor matrix x (of nxp dimensions) and the dependent
target y into the model, the achieved performance of the forecaster is calculated in terms of
MSE and presented in Figure 8.

MSE =
1
T

T

∑
t=1

(yt − ŷt)
2 (12)

As can be observed, the forecasting model shows high performance with R-values
above 97.5% in each case and estimated MSE in the order of 2.388%. The regression plots
displayed, show that the network outputs with respect to targets for training, validation,
and test sets, fall along the 45-degree line, where the network outputs are equal to the
targets. This verifies our views on the existence of lower SR requirements. For further
verification of the network performance, we illustrate the error histogram in Figure 9.

The outliers’ indication shows that most errors fall between −75 and +75. The respec-
tive training, validation and test error appear in Figure 10. Since the test set error presents
similar characteristics with the validation set error, as well as the final mean squared error
being small, the obtained result is quite reasonable.
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Figure 8. Performance of the trained model for load forecasting.

Figure 9. The error histogram of the load forecast model.
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Figure 10. A graphical representation of the training errors, validation errors, and test errors.

To gain a broader overview of the efficacy of our approach, we compare our proposed
solution with a benchmark optimizer, namely Gradient Descent. Based on Equations (13)
and (14), the achieved RMSE and MAPE are 10.6227 and 0.0105, respectively, when
Levenberg–Marquardt is used, against Gradient Descent, which accounts for 168.4502
RMSE and 0.2875 MAPE. Figure 11 demonstrates the load forecast recommendation for
the considered optimizers. Selecting Levenberg–Marquardt as the optimizer for curve
fitting, we illustrate the performance of the proposed neural network over the alternative
regression trees in Figure 12. Although the proposed solution almost perfectly fits the
actual load demand, the alternative regression tree-based approach deviates considerably,
providing the respective 68.8261 and 0.0907 RMSE and MAPE.

RMSE =

√√√√ 1
T

T

∑
t=1

(yt − ŷt)2 (13)

MAPE =
1
T

T

∑
t=1

| yt − ŷt

yt
| (14)

Applying daily simulations for the entire year of 2020, we estimate the deviation errors
between the day-ahead, forecasted load and actual, real-time values during the assessed
dates. The input of the model predictive control is updated using intra-hour (15-minutes
sampling rates) data regarding the forecasted ambient temperature and relative humidity.
The worst deviations are found to be during summer and their actual representation is
shown in Figure 13. It is noted that there imposed 24 updates which represent the most
prevalent of the 4 intra-hour ones. We depict the most relevant deviations which accounts
for over 2% error.
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Figure 11. Implications of different optimizers on the feed-forward neural network performance.

Figure 12. Performance of neural network against regression tree with best-fit optimizer.

(a) (b)
Figure 13. Real-time deviations from the day-ahead forecast of (a) relative humidity; (b) temperature.
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These deviations have a daily impact on the forecasted load, which is reflected as
frequency violations. To correct the deviations, more generators are required to serve
the varying demand or spinning reserves are called upon. Any generation deficits may
lead into load interruptions, while excess generation can cause active power curtailment.
In any case, the unexpected deviations increase the total production cost and force the
system operators to plan-ahead bulk operating reserves to appropriately regulate the
system frequency. In our paradigm, the SR minimization relies on the high-performance
neural network and the real-time corrections based on the updated forecasts of temperature
and humidity. In contrast to traditional alternatives, which associate the SR requirements
solely with the forecaster performance, performing real-time, intra-hour load forecast, these
requirements are reasonably mitigated.

We provide the realization of our proposed solution to an energy-intensive winter
day in Figure 14. In this case, one can observe how the negative temperature deviations
between 10:00 and 16:00 affect the hourly-load forecast. Considering that E = P · t, this
deviation corresponds to a daily power of 146.867 MWh or 35.864 MW instant power
equivalent in the worst case. To recover this imbalance, a spinning reserve of up to 4.67%
would be adequate if planned ahead.

Figure 14. A realization of the real-time load forecast model for an energy-intensive winter day.

Finally, we depict similar configurations for the more mitigated load curves in spring
and autumn, together with the most energy-intensive day in summer, in Figure 15. For
completeness sake, we list the comparative results with respect to the achieved SR capacity
per month in Table 1, considering the real-time weather impact and overall performance of
our load forecasting model.

Figure 15. Real-time deviations from the day-ahead forecast concerning specific, energy-intensive days in spring, summer
and autumn.
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Table 1. Spinning reserve comparisons pertaining our proposed solution and robust alternatives.

Month
Load Demand

(GWh)
Robust Formulation

(GWh)
Real-Time Solution

(GWh)

January 448.06 22.4 2.98
February 404.7 20.24 2.69

March 278.99 13.95 8.5
April 288.29 14.42 8.79
May 285.97 14.3 8.58
June 498.21 24.91 13.86
July 514.82 25.74 14.32

August 502.37 25.12 14.21
September 304.39 15.22 15.1

October 314.54 15.73 15.61
November 312.0 15.6 15.48
December 444.02 22.2 2.76

5. Conclusions

The continuous increase in the renewable energy contribution deteriorates the flexibil-
ity and stability of modern power systems calling for bulk spinning reserve margins. In
this work, we proposed a dynamical forecaster to ameliorate the expensive requirements
of spinning reserves based on real-time updates. Utilizing neural networks, we trained
artificial models to forecast the load ahead with great accuracy, based on critical predictors
and without using any model development structure to individuate and select the appro-
priate input parameters. Instead, we exploited eight predictors and distinguished them
into constant and variable inputs by making use of a model predictive control. Apart from
the most actively used data for historical load, seasonality and human activity, we also
considered relative humidity as one of our main variable inputs. We performed real-time
applications with the aid of a model predictive control, developed to update the recommen-
dations intra-hourly and further correct the imposed deviations. Exploiting actual data
regarding an isolated power system, the experimental results show that improvements
exist in terms of decreased spinning reserve requirements to regulate the violated frequency.
These findings strongly collaborate our claims and strengthen the arsenal of independent
system operators with an effective tool for real-time load forecasting and total generation
cost minimization.

As for future directions of research, we highlight the consolidation of more predictors
correlated with renewable generation such as wind and solar. This way, a global forecaster
could recommend the residual load target by making use of multi-input/multi-output
neural networks. In addition, the fuel-dependent electricity prize may also take place as a
real-time update, affecting both the human activity and hourly load demand.
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Abstract: Forecasting is a challenging task that typically requires making assumptions about the
observed data but also the future conditions. Inevitably, any forecasting process will result in some
degree of inaccuracy. The forecasting performance will further deteriorate as the uncertainty increases.
In this article, we focus on univariate time series forecasting and we review five approaches that one
can use to enhance the performance of standard extrapolation methods. Much has been written about
the “wisdom of the crowds” and how collective opinions will outperform individual ones. We present
the concept of the “wisdom of the data” and how data manipulation can result in information extrac-
tion which, in turn, translates to improved forecast accuracy by aggregating (combining) forecasts
computed on different perspectives of the same data. We describe and discuss approaches that are
based on the manipulation of local curvatures (theta method), temporal aggregation, bootstrapping,
sub-seasonal and incomplete time series. We compare these approaches with regards to how they
extract information from the data, their computational cost, and their performance.

Keywords: information; combination; uncertainty; theta; temporal aggregation; bagging; sub-
seasonal series

1. Introduction

Univariate time series forecasting is the creation of extrapolations for a single variable
based on past, time-ordered observations of the same variable. Despite the geometric
increase in data availability, univariate forecasts are even today the basis for the decision
making in many organisations. Improvements in the performance of such forecasts are
crucial for reducing costs associated with operational, tactical, and strategic planning [1].

Nowadays, automatic time series forecasting can be easily achieved using dedicated
forecasting software or open source packages. Examples include ForecastPro®, SAS Fore-
casting Server®, and the forecast package for R statistical software. Such software and
packages offer tools for batch and automatic forecasting with minimal to zero manual
input. They integrate families of models, like exponential smoothing [2] and autoregressive
integrated moving average, ARIMA [3], that can capture a wide range of data patterns and
produce extrapolations with ease. However, such families of models rely on assumptions
that are barely met in practice, and struggle to select the most appropriate model for a
given time series due to the uncertainties involved: identifying the optimal model form,
estimating the optimal set of parameters, and dealing with the inherent uncertainty in the
data [4].

The purpose of this article is to provide an overview of approaches that can be used
to enhance the performance of univariate forecasting methods. There are four common
characteristics that govern the approaches covered in this article. First, all approaches
attempt to distil as much information from the original time series data as possible by ex-
ploring them through alternative lenses. This is achieved through amplification of specific
time series features and transformation of the original time series. Second, the approaches
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build on the success of forecast combinations to offer improved forecasting performance
while tackling uncertainties regarding model form and parameter specification. Third, all
approaches are model-free in the sense that do not rely on a particular family or pool of
models. Four, each of the approaches manage to handle at least one of the uncertainties
associated with fitting forecasting models: model form, parameter, and data.

In summary, we consider, present, and discuss the following five approaches:

• Theta method, where the seasonally adjusted data are decomposed into theta lines
with different curvatures that are suitable to handle local and global movements in
the data [5–10];

• Multiple temporal aggregation (MTA), where the original time series is transformed into
multiple new series of lower frequencies (higher temporal aggregation levels) [11–14];

• Bagging (bootstrapping and aggregation), in which the remainder of a time series is
bootstrapped towards the creation of new series with the same underlying structure
(trend and seasonality) but different random components [4,15,16];

• Forecasting with sub-seasonal series (FOSS), in which a seasonal time series is split
into multiple new series where only particular seasons (or sets of seasons) are observed
and modelled [17];

• Forecasting from multiple starting points, where the least recent observations of a
time series are not used when estimating forecasting models [18,19].

We should clarify that although the literature involves several other univariate ap-
proaches in addition to the aforementioned ones for extracting more information from the
original data and mitigating the drawbacks that forecasts from single forecasting methods
may involve, these are not considered in the present study as they are not characterised
by the four key attributes discussed earlier. For instance, when the forecast errors of a
method display strong auto-correlations (e.g., because the method fails to fully capture
seasonality or trend), a common approach is to adjust the forecasts originally produced
according to their expected error, specified using a second univariate forecasting method
on the residuals of the first one. TBATS [20] exponential smoothing state space model with
Box-Cox transformation, ARMA errors, Trend and Seasonal components, and Theta with
ARMA errors [21], are just some examples of this approach which, although enhances fore-
casting performance, does not rely on combinations. Similarly, decomposition techniques
that allow for complex, multiple seasonal patterns to be captured [22], can be regarded
as “wisdom of the data” approaches, but do not involve combinations, depending also on
particular models and, in many cases, explanatory variables.

The next five sections expand on each of the above approaches: We offer a summary
of the related research studies, we describe how these approaches handle and manipulate
the original time series data, and we discuss the advantages gained from their application.
Section 7 offers a cross-comparison of the approaches, with an emphasis on the uncertain-
ties that each handles, as well as their computational cost. Finally, Section 8 offers our
conclusions and insights for future research.

2. Theta Method

The theta method was the top-performing submission in the M3 forecasting competition [23].
Its name originates from the first letter of the Greek word for “temperature”, θ. Similarly to
how a decrease or increase in the temperature would result in contraction or expansion, the
theta method amplifies or smooths the local curvatures of a time series, i.e., the distances
between the points of the series with those of a simple linear regression line, computed over
its observations against time. The result of this local-curvatures manipulation process is the
creation of new series that are called “theta lines”. The degree of amplification or reduction
in the local variations is controlled by a parameter, θ, where a value of 1 corresponds to
the original data with the original local curvatures. If θ > 1, then the local variations are
amplified; if θ < 1, then the resulting theta line is smoother than the original data.

In its simplest form, the theta method decomposes the original data into two theta
lines with parameters θ = 0 and θ = 2 [5]. The theta line with θ = 0 corresponds to linear
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regression on a time-trend indicator. This is a straight line that captures the long term
trend of the data and has no local variations. The theta line with θ = 2 displays double the
curvatures of the data. It is argued that this second theta line is able to better capture the
short term variations in the data. Each of these two theta lines are extrapolated separately.
Assimakopoulos and Nikolopoulos [5] used the forecasts of the linear regression on trend
to extrapolate theta line with θ = 0 and the simple exponential smoothing (SES) method
to produce forecasts for the other theta line (θ = 2). Once the forecasts from the two theta
lines have been produced, then these are combined with equal weights to form the forecast
for theta line with θ = 1 that corresponds to the data with the original curvatures.

The above process works directly on data that do not exhibit seasonality. However,
if the original data are seasonal, then they need to be adjusted for seasonality before the
application of the theta decomposition. Assimakopoulos and Nikolopoulos [5] proposed
the use of the classical decomposition method with the assumption that the seasonal
pattern is multiplicative in nature; a not unreasonable assumption for real life applications.
As an alternative, Spiliotis et al. [9] proposed using shrinkage estimators of time series
seasonal indices to avoid cases where their values are exaggerated. In both cases, a simple
statistical test based on the autocorrelation coefficient with a lag that matches the periodicity
of the data is used to decide on the existence of a (sufficiently strong) seasonal pattern,
typically considering a confidence level of 90%. This test is described in detail in [8]. If
the theta decomposition is applied on the seasonally adjusted data, then the resulting
forecasts are not seasonal, and a seasonal re-adjustment is needed. This is simply done by
multiplying the combined forecasts with the respective seasonal indices computed earlier
by the decomposition method. A visual example of producing theta lines from seasonal
time series data is presented in Figure 1.
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Seasonally−adjusted data
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Theta line 2

Figure 1. An illustrative example of producing theta lines for the theta method. The original data
(black line) are de-seasonalised (red line). Then, a linear regression on trend produces the theta
line with θ = 0 (blue line). The theta line with θ = 2 (green line) has double the curvatures of the
seasonally adjusted data.

When theta is restricted to the simple form of two theta lines (0 and 2) that are
extrapolated by the linear regression line and SES, then its application on some seasonally
adjusted data is mathematically equivalent to SES with drift [6]. However, it would be more
appropriate if theta is seen as a decomposition framework rather than a forecasting method.
One can decide on the number of theta lines, their theta parameters, the forecasting methods
to be applied on each of them, and the combination weights, among other modelling choices.
In fact, as explained by Spiliotis et al. [9], “the advantage of theta derives exactly from (its)

“divide and conquer” property: There is no single forecasting model capable of effectively capturing
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all possible time series patterns. Yet, if the series is decomposed into multiple lines of a reduced
amount of information, improvements in forecasting accuracy are possible even for the case of
conventional models”.

Several studies have worked on expanding the theta method to the aforementioned di-
rections. Petropoulos and Nikolopoulos [24] examine the use of equal and unequal weights
for the combinations of the two theta lines forecasts, and conclude that optimally choosing
the combination weights per series may result in performance benefits. Petropoulos [25]
proposes the addition of a third theta line with θ = 1 that is extrapolated by the damped-
trend exponential smoothing method. He also suggests the addition of a second short term
trend-line that is fitted on the most recent observations, which is closely connected with the
concept of multiple starting points (see Section 6). Fioruci et al. [26] and Fiorucci et al. [8]
offer generalised rolling origin evaluation methods and state space models for optimising
the theta parameter of the second theta line, showcasing the benefits in the out-of-sample
accuracy of the method. Thomakos and Nikolopoulos [27] expand the application of
the theta method in a multivariate setting and show the conditions under which this is
expected to work better than its standard, univariate implementation.

Two recent extensions on the theta method are particularly interesting. Following the
work of Spiliotis et al. [9], Spiliotis et al. [10] offer a taxonomy of theta models that can
capture several forecasting profiles regarding the type of trend (additive or multiplicative)
and seasonality (none, additive, or multiplicative). This is a significance advancement
since the original theta method was designed on the assumptions of a linear trend and
multiplicative seasonality. The authors propose non-linear trends, but also alternative
seasonal profiles in a framework that resembles that of the exponential smoothing family
of models [6]. Moreover, they define a process for selecting an optimal theta method and
offer a simple way to empirically estimate the prediction intervals. Their “AutoTheta”
method shows improved performance over the standard theta method for both point
forecast accuracy but also the estimation of uncertainty. Legaki and Koutsouri [28] deal
with non-linear trends in an alternative fashion. They apply a Box-Cox transformation on
the seasonally adjusted data prior to the theta decomposition and extrapolation. The value
of the Box-Cox transformation parameter, λ, is selected so that the profile log-likelihood of
a linear model fitted to the seasonally adjusted series is maximised, with the choice of λ
being restricted in [0, 1]. A Box-Cox transformation allows the application of theta on data
with non-linear trends but also results in stabilisation of the variance. The “Box-Cox Theta”
was one of the solutions submitted in the M4 forecasting competition [29], resulting in very
good point forecast accuracy with very low computational cost [30].

The theta method has performed well in a variety of settings that involve financial [31],
tourism [32], and inventory forecasting [33]. It is not a surprise that nowadays it is
considered to be one of the default time series forecasting benchmarks along with the
automatic implementations of exponential smoothing and ARIMA [34], as showcased by
the M4 forecasting competition [29]. The theta method is attractive for its simplicity, robust
performance, and computational efficiency. The book of Nikolopoulos and Thomakos [35]
exclusively focuses on the theory and applications of the theta method, highlighting the
conditions under which it will outperform other forecasting methods. Several open source
implementations of the theta method exist. We would like to spotlight the forecTheta
package for R statistical software, as well as the functions thetaf() and theta() of the
packages forecast and tsutils, respectively. Finally, Petropoulos and Nikolopoulos [36] offer
a step-by-step tutorial of the standard theta method coupled with an implementation in
just 10 lines of R code.

3. Multiple Temporal Aggregation

The theta method extracts more information from the data by amplifying or deflating
the local curvatures. In other words, the theta method manipulates the data on the vertical
axis of a standard time series plot. The next approach we explore manipulates the data
on the horizontal axis, i.e., the time. Temporal aggregation refers to a time series transfor-
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mation where a higher frequency series is translated into a series of lower frequency see
Section 2.9.2 in [37]. For example, a time series on the daily frequency can be converted
into a weekly-frequency series when considering non-overlapping time buckets of 7 days
each. Different levels of temporal aggregation result in new, shorter series where the high
frequency components (seasonality and noise) are filtered out while level and trends are
made easier to discern and model. Moreover, when temporal aggregation is applied on
very granular, intermittent data, then we observe a decrease on the degree of intermittence,
i.e., the number of zero observations included in the series, thus facilitating the overall
forecasting process. An example of the temporal aggregation process applied on fast
moving data is presented in Figure 2.
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Figure 2. A visual example where multiple new temporally aggregated time series are created based
on the original data. The monthly data (black line) are temporally aggregated to quarterly (red line),
semesterly (blue line), and yearly (green line) data.

Although it is possible that one focuses on modelling a single aggregation level, even
if this is not the original level on which the data are recorded [38–40], more benefits will
usually arise from modelling multiple temporal aggregation (MTA) levels and combining
the resulting forecasts. Kourentzes et al. [11] offer one of the first systematic studies to
explore the beneficial effects of MTA. Focusing on exponential smoothing models [2], they
propose that model selection should be applied on each temporally aggregated series
separately. The exponential smoothing model components (level, trend, and seasonality)
are estimated per aggregation level and their additive-transformed estimates are averaged
across levels. The summation of the three average components is the final forecast. This
approach is known as the “multiple aggregation prediction algorithm” (MAPA). The need
for averaging at a component level rather than at a forecast level was driven by the fact
that seasonality may not be possible to estimate in some levels (consider, for instance,
monthly data and an aggregation level of five periods). Combining at a component level
avoids the excessive shrinkage of the seasonal pattern [41,42]. MAPA showcased improved
performance over the exponential smoothing benchmark that was applied on the original
data only [11]. The improvements of MAPA over the benchmarks were more obvious on
the longer forecasting horizons.

MAPA, as introduced by Kourentzes et al. [11] and implemented with exponential
smoothing, is a great solution for amplifying and smoothing data patterns for fast moving
series. However, when the series become intermittent, with the presence of many zeros
among the non-zero demand observations, then the toolbox of forecasting models applied
across the various aggregation levels can be updated to include specialised methods for
intermittent demands. Such methods include the Croston’s method [43] and the Syntetos-
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Boylan approximation (SBA) [44]. Petropoulos and Kourentzes [13] suggest the use of
multiple temporal aggregation levels for the case of slow-moving demand series, where
a selection between the Croston’s method and the SBA is made based on the degree
of intermittence and the variability of the non-zero values [45]. Finally, if the average
inter-demand interval becomes equal to unity (i.e., the intermittent data are sufficiently
temporally aggregated to become non-intermittent), then Petropoulos and Kourentzes [13]
suggest replacing specialised methods for intermittent demand with SES. The empirical
results from the application of the MAPA version for intermittent demand data showed
superior forecasting performance on a variety of metrics that included proxies for the
inventory performance.

Another extension to MAPA was introduced by Kourentzes and Petropoulos [46]
to allow the algorithm handle exogenous variables which are estimated as additional
components. The concept is similar to how exponential smoothing models (ETS) are
extended to include exogenous variables (ETSx). However, the multivariate version of
MAPA (MAPAx) performs temporal transformation on the exogenous variables too. This,
by turn, tackles the uncertainty associated with estimating not only the effects of such
predictors, but also their timing, i.e., leading and lagging effects. Applied on demand
volumes affected by promotions, MAPAx offered a performance that was better to either
ETSx or ARIMAx (ARIMA models with exogenous variables), both in terms of accuracy
and bias, across multiple planning horizons.

One of the most important milestones in the development of MTA has been its con-
ceptualisation in a hierarchical fashion. This enabled to directly apply the advances of the
rich hierarchical literature [47–50] to the MTA application, that includes the estimation
of coherent forecasts from the base forecasts of each hierarchical node. In essence, each
hierarchy consists of observations at the most granular frequency at the bottom level,
which are then added up to higher hierarchical levels, with the top level usually being
a full periodic cycle. For example, monthly observations are added to bi-monthly, quar-
terly, four-monthly, semesterly, and yearly. Temporal hierarchies were first proposed by
Athanasopoulos et al. [14], who showed that such structures allow MTA to be applied to a
wide range of forecasts that are not limited to exponential smoothing ones and could even
include judgment. The authors performed a large simulation study to better understand
why temporal hierarchies work better than simply modelling the original data. Finally,
they discussed the managerial implications of MTA through a case study of accident and
emergency demand data.

Since the work of Athanasopoulos et al. [14], there has been a spark of research
studies around forecasting with temporal hierarchies (THIEF). We now provide some
highlights. Spiliotis et al. [41] proposed three simple ways to improve performance of
temporal hierarchies: (i) model combinations to the base forecasts prior reconciliation,
(ii) additive and multiplicative bias adjustments to the base forecasts, and (iii) a selective
application of temporal hierarchies so that unnecessary seasonal shrinkage is avoided for
the time series that exhibit strong seasonality, closely related also to the work of Kourentzes
et al. [51] on optimal selection of temporal aggregation levels. Jeon et al. [52] expanded
temporal hierarchical forecasting from point forecast reconciliation to probabilistic coherent
forecasts, showcasing its benefits on high frequency wind power production and electricity
load data. Additionally, focusing on short term electricity load data, Nystrup et al. [53]
showed that temporal hierarchical forecasting can be significantly improved when auto-
and cross-correlations are taken into account in the reconciliation stage of the base forecasts.
Finally, Kourentzes and Athanasopoulos [54] applied temporal hierarchies on intermittent
demand data, arguing that some data patterns (trend and seasonality) are difficult to
discern on low levels of aggregation where the degree of intermittence is high. They
selectively used Teunter-Syntetos-Babai (TSB) [55] method for intermittent demand or
ETS based on an intermittence threshold, which acts as a hyperparameter. Generally, the
accuracy improvements were higher for lower intermittence thresholds, i.e., TSB switches
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to ETS when the intermittence is low, as investigated on 5000 time series depicting the
demand of aerospace spare parts.

A fertile field for research is the integration of temporal aggregation forecasting with
the more traditional cross-sectional one, towards what is dubbed as “cross-temporal fore-
casting”. To the best of our knowledge, Spiliotis et al. [42] were the first to investigate
this issue, focusing on hourly electricity consumption data from a bank, disaggregated
into branches and further disaggregated into energy uses. They proposed a sequential
process where a simplified version of MAPA is first applied on the seasonally adjusted
data, followed by reseasonalisation of the temporally combined forecasts and consequent
application of cross-sectional hierarchical forecasting for the production of coherent fore-
casts across all cross-sectional levels. Kourentzes and Athanasopoulos [56] approached
cross-temporal aggregation from a hierarchical approach, instead of using MAPA. Al-
though they defined full cross-sectional hierarchies, they still used a sequential approach
where they first apply temporal hierarchies for each cross-sectional node followed by
cross-sectional reconciliation at each aggregation level with the resulting forecast being
combined using equal weights towards a “consensus reconciliation matrix”. The authors
showed that this approach resulted in improvements when applied on Australian tourism
data. Yagli et al. [57] explored further the sequential implementation of cross-temporal
hierarchies by comparing the appropriate order of application, i.e., spatial then temporal,
or temporal then spatial. Using photovoltaic power generation data, they showed greater
benefits when temporal aggregation is applied prior to cross-sectional (spatial), while they
also provided evidence that temporal aggregation may not be needed at all levels of the
cross-sectional hierarchy.

Overall, we can see a large number of studies over the last few years that focus on
issues surrounding MTA. MTA is attractive as it offers significant performance improve-
ments that are coupled with aligned decision making [14]. Forecasts are produced at
different frequencies and are then reconciled, rendering them suitable for use in several
functions within companies and organisations, including operational, tactical, and strategic
planning. Although, normally, different teams and departments within organisations
would produce their own sets of forecasts, MTA brings us one step closer to the concept of
“one number forecast”, where the same sets of forecasts can be used for logistics, manufac-
turing, scheduling, budgeting, etc. Various implementations of MTA are available in open
source forecasting packages that include the mapa() function of the MAPA package (MAPA
and MAPAx), the imapa() function of the tsintermittent package (MAPA for intermittent
demand data), and the thief() function of the thief package (temporal hierarchies) for R
statistical software.

4. Bagging

The next approach that we investigate is called “bagging”, which is short for “boot-
strapping and aggregation”. In brief, bagging is based on the resampling of the random
component of a series towards the creation of new series with the same underlying patterns
(trend and seasonality) but different remainder. Multiple forecasts are produced using the
original and the bootstrapped series which are then aggregated (combined) to form the
final forecast. In more detail, the steps for the bagging approach are as follows:

1. A Box-Cox transformation is applied on the original series. The λ parameter for the
Box-Cox transformation is automatically selected based on the Guerrero’s method [58],
but other methods such as the maximisation of the profile log likelihood of a linear
model fitted to the original data could be used. The purpose of this step is twofold.
First, the variance of the series is stabilised. Second, multiplicative patterns are
converted into additive ones;

2. The Box-Cox transformed series is decomposed into its components. If the series
has periodicity greater than unity (e.g., quarterly or monthly data), then the seasonal
and trend decomposition using Loess STL [59] decomposition is applied to separate
the transformed series into the trend, seasonal, and remainder components. If the
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series has no periodicity (e.g., yearly data), then a Loess decomposition is applied to
separate the series into two components: trend and remainder;

3. The remainder component of the above decomposition is bootstrapped towards the
creation of new vectors of remainders that follow the empirical distribution of the
original remainder vector;

4. The bootstrapped remainder vectors are added to the other extracted components
from the decomposition of step 2 (trend and, where applicable, seasonality) to form
new bootstrapped series. These series have the same underlying structural patterns
with the original series;

5. An inverse Box-Cox transformation is applied on each of the bootstrapped series,
using the same λ parameter of step 1. This transformation brings the bootstrapped
series back to the same scale as the original data. Figure 3 shows the estimated
bootstrapped series based on the original (seasonal) data;

6. The original and the bootstrapped series are extrapolated using an automatic forecast-
ing process, which may result on the use of the same or different model forms and
parameters. In any case, many sets of forecasts are produced at the end of this step;

7. The forecasts from the original and bootstrapped series of the previous step are
aggregated (averaged).
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Figure 3. The original data (black line) together with 30 bootstrapped series (blue lines).

Effectively, bagging should be seen as a data augmentation (or oversampling) ap-
proach applied in univariate settings, in the sense that the amount of modified series
added over the existing one for training the forecasting methods and producing the final
forecasts are solely based on the series being predicted. This is a key difference compared
to the multivariate data augmentation approaches used in the literature for successfully
implementing “cross-learning” (or “global”) forecasting methods [60], where the synthetic
data share the underlying patterns of multiple series found in a broad set of series.

Bagging was first proposed by Bergmeir et al. [15], who applied it to improve the per-
formance of exponential smoothing. They used the moving block bootstrapping MBB [61]
algorithm to produce bootstrapped vectors of the remainder, and produced 99 bootstrapped
series. The best ETS model was fitted on each of the original series and the 99 bootstrapped
series in order to produce point forecasts. The final forecasts were obtained using the
median operator, while the authors discuss that they also tried mean and trimmed means.
Bagging on ETS offered improved performance over ETS simply applied on the original
data. The authors also tried replacing Box-Cox and Loess decomposition with decomposi-
tion based on the components of the best ETS model fitted on the original data. The authors
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also explored replacing MBB with the sieve bootstrap method [62]. However, both these
modifications resulted in, overall, inferior results.

In a follow-up study, Petropoulos et al. [4] sailed to explore the reasons behind the
good performance of the bagging approach. They argued that bagging succeeds in tackling,
at the same time, three sources of forecast uncertainty: (i) the uncertainty in selecting the
correct model form, (ii) the uncertainty in estimating the model’s parameters, and (iii) the
inherent uncertainty of the data. They devised three simple experiments to disintegrate the
benefits of bagging:

• After producing the bootstrapped series the usual way, the authors identified the
optimal models on these bootstrapped series. Instead of using the forecasts from
these models directly, their model forms were applied back to the original data,
for which a different optimal model form may have been identified. Effectively,
the bootstrapped series provided the frequencies with which each model form was
identified as ‘optimal’, and these frequencies were then translated into combination
weights for averaging the point forecasts of the different model forms when applied
on the original data. All model parameters and forecasts were estimated using
the original data only. This variation of bagging is known as “bootstrap model
combination” (BMC) and handles only the uncertainty in the model form;

• The optimal model form was identified using the original data only. Subsequently,
this optimal model form was applied on the original data and the bootstraps to obtain
multiple independent estimates of the model parameters. The combination of each set
of model parameters with the unique optimal model form was then applied again on
the original data to produce multiple sets of point forecasts. As with bootstrap model
combination, the bootstrapped series were not used to produce forecasts directly. This
variation solely handles the uncertainty in estimating the model parameters;

• The optimal model form and set of parameters were estimated using the original
series only. Subsequently, this unique model form and set of parameters were applied
on all bootstrapped series to produce multiple sets of point forecasts. This variation
solely tackles the uncertainty associated with the data, as the bootstrapped series are
not used for selecting between models or estimating their parameters.

Using the data from M and M3 forecasting competitions, the results of Petropoulos et al. [4]
showed that, on average, tackling model uncertainty alone through bootstrap model
combination offers benefits that are higher than bagging itself. Simply addressing the
uncertainty in estimating the parameters of the applied model is overall worse than
either bagging or bootstrap model combination but still slightly better than forecasting
without bootstraps. Tackling only the data uncertainty does not offer notable gains. The
authors went one step further towards generalising bagging by considering replacing
the estimator (ETS) with ARIMA. The results were consistent, with bootstrap model
combination being the best approach overall. Finally, they replaced MBB with two other
bootstrapping approaches, circular block bootstrap CBB [63] and linear process bootstrap
LPB [64], showing that the relative average ranks of the various approaches would not
significantly change.

Although the last two studies focused on the performance of bagging when applied
on families of models (ETS and ARIMA), bagging can also lead in improvements in the
forecasting performance when applied on single methods. Dantas et al. [65] showed that
bagging with the Holt-Winters method, an exponential smoothing method that is able to
capture the trend and the seasonality in the data, results in better performance than either
ETS, ARIMA, or bagged ETS when forecasting the demand for air transportation.

To control the effect of the covariance on the combination step of the bagging approach,
Dantas and Cyrino Oliveira [16] proposed the use of clusters of similar forecasts. Instead
of aggregating across all forecasts, a diverse set of forecasts are selected from each cluster
and then these selected forecasts are combined across clusters. This simple trick leads to
reduced variance of the forecasts and, as a result, in reduced forecast error. They tested
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their cluster-modified bagging approach using ETS and data from the M3 forecasting
competition and showed improvements in the point forecast accuracy.

Meira et al. [66] extended the previous works towards allowing the various bagging
approaches to produce robust prediction intervals. They proposed “treating and pruning”
strategies to selectively exclude models from the pool of candidate models such that models
with explosive or outlying prediction interval values are not considered. This not only im-
proved the performance of bagging and its variations, but also offered improvements upon
the standard ETS. Overall, the authors demonstrated that bootstrap model combination
offered very competitive performance compared to other bagging variations, both in terms
of point forecast accuracy but also uncertainty estimation.

Research around bagging is much more scarce compared to theta or MTA. However, it
is a robust alternative to deal with the various sources of uncertainty; arguably, though, an
expensive one. Most published studies use between 50 and 100 bootstraps per series, with
the computational cost need to fit all models and produce forecast being increased with the
same rate. Open source implementations of the bagging approach include the functions
baggedETS() and baggedClusterETS() of the R packages forecast and tshacks, respectively.

5. Sub-Seasonal Series

Instead of transforming a series to another of lower frequency through temporal
aggregation using all observations, the next approach we review applies sub-sampling
such that the resulting series includes only some of the periods within a periodic cycle.
Consider, for instance, the case of daily data and focus on the weekly periodic pattern
(weekly seasonality) of length 7. One (the traditional) option would be to consider all
observations and model a series with a seasonal cycle equal to 7 periods. However, we
could also consider only the values for a specific day of the week (such as Monday) and
create a new time series which will not be seasonal and model it independently; and
we could repeat this for every single day. Expanding this idea, we could also consider
pairs, triplets, quadruplets, etc., of adjacent days (such as Monday-Tuesday or Monday-
Tuesday-Wednesday, etc.) and form even more series of varying degrees of periodicity. In
other words, we do not do any transformation per se, but systematically remove (through
subsampling) specific periods of the series to create new ones of lower periodicity. Figure 4
shows an example of this sub-sampling process assuming some data originally recorded in
the monthly frequency.

Forecasting with sub-seasonal series (FOSS) allows for simplified modelling of the
patterns in the original series as different seasons are excluded every time [17]. This offers
a more robust estimation of the trends but also the seasonal patterns in the data, with FOSS
serving as a “magnifying glass” to the forecasting models used for their extraction. FOSS
uses combination, and its welcome side effects, to aggregate the forecasts produced using
the sub-seasonal series. Assuming a time series with periodicity s (s = 7 of daily data;
s = 12 for monthly data), then FOSS entails the creation and modelling of s2 − s + 1 series.
However, most of these series have periodicity that is much lower than s and are relatively
short, so the increase in the computational cost is not linearly associated with the increase
in the number of models to fit. Each set of series produced by FOSS that has the same
periodicity is referred to as “level of information”. In its simplest form, FOSS models all
such levels of information and combines the forecasts with equal weights.

Li et al. [17] offer a large empirical evaluation of FOSS using data from the M3 and
M4 forecasting competitions. They showed that FOSS acts as a self-improving approach
for the state-of-the-art batch forecasting benchmarks ETS and ARIMA. The improvements
achieved are amplified when the periodicity of the original series is higher but also when
the forecast horizon increases, i.e., when forecasting becomes more challenging. In addition,
the authors applied FOSS on double seasonality, high frequency load data, and showed
that FOSS is also a useful tool in the presence of complex seasonal patterns.

FOSS is publicly available through the foss package for R. However, research in this
area is still premature. We can see several avenues for future exploration that include the
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selective use of levels of information, the use of unequal combination weights, and the
creation of series using non-adjacent periods.
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Figure 4. An illustrative example of producing sub-seasonal series by sub-sampling the original
monthly data (first panel). In the second panel, we have produced a non-seasonal series that consists
only of the periods in July of each year. The third and fourth panels show two more sub-sampled
series with periodicity 2 and 3, respectively. Note that by considering particular subsamples, the
level as well as other patterns change significantly.

6. Multiple Starting Points

In the era of big data, retaining long histories of time series values is quite inexpensive.
However, would using as many data as possible for producing forecasts warrant the best
performance? Although increasing the number of the available observations is expected to
lead to better accuracy, such a result is subject to a certain degree of determinism in the
data. If the data exhibit structural changes (level shifts, changes in the trend and seasonal
patterns, etc.) or contain outlying values, then it may be better to use the most recent
window of the data that would not be subject to such data irregularities [67]. Another
extreme way to handle changes in the structure of the data would be to only retain the most
recent window that contains enough observations that are necessary to produce forecasts.
For example, the “Demand Planning” functionality of the SAP APO retains only three
years of monthly data, discarding the least recent history.

Determining the optimal window of data on which forecasting models are fitted is
not a straightforward exercise. Instead, one can consider multiple windows. Assume that
a time series consist of n observations. A first set of forecasts can be produced using all
n observations. A second set of forecasts can be produced using the most recent n − 1
observations. This process can be repeated m + 1 times, such that n − m would still be
enough data points for producing forecasts, i.e., at least two seasonal cycles for periodic
data. Finally, the multiple sets of forecasts can be combined to obtain the final forecasts.
This approach does not transform nor manipulate the original series, but simply trims the
beginning of the data to produce multiple overlapping in-sample windows of different
lengths based on which forecasts are produced. This approach is known as “forecasting
using multiple starting points” (MSP). Figure 5 demonstrates the process of trimming the
original series to create new series from multiple starting points.
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Figure 5. An illustrative example of producing series from multiple starting points. The original data
(first panel) are trimmed so that the periods from only the last two years (second panel), the last three
years (third panel), or the last four years (fourth panel) are considered.

Research in this stream is limited. To our knowledge, Disney and Petropoulos [18]
were the first to empirically examine the approach based on multiple starting points. They
applied it on data from the M3 forecasting competition using simple averaging operators
(mean, median, and mode), which resulted in improved forecasting performance especially
for the yearly frequency. They showed that the improvements generally increase as the
number of starting points also increases. They also presented a case study based on
the demand of 23 different types of spare parts, showing that forecasting from multiple
starting points improves the accuracy in about three-fourths of the cases, with average
improvements of about 10%. Bai et al. [19] also empirically investigated this approach,
comparing equal versus optimal weights when combining across the forecasts but also
considering non-consecutive starting points for their in-sample windows.

We believe that there is scope for more research in this area. Future studies could
focus on applying formal techniques for detecting structural changes, which then can be
used to select the starting points in a more systematic manner. Another possibility for
future investigation could be the application of the concept of multiple starting points
within cross-sectional hierarchical structures, where it is usually assumed that every node
in the hierarchy has the same number of historical observations. Finally, understanding the
circumstances under which forecasting from multiple starting points works best is vital
towards implementing it in practice. To our knowledge, there does not exist an open source
implementation for forecasting from multiple starting points.

7. Cross-Comparison

The five approaches that were described in the previous five subsections attempt to
extract more information from the original time series by performing various forms of data
modifications, adjustments, manipulations, and transformations. These can be summarise
in three larger categories: random component, frequency, and length. Table 1 summarises how
the extraction of information works for each of these five approaches. The theta method
retains the frequency and length of the data, but amplifies the local curvatures which are
represented as the residuals of a linear regression on trend. MTA transforms the original
series through temporal aggregation to new shorter series of lower frequency; inevitably,
the upsampling also results in lower noise [40]. Bagging is based on the bootstrapped series
that are produced through re-sampling of the remainder from a decomposition process.
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FOSS focuses on the subsampling of the original series resulting, similar to MAPA, in
new series that are shorter and have lower periodicity. Finally, forecasting from multiple
starting points is based on trimming the original series by removing the least recent values,
retaining the frequency and random component intact.

Table 1. How does extraction of the information work?

Approach Random Component Frequency Length

Theta
MTA

Bagging
FOSS
MSP

In Table 2, we map the five approaches with regards to how they handle the three
sources of uncertainty: data uncertainty, model form uncertainty, and model parameters
uncertainty. Our mapping involves two levels: denotes full account of that type of
uncertainty, while denotes partial account. The theta method handles the uncertainty in
the data in the sense that the local curvatures are amplified or reduced to better identify
short and long term movements in the data. MTA also handles data uncertainty as temporal
aggregation results in smoothing the noise in the data [40]. However, MTA also addresses
the uncertainty in the model form, as different models may be identified as optimal at
different temporal levels: a dominating seasonal pattern may lead to the selection of a
seasonal-only model at the lowest aggregation level. However, as seasonality is smoothed
out by temporal aggregation, a trend pattern may become apparent in a higher aggregation
level [11]. Even if the same models are identified as optimal in various temporal levels,
then MTA is still likely to help by partially addressing parameters’ uncertainty.

Table 2. How do the five approaches handle the sources of uncertainty?

Approach

Sources of Uncertainty

Data
Model

Form Parameters

Theta
MTA

Bagging
FOSS
MSP

Bagging is the only approach that is able to tackle all three types of uncertainty,
something that was extensively discussed by Petropoulos et al. [4]. However, some
bagging variations focus on particular sources of uncertainty, as discussed in Section 4.
FOSS is the only approach that does not explicitly handle the data uncertainty, but directly
focuses on the model form uncertainty (and the model parameters). Finally, MSP tackles
data uncertainty in the sense that, by trimming series, outliers or structural changes are
removed. However, the new (shorter) series might also result in alternative model forms
and sets of parameters.

Next, we consider the computational cost required by each of the approaches to
produce forecasts. For simplification, instead of recording computational time per se
(as this would depend on length of the series, among others) we compare the various
approaches in terms of models required to be fitted. As a benchmark, it is noteworthy that
the ets() function of the forecast package for R statistical software fits 19 models (8 for
non-seasonal data) before a final model is selected and its forecasts are produced. The theta
method is arguably one of the most inexpensive robust time series forecasting methods. In
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its standard implementation, it requires the fitting of just 2 models, one for each theta line
(a simple linear regression model and SES). Even theta variations that consider more than
two theta lines, the number of models required is small. The robust implementation by
Legaki and Koutsouri [28] that uses a Box-Cox transformation offered, arguably, one of the
best trade-offs in performance versus cost in the M4 competition [30].

Compared to theta, all other approaches are more costly. MTA requires forecasts for
each aggregation level: 12 for monthly data; 4 for quarterly data. However, this could be
slightly reduced when one uses temporal hierarchies (6 for monthly; 3 for quarterly). It
is common that in each level an automatic algorithm, like ETS or ARIMA, is used. This
means that the number of models required to be fitted increases a lot. Using temporal
hierarchies with ETS results in fitting 103 exponential smoothing models for a monthly
time series (5 seasonal levels × 19 models + 1 non-seasonal level × 8 models). Empirical
evidence https://kourentzes.com/forecasting/2014/10/31/guest-post-on-the-robustness-
of-bagging-exponential-smoothing/ (accessed on 1 June 2021) has shown that Bagging’s
performance converges when at least 50 bootstrap series are aggregated—while most of the
studies consider 100 bootstrap series. This means that Bagging with ETS requires fitting as
little as 950 models (50 bootstraps × 19 models) for a single seasonal series and 400 models
for a non-seasonal series, rendering it one of the most expensive approaches in this review
study. Forecasting with sub-seasonal series is also very costly. From the s2 − s + 1 series
created, s of them have a periodicity of 1 with the potentially displaying seasonal patterns.
Again assuming ETS, FOSS entails fitting and parametrising 165 models when modelling a
series on the quarterly frequency ((s2 − 2s + 1)× 19 models for the sub-series with s > 1,
plus s × 8 models for the rest) rising to 2395 models for a monthly time series. The cost for
the forecasting from multiple starting points heavily depends on the length of the series.
Assuming a monthly time series (s > 12) with length n = 50, we would require at least
2s = 24 periods to produce forecasts, which allows us to consider at most 27 starting points,
translating to fitting 513 models when using ETS.

Lastly, we consider the performance of the various approaches as published in various
studies so far. We focus on the data used in two forecasting competitions, M3 [23] and
M4 [29], and particularly the yearly, quarterly, and monthly frequencies. It is important to
note that our summary results, presented in Table 3, are based on the empirical evidence
presented on other studies, which are identified next to each numerical result. We also
limit our results to the values of the symmetric mean absolute percentage error (sMAPE)
as reporting the mean absolute scaled error (MASE) was not possible (different researchers
apply the scaling differently). For some studies that only provided relative improvements
over a benchmark, such as [14], did not differentiate between the results of each competition,
such as [41,42], or were limited to one of the two competitions considered, such as [28],
we have reproduced the results using the code provided by the corresponding authors.
Overall, we observe that some of these approaches are more suited in forecasting non-
seasonal patterns (see, for instance, the very good performance of the Box-Cox Theta on
the yearly frequency), while others are better when the series are periodic (see, for instance,
FOSS and MTA).
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Table 3. The published average performance of the five approaches on the monthly data from the M3 and M4 competitions.

Approach Variation
M3 M4

Yearly Quarterly Monthly Yearly Quarterly Monthly

Theta Standard [5] 16.90 [23] 8.96 [23] 13.85 [23] 14.59 [29] 10.31 [29] 13.00 [29]
Optimised θ [8] 15.94 [8] 9.28 [8] 13.74 [8] 13.68 10.09 13.32

Box-Cox [28] 16.20 9.13 13.55 13.37 [29] 10.15 [29] 13.00 [29]
AutoTheta [42] 16.02 9.18 13.86 13.80 10.13 13.13
Theta-EXP [41] 16.48 8.99 13.44 14.11 10.37 13.12

MTA MAPA-ETS [11] 18.37 [11] 9.63 [11] 13.69 [11] 14.88 10.27 12.97
THIEF-ETS [14] 17.00 9.38 13.58 15.36 10.40 12.89

THIEF-ARIMA [14] 17.10 9.79 14.49 15.15 10.61 13.39

Bagging MBB-ETS [15] 17.89 [15] 10.13 [15] 13.64 [15] 14.47 [66] 10.23 [66] 13.30 [66]
BMC-ETS [4] 17.15 [4] 9.56 [4] 13.79 [4] 14.94 [66] 10.08 [66] 13.07 [66]

Pruned and Treated [66] 17.36 [66] 9.74 [66] 13.61 [66] 14.49 [66] 10.22 [66] 13.27 [66]

FOSS FOSS-ETS [17] 9.24 [17] 13.56 [17] 10.15 [17] 12.84 [17]
FOSS-ARIMA [17] 9.68 [17] 14.01 [17] 10.41 [17] 12.87 [17]

MSP MSP-ETS [18] 16.90 [18] 9.79 [18] 14.00 [18]

THIEF is applied using the “structural” reconciliation approach, while MAPA using the “hybrid” approach with a mean combination
operator for aggregating the ETS components at different temporal aggregation levels. Optimised θ refers to the “Dynamic Optimised
Theta Model”. Results are replicated, where required, using the “thief”, “MAPA”, “forecast”, and “forecTheta” packages for R, of versions
0.3, 2.0.4, 8.14, and 2.2, respectively.

Given the high-representativeness of the data in the M3 and M4 datasets [68], we
believe that the results can be safely generalised in other settings and contexts, where
the presented approaches are expected to work well. However, we will highlight here
some particular applications on different contexts. Nikolopoulos et al. [31] apply the
theta method on finance data, demonstrating its good performance over other benchmarks.
Athanasopoulos et al. [14] offer a case study for the application of MTA (in the form of tem-
poral hierarchies) for forecasting the demand of the Accident and Emergency departments
in the UK. Additionally, working with MTA, Yagli et al. [57] improved the performance of
solar forecasts. De Oliveira and Cyrino Oliveira [69] demonstrate the effectiveness of the
bagging approach on energy consumption data. Finally, the case study of Li et al. [17] also
involves high-frequency energy consumption data and shows the good performance of
FOSS when complex patterns exist. The application of MSP on different contexts is limited,
as this approach has not been—to our knowledge—widely applied yet.

8. Conclusions and a Look to the Future

Univariate time series forecasting can be challenging, especially since real life data
do not comply with the assumptions and do not follow data generating processes usually
assumed by models that can be found implemented in the forecasting support systems.
At the same time, improving forecast accuracy can be crucial, as even a small decrease in
the forecast error may translate to significant gains in terms of the utility of the forecasts
see, for example, references [33,70], who discuss the case of forecasting for inventories. In
this paper, we reviewed five approaches that can enhance the performance of univariate
time series forecasting methods. These approaches are based on two basic principles: (i)
manipulation of the original data to extract as much information from them as possible,
and (ii) forecast combination which has been proved to be extremely beneficial in the
forecasting field see, for example, references [71,72].

The five approaches that we presented can be applied on top of established time
series forecasting models, such as ETS or ARIMA. In fact, we can argue that all these five
approaches work as self-improving mechanisms to boost the performance of the underlying
forecasting methods. Although the term “self-improving mechanism” was originally used
by Nikolopoulos et al. [38] to describe the performance gained by applying temporal
aggregation, we argue that this is a good descriptor for all the approaches discussed in
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our study. It is important to highlight that the improvements achieved by the application
of these approaches do not entail the collection of additional data, such as explanatory
variables, that usually come with an additional cost, as well as uncertainty in a sense that,
in most cases, the future values of these variables must also be predicted for supporting
forecasting methods in a regression fashion. The input for all approaches described is
simply the past values of the dependent variable of interest.

When a large number of data are available, then empirical evidence from the latest
forecasting competitions [29,73] shows that meta-learning and cross-learning approaches
can be used to improve time series forecasting performance. Such “global” approaches are
often based of time series features [74] or patterns [75] that may be prevalent and common
across many time series. As a result, meta-learning and cross-learning approaches are rele-
vant for companies that require to produce forecasts for myriads of data [76]. Large retailers,
such as Walmart, Target, and Carrefour, are representative examples. However, many more
companies and organisations are interested in forecasting only a few tens or hundreds of
time series to support their operations, marketing, and other functions. As such, “local”
solutions, like the ones covered in this study, that use information from singular time series
only, are still very useful in practice. More importantly, if one needs to forecast only a
small number of series, then it would make sense to invest in the additional computational
resources required to handle the most demanding of the approaches (Bagging and FOSS).
Regardless, we believe that analysts that wish to apply the approaches presented in this
paper should decide based on their added-value across different sampling frequencies (see
also the discussions in Section 7) balanced against their relative computational cost.

The various approaches that we presented in this paper have been so far studied in
isolation. Although the applying of these approaches in a sequential fashion is entirely
feasible, as it is the case with an MTA implementation—the thief() function—which offers
theta as one of the methods to produce base forecasts, it would be even more interesting to
see future studies that focus on the integration of the approaches described here. The only
exception that we are aware of is the study by Wang et al. [77] that attempts to structurally
integrate the concepts surrounding the theta method (and the manipulation of the local
curvatures) with aspects of non-overlapping temporal aggregation. We believe that there
is much scope for further research in integrating “wisdom of the data” approaches. For
instance, one could consider defining a temporal hierarchy approach in which the base
forecasts for the nodes of a certain aggregation level are not produced by considering the
entire series consisting of all information at the same aggregation level, but each node is
extrapolated separately using sub-seasonal series (FOSS). Another example would be the
integration of bagging and multiple starting points approaches, since each of them focuses
on a different way in extracting information from the data.

Another interesting path for future investigation would be to explore how these
approaches can better support forecasting in practice. For example, consider the extension
of these univariate-oriented approaches to fit within a hierarchical framework which
contains several series that are cross-sectionally aggregated. Temporal hierarchies naturally
extend to cross-temporal hierarchies, see [56], however this is not the case with all other
approaches described here. For instance, when using bagging on a particular node of the
hierarchy, the bootstrapping of the remainder could be informed by the remainder of the
other nodes. Even more interestingly, a bootstrap model combination approach could be
based on the models selected as optimal across hierarchical aggregation levels.

In conclusion, univariate time series forecasting benefits from looking the available
data through different lenses, attempting to understand them better and model them
more efficiently. This is achieved by tackling uncertainties associated with data itself and
easing the identification of an ‘optimal’ model and its parameters. As such, we are looking
forward to see more approaches that consider the “wisdom of the data” towards enhancing
the forecasting performance.
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Abbreviations

The following abbreviations are used in this manuscript:

ARIMA Auto-regressive Integrated Moving Average
ARIMAx Auto-regressive Integrated Moving Average with Exogenous Variables
BMC Bootstrap Model Combination
CBB Circular Block Bootstrap
ETS Exponential Smoothing
ETSx Exponential Smoothing with Exogenous Variables
FOSS Forecasting with Sub-seasonal Series
LPB Linear Process Bootstrap
MAPA Multiple Temporal Aggregation Algorithm
MAPAx Multiple Temporal Aggregation Algorithm with Exogenous Variables
MASE Mean Absolute Scaled Error
MBB Moving Block Bootstrap
MSP Multiple Starting Points
MTA Multiple Temporal Aggregation
SBA Syntetos-Boylan Approximation
SES Simple Exponential Smoothing
sMAPE Mean Absolute Percentage Error
STL Seasonal and Trend decomposition using Loess
THIEF Temporal Hierarchical Forecasting
TSB Teunter-Syntetos-Babai (method)
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