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Abstract: Rainfall event separation is mainly based on the selection of the minimum inter-event time 

(MIET). The traditional approach to determining a suitable MIET for estimating the probability den-

sity functions is often using the frequency histograms. However, this approach cannot avoid arbi-

trariness and subjectivity in selecting the histogram parameters. To overcome the above limitations, 

this study proposes a kernel density estimation (KDE) approach for rainfall event separation and 

characterization at any specific site where the exponential distributions are suitable for characteriz-

ing the rainfall event statistics. Using the standardized procedure provided taking into account the 

Poisson and Kolmogorov–Smirnov (K-S) statistical tests, the optimal pair of the MIET and rainfall 

event volume threshold can be determined. Two climatically different cities, Hangzhou and Jinan 

of China, applying the proposed approach are selected for demonstration purposes. The results 

show that the optimal MIETs determined are 12 h for Hangzhou and 10 h for Jinan while the optimal 

event volume threshold values are 3 mm for both Hangzhou and Jinan. The KDE-based approach 

can facilitate the rainfall statistical representation of the analytical probabilistic models of urban 

drainage/stormwater control facilities. 

Keywords: rainfall event separation; minimum inter-event time; exponential distribution; rainfall 

characteristics; kernel density estimation 

 

1. Introduction 

Rainfall is one of the most important input variables in hydrologic models. Consid-

ering the behavior of rainfall intermittency [1], many hydrologic studies on modelling and 

analysis adopt the use of rainfall events [2]. Event-based modelling techniques are widely 

applied in the urban drainage design which requires the rainfall event statistics as the 

input of the hydrologic model [3]. As rainfall event characteristics are key factors in the 

hydrologic analysis and design of urban drainage system [4], the statistical analysis of 

rainfall events plays an important role in the urban stormwater management [5]. The par-

tition of rainfall series into events is of vital importance for the characterization of rainfall 

events, which may further affect the accuracy of the simulated/derived hydrologic varia-

bles [6] or the sizing of the stormwater control infrastructures [7]. 

The analytical probabilistic approach is a useful method in the urban drainage sys-

tem design [8,9] in addition to the continuous simulation [10,11] and the design storm 

event-based simulation [12,13]. The analytical probabilistic approach can not only inte-

grate the merits of the probabilistic reliability of continuous simulations and simplicity of 

design storm methods [14], but also trade off the model complexity and performance [15]. 

The wide applications of analytical probabilistic models in urban drainage system analy-

sis involve the fields of the frequency analysis of runoff volumes [6] and flood peaks [12], 

evaluation of water quality control performance [8], hydrologic design of the end-of-pipe 

storage facilities [16], sizing of low impact development facilities [9,14,17], etc. All the 

above-described studies employing the analytical probabilistic approach are dependent 
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upon proper rainfall event characterization. Therefore, the approach to rainfall event char-

acterization forms the basis of analytical derivations in the hydrologic modelling. 

The rainfall event characteristics can be obtained by the statistical frequency analysis 

of the individual rainfall events resulting from the separation of the observed continuous 

rainfall series with a selected minimum inter-event time (MIET, also referred to as the 

inter-event time definition in some of the literature) and a threshold of minimum rainfall 

event volume (denoted as rainfall event volume threshold) [18]. These rainfall events are 

usually characterized by rainfall event depth, event duration, and inter-event time [1,16]. 

It has been adopted worldwide that the probability density function (PDF) of an exponen-

tial probability distribution function can favorably fit the observed frequency distribu-

tions of the three characteristics [3,5,19–21]. The exponential PDF has the advantage of 

analytical tractability for derivations compared to other types of distributions [22]. With 

a pair of selected MIET and rainfall event volume threshold values, the rainfall event char-

acterization can be completed, and the fitted PDF can be determined. However, it is diffi-

cult to propose a universal procedural criterion of selecting the appropriate MIET and 

rainfall event volume threshold values for any location of interest. 

The conventional approaches to estimating MIET can be generally classified into 

three types, namely, the autocorrelation analysis, average annual number of events anal-

ysis, and coefficient of variation analysis. Refs. [3,23] proposed similar concepts of auto-

correlation coefficient based on the lag time which represents the temporal spacing be-

tween the observations; the lag time when it causes autocorrelation function sufficiently 

close to zero is then defined as MIET. Refs. [24,25] determined the suitable MIET accord-

ing to the principle that the average annual event number corresponding to the increasing 

value of MIET diminishes and approaches an essentially unchanged number. Ref. [1] as-

sumed that the probability density of MIET follows an exponential distribution, and the 

appropriate MIET can be obtained while the coefficient of variation is equal to one. These 

three approaches have the limitations of not providing mathematically standardized pro-

cedures and lacking reliable statistical tests. In addition, there is no unified way to deter-

mine the rainfall event volume threshold. Since events with a total depth less than hydro-

logical loss do not produce any runoff, it is necessary to apply the rainfall event volume 

threshold in the rainfall event characterization [6,22,26]. Ref. [6] chose a rainfall event vol-

ume threshold of 1 mm and discovered that the exponential PDF fits well with the ob-

served frequency distributions. The recommended values of the rainfall event volume 

threshold that is suitable for the urban environment is usually no greater than 5 mm 

[8,18,22,27]. 

Frequency histogram is the most widely used way to estimate the PDF of a random 

variable. Using the histogram to represent the observed frequency distributions of rainfall 

event characteristics causes inevitable arbitrariness and subjectivity in selecting parame-

ters, especially when dealing with the large sample size such as inter-event time. Non-

parametric statistical test is an effective way to evaluate the goodness-of-fit (GOF) be-

tween the specific theoretical distribution and the observed frequency distribution of rain-

fall event characteristics. Ref. [22] suggested using the Poisson test for the exponentiality 

of inter-event times and using the chi-square GOF test for the exponentiality of rainfall 

event volume and duration. The Kolmogorov–Smirnov (K-S) GOF test [16] and Anderson-

Darling (A-D) GOF test [23] are also widely applied to the exponentiality of rainfall event 

characteristics. The chi-square GOF test has limitations with its parameters that are often 

selected with arbitrariness to some extent because of the high sensitivity of test results to 

the number and width of bins grouped from the sample data [22]. However, the statistical 

tests above based on frequency histograms may result in high rejection rates of the hy-

pothesis because of the arbitrariness in selecting the number of bins and the minimum 

number of samples between bins. 

As an alternative to frequency histogram methods for estimating the PDFs of the 

rainfall data, the kernel density estimation (KDE) is a non-parametric method to estimate 

the PDF of a random variable based on kernels as weights [28,29]. Ref. [30] first came up 
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with the kernel distribution. Ref. [31] proved that the produced KDE is strongly consistent 

with the theoretical PDF of a variable using the integrated absolute error (IAE) as the eval-

uation indicator. Unlike the discrete form of histograms, using KDE can resolve such dis-

continuity problems [32]. Additionally, KDE only requires the use of the sample data itself 

and has the advantage without any prior knowledge or hypothesis of the data distribution 

[33]. The KDE approach has been recently adopted and applied in hydrology fields such 

as flash floods [34], ecological streamflow [35], the stream water quality indicator [36], etc. 

Nevertheless, the KDE approach has not yet been attempted in the use of rainfall event 

separation and characterization. 

To address the above-mentioned limitations, this study aims to propose a kernel-

based approach to achieving the optimal MIET and rainfall event volume threshold for 

rainfall event separation and characterization. The proposed method can overcome the 

shortcomings of a traditional PDF estimation approach using histograms, i.e., empirical 

distribution parameters are often selected with arbitrariness and subjectivity while the 

GOF performance is usually poor for a variable with large sample size. In this paper, a 

kernel-based approach to estimating the exponential distribution of rainfall event charac-

teristics is put forward as well as the procedures to evaluate the K-S GOF performance are 

proposed. The optimal MIET and rainfall event threshold are further determined based 

on the GOF performance indicators. Finally, this study takes two representative and cli-

matically different cities in China (i.e., Hangzhou representing a humid climate and Jinan 

representing a semi-humid climate) as an example to demonstrate the validity and accu-

racy of the KDE-based approach used in rainfall event separation and rainfall characteri-

zation. 

2. Materials and Methods 

2.1. Statistical Representation of Rainfall Events 

Isolated from a historical continuous rainfall series, a series of rainfall event-dry pe-

riod cycles are obtained, and each cycle can be characterized by three characteristics: rain-

fall event volume (v), rainfall event duration (t), and rainfall inter-event time (b) based on 

a pair of selected MIET and rainfall event volume threshold (vt) values. v, t and b can be 

regarded as three random variables with units expressed in mm over the catchment for v 

and in hours for t and b. Using the exponential PDFs to approximate the observed fre-

quency distributions of rainfall event characteristics, these PDFs can be expressed as 

[9,37]: 

( ) , 0v

Vf v e v −= 
 

(1) 

( ) , 0t

Tf t e t −=   (2) 

( ) , 0b

Bf b e b −=   (3) 

where ζ, λ, and ψ are the exponential distribution parameters for rainfall event volume, 

duration, and inter-event time, respectively. The single-parameter exponential distribu-

tion has the simplest form in theoretical distributions to be used to represent rainfall event 

characteristics. The advantage of its analytical tractability and its validity has been recog-

nized in many studies [3,16,38]. 

2.2. Rainfall Event Characterization Using KDE Approach 

2.2.1. KDE for Estimating PDFs of Rainfall Characteristics 

The kernel density estimation is defined as adding a kernel function to every sample 

value, then convoluting all kernel functions to obtain the final estimation [35,39]. 

( )
^

1

1 n
i

i

x x
f x K

nh h=

− 
=  

 
  (4) 
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where n is the total number of samples; h is the window width; xi is the ith independent 

identically distributed sample of the total rainfall sample data x; ( )K   is the kernel func-

tion, which is the symmetry function and the integral is unity where the upper and lower 

limit of integration is positive infinity and negative infinity, respectively, i.e., 

( )d 1K x x

+

−

=  for ( ) 0K x   [39,40]. 

Common kernel functions include Gaussian kernel, Epanechnikov kernel, Exponen-

tial kernel, Cosine kernel, Box kernel, etc., which are all based on the characteristics of 

symmetry and unbiasedness. In this study, the Gaussian kernel function was adopted for 

the kernel function which is expressed as: 

( )
2

2
1

2

u

K eu


=  (5) 

where u is the variable of Gaussian kernel function. It is noted that the kernel types have 

much less influence on density estimation than the choice of window width since the in-

tegrated mean squared error (IMSE) is quite insensitive to the shape of the kernel [41]. The 

optimal choice of h can be obtained by minimizing the asymptotic mean of integrated 

squared error. As a commonly used method to determine the window width, Silverman’s 

rule of thumb replaces the theoretical function (denoted as ft(x) hereinafter) by a normal 

density in which the unknown standard deviation is replaced by the estimator ̂ . When 

the Gaussian function is used, the Silverman’s rule-of-thumb formulae [35,42] was used 

to determine h in this study: 

1

5

ˆ
4

3
h

n


−

 
=  

   

(6) 

where ̂  = standard deviation of the sample. 

2.2.2. Correction for Boundary Bias of KDE 

The increased bias often exists within one bandwidth of the boundary (e.g., in the 

neighborhood of zero for data from exponential distribution) of the sample space. Such 

boundary bias is a consequence of the increasingly asymmetric distribution of the random 

variable as one approaches the boundary [28]. Data reflection is a method of bias correc-

tion by adding data points outside the boundary so as to expand the data set. Since the 

rainfall event characteristics are all non-negative values, a boundary bias issue exists 

when dealing with the sample data of rainfall event characteristics (x1, x2, …, xn) using 

KDE. Therefore, the data reflection approach is applicable to correct the boundary bias. 

The common practice of the data reflection technique is to mirror the data around the 

boundary. Given a new data set { 1 1 2 2, , , , , ,n nx x x x x x− −  − }, a new reflection KDE in-

corporating the mirrored data (denoted as ( )
^

nf x ) can be expressed as: 

( )
^

1 1

1 n n
i i

n

i i

x x x x
f x K K

nh h h= =

 − − −   
= +    

    
   (7) 

The mean square error (MSE) between fn(x) and ft(x) is defined as

( ) ( )
2

^ ^

n tE f x f x
  

−  
   

 where E[⋅] represents the mathematic expectation function. It is 

found that ( ) ( )
2

^ ^

n tE f x f x
  

−  
   

 approaches zero when the term of nh approaches posi-

tive infinity, which demonstrates that fn(x) is close to ft(x) and proves the feasibility of 

reflection method [43,44]. 
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2.2.3. KDE for Estimating PDFs of Rainfall Characteristics 

K-S statistical test was used to evaluate the GOF between the KDE-induced PDF and 

the theoretical exponential distribution. In this study, the Simpson’s Rule Formula was 

applied to calculate the incremental value of the cumulative distribution function (CDF) 

by integrating the KDE-induced PDF ( )
^

nf x  with x in the range between a and b where 

the range is divided into a number of 2ns intervals with equal width [45–47]. Using Simp-

son’s Rule Formula, the integral of the PDF ( )
^

nf x  with x in the range between a and b 

obtained is expressed as: 

( ) ( ) ( ) ( ) ( )
1^ ^ ^ ^ ^

2 1 2

1 1

4 2
3

s sn n
b

s
n n n k n k n

a
k k

h
f x dx f a f x f f bx

−

−

= =

 
 + + + 

 
   (8) 

where hs = (b–a)/2ns, in which hs is the width of the interval and ns is a positive integer. The 

CDF of the KDE-induced PDF ( )nf x


 with a specific value of x (denoted as ( )nF x


) can 

be calculated using Equation (8). 

The statistical test methods for rainfall event characteristics and criterion for selecting 

the optimal MIET are described below: 

(1) Poisson Statistical Test: The exponential distribution assumption for inter-event 

times between rainfall events indicates that the occurrence of rainfall events follows a 

Poisson process approximately when b is much longer than t [1]. As a result, the annual 

number of rainfall events (denoted as 𝜃) is Poisson distributed as reasonably assumed. 

Using the Poisson distribution test technique as detailed in Ref. [27], the ratio rp = 

Var(θ)/θ is defined as the Poisson test statistic. When specifying different MIET values, 

the numbers of annual rainfall events (denoted as N) change. rp can be further calculated 

based on the transformed test statistic (N–1)rp that follows a chi-square distribution with 

(N–1) degrees of freedom and a specified level of significance α [48,49]. 

(2) K-S GOF Test: As described in Equations (1)–(3), rainfall event characteristics v, t 

and b are assumed to follow exponential distributions. This study selected the Kolmogo-

rov–Smirnov (K-S) test for testing the goodness-of-fit (GOF) of exponential distributions 

for v, t, and b. In the K-S test, the maximum deviation between the theoretical CDF and 

the observational cumulative distribution is determined. A null hypothesis is made that 

the GOF between the theoretical exponential distribution and the empirical distribution 

is favorable. With a specified significance level α, the decision of acceptance or rejection 

can thus be made [50]. 

(3) Criterion for Selecting the Optimal MIET: The rainfall event volume v is the pre-

dominant role among the three rainfall event characteristics from a perspective of water 

quantity in urban stormwater management; therefore, the relative error (denoted as Rr) is 

proposed to evaluate the agreement between the KDE-induced CDF and theoretical ex-

ponential distribution for v. For a pair of selected MIET and vt, Rr can be calculated using 

Equation (9). 

( )

( )

^

max ( )

100%
n

r

F v F v

R
F v

−

=   (9) 

where 
^

( )nF v  is the KDE-based CDF for v; ( )( ) 1 expF v v= − − , represents the CDF value of 

theoretical exponential distribution; ( )F v  corresponds to the theoretical exponential 

CDF when the maximum absolute difference between the KDE-based CDF and the theo-

retical exponential CDF for v is achieved at v*. For 24 combinations of MIET and vt, their 

corresponding Rr can be calculated, respectively. The optimal combination of MIET and 

vt can be determined when the minimum Rr is achieved. 
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2.2.4. Procedures of Rainfall Event Separation and Characterization Based on KDE 

Based on the abovementioned statistical tests approach and optimization criterion, 

the standardized procedures of rainfall event separation and characterization for histori-

cal hourly rainfall time series are recommended as follows: 

(1) Selection of MIET and vt: pairs of suitable values for the minimum inter-event 

time (MIET) (from 6–12 h) and the volume threshold vt (from 0–5 mm) are selected first; 

(2) Rainfall event separation: secondly, with any pair of selected MIET and vt, the 

hourly rainfall time series is divided into several discrete rainfall events following the rule 

that b is smaller than MIET, as well as the rule that the small rainfall events with a volume 

less than the threshold vt should be removed; the three time series of the corresponding 

rainfall event characteristics, i.e., rainfall event volume v, rainfall event duration t, and 

inter-event time b, are then obtained; 

(3) Calculation of the KDE-based PDF: with a selected pair of MIET and vt, KDE is 

applied to obtain the PDFs for each variable of v, t, and b based on the Gaussian kernel 

function and Silverman’s rule-of-thumb formulae; 

(4) Correction of boundary bias: boundary bias correction using the reflection 

method is performed for the KDE-based PDFs of three characteristics in all cases of MIET-

vt combinations; 

(5) Calculation of the KDE-based CDF: Simpson’s rule is used to integrate the PDF 

after boundary bias correction for all combinations of the three characteristics to obtain 

CDF; 

(6) Poisson test for the annual number of events: the Poisson test as described in Sec-

tion 2.2.3 is used to test the annual number of events θ; the rainfall event separation results 

for specific combinations of MIET and vt are excluded if the corresponding Poisson test 

results are not acceptable; 

(7) K-S statistical test: the Kolmogorov–Smirnov (K-S) test was used to test v, t, and 

b, respectively; the rainfall event separation results for specific combinations of MIET and 

vt are further excluded if the corresponding K-S statistical test results are not acceptable; 

(8) Determination of the optimal combination of MIET and vt: for the separated rain-

fall events with all acceptable pairs of selected MIET and vt after finishing the step (8), 

using Equation (9) to calculate Rr for the corresponding CDF of v; the optimal pair of MIET 

and vt is determined when the minimum value of the calculated Rr among all pairs is 

achieved; then the combination of MIET and vt corresponding to for the minimum Rr is 

selected as the optimal one; 

(9) Rainfall event characterization: the distribution parameters in Equations (1)–(3) 

are finally obtained to calculate the mean values of three rainfall event characteristics (do-

nated as v t b  respectively) with the optimal pair of MIET and vt determined in step 

(8). 

Performing the procedures above for rainfall event separation and characterization 

can provide a standardized approach from a perspective of statistics as an alternative to 

the conventional histogram approach. Figure 1 shows the flow chart of the methodology 

for rainfall event separation and characterization. 
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Figure 1. Flow chart of the methodology. 

2.3. Study Area and Data 

Two climatically represented regions in China were selected as the case study areas. 

They are Jinan in Shandong Province representing a semi-humid climate, and Hangzhou 

in Zhejiang Province representing a humid climate, respectively. The historical hourly 

rainfall data were retrieved from China Meteorological Data Service Centre 

(https://data.cma.cn, accessed on 31 December 2022). The geographic and climatic infor-

mation of the rain gauge stations for the two cities are shown in Table 1. It is noted that 

the ranges of years and months for the two stations are not exactly the same due to the 

limited hourly rainfall data collected from the database as well as the data quality control. 

Additionally, winter months are usually excluded in the rainfall event analysis for the 

purpose of stormwater management [51]. The results of rainfall event separation and char-

acterization obtained using the proposed method in this study can be easily updated once 

more recent and high-quality rainfall data are available in future. The location map of the 

two case study areas is displayed in Figure 2. 

Table 1. Geographic and climatic information of the rain gauge stations for two case study areas. 

Station 
Station 

Number 
Latitude  Longitude 

Range of  

Years 

Range of  

Months 

Average Annual 

Precipitation 

(mm) 

Climate 

Condition 

Jinan 54,823 N36°60′ E117°00′ 1959–2015 May.–Oct. 688.5 Semi-humid 

Hangzhou 58,457 N30°23′ E120°17′ 1955–2015 Apr.–Oct. 1510.0 Humid 

Note: the average annual precipitation is obtained from China Statistical Yearbook (2007–2016). Hu-

mid climate area is defined based on the annual precipitation > 800 mm while semi-humid area is 

usually associated with the annual precipitation ranging from 400 to 800 mm [52,53]. 

https://data.cma.cn/
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Figure 2. Location map of the two case study areas. 

3. Case Study of the Rainfall Event Separation 

3.1. Parameters for Rainfall Event Separation 

In this study, the typical values of MIET are selected as 6 h, 8 h, 10 h and 12 h while 

those of vt are 0, 1, 2, 3, 4 and 5 mm as suggested in the reasonable ranges of MIET (6–12 

h) and threshold vt (0–5 mm) for typical urban catchments. The total combination number 

of different MIET and vt values is 24 for each study area. 

In processing the hourly rainfall data, three series of v, t, and b are obtained with a 

selected pair of MIET and vt combination values. More specifically, if the dry time between 

two adjacent rainfall episodes is less than the selected MIET, these two rainfall episodes 

are treated as if they belong to the same rainfall event, and they should be further merged 

into one rainfall episode; otherwise, they are identified as two individual and consecutive 

rainfall events. Additionally, when the volume of the rainfall episode (v) is no larger than 

the selected threshold value (vt), the rainfall volume of this episode should be removed 

and adjusted to be zero and the duration of this episode will be appended to the inter-

event time between the current and the previous rainfall episodes. In such circumstances, 

the redefined rainfall event is characterized by an event volume and an event duration 

that are, respectively, equal to those of the previous rainfall episode. However, the inter-

event time of the redefined rainfall event should be equal to the original inter-event time 

between the current and the previous rainfall episodes with the addition to the duration 

of the current rainfall episode. 

Table 2 presents the total numbers of rainfall events obtained using different pairs of 

MIET and vt for event separation at Jinan and Hangzhou. It is worth noting from Table 2 

that the numbers of rainfall event volume v, rainfall event duration t, and rainfall inter-

event time b are equal with the same combination of MIET and vt, and the decrease in the 

number of rainfall events is observed with the increase in either MIET or vt. The rainfall 

characterization results (i.e., vtb) for all possible pairs of MIET or vt before performing 

statistical tests are shown in Table 3. It is found that all the mean values of three event 

characteristics decrease with the increase in either MIET or vt from Table 3. 
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Table 2. Total number of rainfall events with different pairs of MIET and vt for Jinan and Hang-

zhou. 

Hangzhou  Jinan 

        MIET (h)  

vt (mm) 
6 8 10 12 

        MIET (h)  

vt (mm) 
6 8 10 12 

0 5769 5132 4628 4172 0 2567 2408 2290 2180 

1 3854 3525 3234 2955 1 1860 1797 1744 1692 

2 3276 3036 2807 2590 2 1606 1562 1521 1490 

3 2893 2695 2517 2333 3 1453 1419 1390 1360 

4 2602 2444 2301 2147 4 1326 1301 1276 1248 

5 2364 2239 2129 2000 5 1227 1207 1189 1164 

Table 3. Rainfall event characteristics with different pairs of MIET and vt for Jinan and Hangzhou. 

  Hangzhou Jinan 

MIET (h)-vt (mm) v (mm) t (h) b (h) v (mm) t (h) b (h) 

6-0 10.48 8.48 44.66 13.21 7.48 87.18 

6-1 15.49 11.64 66.70 18.07 9.49 117.23 

6-2 17.95 12.88 78.69 20.69 10.32 135.80 

6-3 20.00 13.85 88.60 22.61 10.84 148.47 

6-4 21.84 14.71 98.92 24.43 11.28 161.50 

6-5 23.58 15.45 109.51 26.04 11.66 174.30 

8-0 11.78 10.34 49.41 14.08 8.40 92.51 

8-1 16.96 14.03 71.63 18.73 10.45 120.71 

8-2 19.45 15.50 83.33 21.31 11.35 138.90 

8-3 21.60 16.68 93.32 23.21 11.93 151.20 

8-4 23.45 17.67 103.35 24.99 12.40 163.71 

8-5 25.19 18.56 113.41 26.59 12.83 176.23 

10-0 13.06 12.39 53.87 14.81 9.27 96.85 

10-1 18.51 16.71 76.75 19.31 11.42 123.74 

10-2 21.10 18.43 88.46 21.92 12.44 141.87 

10-3 23.24 19.83 98.04 23.74 13.05 154.12 

10-4 25.09 20.98 107.67 25.55 13.51 166.07 

10-5 26.76 21.93 116.89 27.09 13.97 177.97 

12-0 14.49 14.89 58.62 15.56 10.26 101.22 

12-1 20.29 20.03 82.27 19.91 12.51 126.82 

12-2 22.94 22.03 93.90 22.41 13.56 144.14 

12-3 25.19 23.67 103.53 24.31 14.23 156.64 

12-4 27.06 25.01 112.91 26.18 14.73 169.17 

12-5 28.72 26.12 121.73 27.74 15.26 180.88 

3.2. Results and Discussion 

3.2.1. Poisson Test for the Annual Number of Events θ 

For each pair of MIET (6–12 h) and vt (0–5 mm), Poisson tests for the annual number 

of events were performed for the two study cities. As shown in Table 4, with a level of 

significance α = 0.1, the Poisson test results for the annual number of events θ for 22 out 

of 24 cases with pairs of MIET and vt at Hangzhou indicate the acceptance of the hypoth-

esis that θ follows the Poisson distribution. In the meanwhile, the rp of Jinan was found to 

lie within the interval between 0.71 and 1.33 of critical values in all 24 cases with pairs of 

MIET and vt, demonstrating that the hypothesis cannot be rejected. It is worth noting that 

while vt is too large or too small, the rejection of the Poisson distribution hypothesis may 

occur. 
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Table 4. Results of Poisson Tests for Hangzhou and Jinan—Annual Number of Rainfall Events. 

  Hangzhou Jinan 

MIET (h)-vt (mm) 
Critical Value of rp 

Ranges (α = 0.10) 
Resulting rp Decision 

Critical Value of rp 

Ranges (α = 0.10) 
Resulting rp Decision 

6-0 0.72–1.32 1.54 Reject 0.71–1.33 1.25 Accept 

6-1 0.72–1.32 1.25 Accept 0.71–1.33 0.86 Accept 

6-2 0.72–1.32 1.29 Accept 0.71–1.33 0.97 Accept 

6-3 0.72–1.32 1.25 Accept 0.71–1.33 1.12 Accept 

6-4 0.72–1.32 1.22 Accept 0.71–1.33 1.08 Accept 

6-5 0.72–1.32 1.16 Accept 0.71–1.33 1.21 Accept 

8-0 0.72–1.32 1.44 Reject 0.71–1.33 1.01 Accept 

8-1 0.72–1.32 1.15 Accept 0.71–1.33 0.83 Accept 

8-2 0.72–1.32 1.13 Accept 0.71–1.33 0.95 Accept 

8-3 0.72–1.32 1.17 Accept 0.71–1.33 1.09 Accept 

8-4 0.72–1.32 1.11 Accept 0.71–1.33 1.06 Accept 

8-5 0.72–1.32 1.07 Accept 0.71–1.33 1.16 Accept 

10-0 0.72–1.32 1.29 Accept 0.71–1.33 0.93 Accept 

10-1 0.72–1.32 1.01 Accept 0.71–1.33 0.79 Accept 

10-2 0.72–1.32 0.94 Accept 0.71–1.33 0.93 Accept 

10-3 0.72–1.32 0.98 Accept 0.71–1.33 1.02 Accept 

10-4 0.72–1.32 0.98 Accept 0.71–1.33 0.98 Accept 

10-5 0.72–1.32 0.90 Accept 0.71–1.33 1.10 Accept 

12-0 0.72–1.32 1.15 Accept 0.71–1.33 0.87 Accept 

12-1 0.72–1.32 0.82 Accept 0.71–1.33 0.76 Accept 

12-2 0.72–1.32 0.73 Accept 0.71–1.33 0.84 Accept 

12-3 0.72–1.32 0.75 Accept 0.71–1.33 0.93 Accept 

12-4 0.72–1.32 0.74 Accept 0.71–1.33 0.86 Accept 

12-5 0.72–1.32 0.70 Reject 0.71–1.33 0.95 Accept 

3.2.2. GOF Test of Exponentiality Using KDE 

GOF tests were performed using KDE with all pairs of MIET and vt for Jinan and 

Hangzhou. Silverman’s rule of thumb was used for choosing the window width and 

Gaussian kernel function is used for the kernel function. The algorithms of the convolu-

tion of KDE and the data reflection (i.e., mirror the data) for correcting the boundary bias 

were coded in Python. Each pair of MIET and vt uses the same window width method, 

kernel function type, and boundary correction method to estimate the kernel density. As 

shown in Figure 3, the PDF of the rainfall event sample data obtained by KDE fits theo-

retically PDF very well overall, although slight downward trends near the origin are ob-

served due to the formula property of kernel density. 
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Figure 3. Comparison of the KDE-based PDFs and theoretical exponential PDFs of rainfall event 

volume v, rainfall event duration t, rainfall inter-event time b: (a–c). Hangzhou (MIET = 12 h, vt = 3 

mm); (d–f). Jinan (MIET = 10 h, vt = 3 mm). 

Figure 4 shows the KDE-derived PDF and the theoretical exponential PDF for rainfall 

event volume v with different MIETs and fixed vt of 2 mm at Jinan. It is found in Figure 4 

that both the PDFs obtained from KDE and theoretical values present a decreasing trench 

with the increase in MIET when v is very small. The maximum values and the PDF curve 

shape fit favorably between the PDFs obtained from KDE and theoretical PDFs from vis-

ual observation. It is noted that the PDFs estimated by KDE have a larger variation com-

pared to the theoretical PDFs for v near the origin. 

 

Figure 4. (a) The KDE-based PDFs for rainfall event volume v with different MIETs and fixed vt = 2 

mm at Jinan; (b) the theoretical exponential PDFs of rainfall event volume v with different MIETs 

and fixed vt = 2 mm at Jinan. 

Apart from visual observation of the GOF, statistical GOF tests were further per-

formed. The PDFs of three event characteristics (v, t, b) of 24 pairs of MIET and vt for Jinan 

and Hangzhou were estimated by KDE using Equation (7). The CDFs were further 
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calculated using Equation (8) and K-S test was performed accordingly. It is noted that the 

pair of MIET and vt is accepted when the resulting v, t, and b all pass their corresponding 

K-S tests. The K-S statistical test results for v, t, and b at Hangzhou and Jian are displayed in 

Tables 5 and 6, respectively. As shown in Tables 5 and 6, there are 13 out of 24 pairs of 

MIET and vt that are accepted in Jinan, while 5 out of 24 of those are accepted in Hang-

zhou. It is, generally, found that the pass rates of K-S statistical tests for v is relatively 

lower than that for t and b. The minimum K-S statistics achieved among the pairs of MIET 

and vt that passed the K-S test for v under different MIETs for all cases result in equal vt 

values of 3 mm for both Hangzhou and Jinan. This implies that the threshold value vt may 

have a greater effect on the GOF test compared to MIET. 

Table 5. Results of K-S statistical tests for Hangzhou. 

  Rainfall Event Volume v Rainfall Event Duration t Rainfall Inter-Event Time b 

MIET (h)- vt (mm) K-S Statistic 
Critical Value  

(α = 0.10) 
K-S Statistic 

Critical Value  

(α = 0.10) 
K-S Statistic 

Critical Value  

(α = 0.10) 

6-0 0.213 0.066 0.107 0.102 0.155 0.209 

6-1 0.098 0.066 0.044 0.102 0.096 0.188 

6-2 0.069 0.066 0.033 0.102 0.078 0.188 

6-3 a 0.058 0.066 0.031 0.102 0.073 0.174 

6-4 0.081 0.066 0.033 0.101 0.064 0.174 

6-5 0.108 0.066 0.032 0.102 0.054 0.174 

8-0 0.210 0.066 0.132 0.100 0.124 0.209 

8-1 0.099 0.066 0.052 0.100 0.069 0.188 

8-2 0.071 0.066 0.033 0.100 0.063 0.186 

8-3 a 0.058 0.066 0.019 0.099 0.056 0.176 

8-4 0.069 0.066 0.016 0.099 0.048 0.174 

8-5 0.093 0.066 0.017 0.098 0.040 0.174 

10-0 0.202 0.059 0.143 0.086 0.087 0.209 

10-1 0.097 0.059 0.055 0.086 0.055 0.188 

10-2 0.068 0.059 0.033 0.085 0.047 0.186 

10-3 a 0.056 0.059 0.017 0.085 0.040 0.174 

10-4 0.060 0.059 0.013 0.085 0.031 0.174 

10-5 0.084 0.059 0.017 0.085 0.026 0.174 

12-0 0.198 0.059 0.151 0.086 0.076 0.209 

12-1 0.092 0.059 0.062 0.085 0.037 0.188 

12-2 0.063 0.059 0.038 0.085 0.027 0.186 

12-3 a 0.051 0.059 0.021 0.084 0.021 0.174 

12-4 a 0.055 0.059 0.020 0.084 0.020 0.174 

12-5 0.079 0.059 0.026 0.084 0.017 0.174 

Note: a The pair of MIET and vt with acceptable K-S test results hypothesizing that the three rainfall 

event characteristics (v, t, b) follow the exponential distribution. 

Table 6. Results of K-S tests for Jinan. 

  Rainfall Event Volume v Rainfall Event Duration t Rainfall Inter-Event Time b 

MIET (h)- vt (mm) KS Statistic 
Critical Value (α 

= 0.10) 
KS statistic 

Critical Value (α 

= 0.10) 
KS statistic 

Critical Value (α 

= 0.10) 

6-0 0.179 0.071 0.049 0.125 0.056 0.188 

6-1 0.089 0.071 0.042 0.124 0.025 0.171 

6-2 a 0.061 0.071 0.052 0.123 0.029 0.169 

6-3 a 0.051 0.071 0.055 0.123 0.026 0.169 

6-4 a 0.058 0.071 0.055 0.123 0.028 0.151 
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6-5 0.079 0.071 0.059 0.123 0.026 0.150 

8-0 0.168 0.071 0.047 0.119 0.039 0.188 

8-1 0.087 0.071 0.032 0.118 0.018 0.171 

8-2 a 0.061 0.071 0.043 0.118 0.027 0.169 

8-3 a 0.051 0.071 0.049 0.117 0.025 0.169 

8-4 a 0.054 0.071 0.052 0.117 0.026 0.155 

8-5 0.075 0.071 0.055 0.117 0.023 0.150 

10-0 0.160 0.071 0.051 0.118 0.030 0.188 

10-1 0.084 0.071 0.024 0.118 0.015 0.171 

10-2 a 0.060 0.071 0.037 0.117 0.025 0.169 

10-3 a 0.049 0.071 0.044 0.117 0.023 0.169 

10-4 a 0.052 0.071 0.049 0.117 0.024 0.155 

10-5 0.071 0.071 0.053 0.117 0.021 0.150 

12-0 0.154 0.071 0.058 0.106 0.022 0.188 

12-1 0.086 0.071 0.016 0.105 0.024 0.171 

12-2 a 0.062 0.071 0.028 0.105 0.022 0.169 

12-3 a 0.050 0.071 0.035 0.105 0.022 0.169 

12-4 a 0.048 0.071 0.041 0.104 0.023 0.155 

12-5 a 0.067 0.071 0.047 0.104 0.020 0.150 

Note: a The pair of MIET and vt with acceptable K-S test results hypothesizing that the three rainfall 

event characteristics (v, t, b) follow the exponential distribution. 

3.2.3. Optimal MIET, vt and Rainfall Event Characterization 

After passing the Poisson test and K-S tests, 5 and 13 acceptable pairs of MIET and vt 

for Hangzhou and Jinan are determined, respectively. The results of the corresponding Rr 

of these acceptable pairs of MIET and vt calculated using Equation (9) for the two cities 

are shown in Table 7. It is observed in Table 7 that the minimum values of Rr for Hangzhou 

and Jinan are 8.84% and 8.97%, respectively, with the corresponding pairs of MIET and vt 

are (12 h-3 mm) and (10 h-3 mm), respectively. Therefore, the optimal MIETs determined 

are 12 h for Hangzhou and 10 h for Jinan whereas the optimal vt values are 3 mm for both 

Hangzhou and Jinan. With the selected optimal pair of MIET and vt, the CDFs obtained 

from KDE and the theoretical exponential CDFs for v, t and b are plotted as shown in 

Figure 5. The excellent agreements between the two CDFs for each rainfall characteristic 

are observed from Figure 5, which further demonstrates the validity of the selected opti-

mal results. The rainfall event characterization can be finally obtained by calculating the 

mean values of the three event characteristics with the optimal pairs of MIET and vt for 

Hangzhou and Jinan. The rainfall event characterization results are: v = 25.19 

mm t = 23.67 h b = 103.53 h for Hangzhou and v = 23.74 mm t = 13.05 h b  =  

154.12 h for Jinan; the corresponding exponential distribution parameters are ζ = 0.0397 

mm−1, λ = 0.0422 h−1, and ψ = 0.00966 h−1 for Hangzhou and ζ = 0.0421 mm−1, λ = 0.0766 h−1, 

and ψ = 0.00649 h−1 for Jinan. 

It is found that there is a paucity of literature on the rainfall event separation based 

on historical hourly rainfall data in China. Ref. [21] demonstrated that the rainfall event 

characteristics at Guangzhou, China follow exponential distributions with a MIET of 12 h 

when using the histogram analysis. Ref. [54] found that the MIET of 10 h is appropriate 

for most of 18 stations in the eastern monsoon region of China when adopting the expo-

nential distribution assumption for the inter-event time. The optimal MIET values deter-

mined for Hangzhou and Jinan in this study are close to the above-mentioned findings, 

demonstrating that the results are reasonable. It is also worth noting that the appropriate-

ness and accuracy of the distribution parameters of the three rainfall event characteristics 

obtained based on the optimal MIET and event volume threshold should be further veri-

fied in the hydrologic analysis and design of stormwater control facilities in future. 
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Table 7. The Rr results for Hangzhou and Jinan. 

Hangzhou Jinan 

MIET (h)-vt (mm)  Rr (%) MIET (h)-vt (mm)  Rr (%) 

12-3 8.84 10-3 8.97 

10-3 9.67 8-3 9.08 

6-3 9.77 6-3 9.20 

8-3 10.19 12-3 9.29 

12-4 32.54 6-2 11.88 

    8-2 12.09 

    10-2 12.13 

    12-2 12.75 
  12-4 27.35 

    10-4 29.21 

    8-4 30.04 

    6-4 31.24 

    12-5 34.68 

 

Figure 5. Comparison of CDF of KDE and theoretical exponential CDF of rainfall event volume v, 

rainfall event duration t, rainfall inter-event time b for the optimal MIET and rainfall event volume 

threshold: (a–c) Hangzhou (MIET = 12 h, vt = 3 mm); (d–f) Jinan (MIET = 10 h, vt = 3 mm). 

4. Summary and Conclusions 

This study proposed a kernel density estimation (KDE) approach to estimating the 

probability density functions (PDFs) of three rainfall event characteristics including rain-

fall event volume, event duration, and inter-event time. The KDE-based approach associ-

ated with the Poisson and Kolmogorov–Smirnov (K-S) statistical tests were further per-

formed to determine the optimal pair of minimum inter-event time (MIET) and rainfall 

event volume threshold (vt), which are two key parameters for rainfall event separation 

and characterization. A detailed standardized procedure was also provided for rainfall 

event separation and characterization at any specific site where the exponential 
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distribution is suitable for characterizing the rainfall event statistics. Taking two climati-

cally different cities, Hangzhou and Jinan of China, for a demonstration example, the val-

idation and application of the proposed KDE-based approach were investigated for rain-

fall event separation and characterization. The results show that the optimal MIETs deter-

mined are 12 h for Hangzhou and 10 h for Jinan while the optimal vt values are 3 mm for 

both Hangzhou and Jinan. The corresponding distribution parameters of three rainfall 

event characteristics for two cities are obtained as well. 

The proposed KDE-based approach can be used for the exponential test of the rainfall 

event characteristics and as a method to partition hourly rainfall time series into consecu-

tive events. As an alternative to the traditional PDF estimation approach using histo-

grams, the proposed method can achieve favorable GOF test results and obtain the opti-

mal MIET and event volume threshold while overcoming the shortcomings of histogram 

approach. The KDE-based approach to rainfall event separation and characterization can 

form the model derivation basis for the analytical probabilistic models of urban drain-

age/stormwater control facilities. 
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