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High-order dynamic localization and tunable
temporal cloaking in ac-electric-field driven
synthetic lattices

Shulin Wang1,2,6, Chengzhi Qin1,2,6, Weiwei Liu 1,2,6, Bing Wang 1,2 ,
Feng Zhou1,2, Han Ye1,2, Lange Zhao1,2, Jianji Dong1,2, Xinliang Zhang1,2,
Stefano Longhi 3,4 & Peixiang Lu 1,2,5

Dynamic localization (DL) of photons, i.e., the light-motion cancellation effect
arising from lattice’s quasi-energy band collapse under a synthetic ac-electric-
field, provides a powerful and alternativemechanism to Anderson localization
for coherent light confinement. So far only low-order DLs, corresponding to
weak ac-fields, have been demonstrated using curved-waveguide lattices
where the waveguide’s bending curvature plays the role of ac-field as required
in original Dunlap-Kenkremodel of DL. However, the inevitable bending losses
pose a severe limitation for the observation of high-order DL. Here, we break
the weak-field limitation by transferring lattice concepts from spatial to syn-
thetic time dimensions using fiber-loop circuits and observe up to fifth-order
DL. We find that high-order DLs possess superior localization and robustness
against random noise over lower-order ones. As an exciting application, by
judiciously combining low- and high-order DLs, we demonstrate a temporal
cloaking scheme with flexible tunability both for cloak’s window size and
opening time. Our work pushes DL towards high-order regimes using
synthetic-lattice schemes, which may find potential applications in robust
signal transmission, protection, processing, and cloaking.

Application of anelectricfield in solids gives rise to a series of coherent
transport effects for electrons, ranging from dc electric-field driven
Bloch oscillations1,2 and Landau-Zener tunneling3,4 to ac electric-field
driven dynamic localization (DL)5–7. DL refers to a wave-motion can-
celation phenomenon of an electron wave packet subject to an ac
electricfield at somemagic values of the amplitude-to-frequency ratio.
Such a localization mechanism stems from the quasi-energy band
collapse of the ac-driven lattice6 and provides an efficient approach for
coherent light confinement, as highly alternative to the well-known
Anderson localization that relies on disordered or quasi-periodic
potentials8–10. The simplest case of DL was introduced by Dunlap and

Kenkre more than three decades ago for an electron hopping on a
tight-binding lattice with nearest-neighbor hopping driven by an har-
monic electric field5, where quasi-energy band collapse is achieved6 as
the field’s amplitude-to-frequency ratio takes a series of Bessel func-
tion’s roots, which are termed as different orders of DLs. The curved
optical waveguide array system has provided a powerful setting to
realize the Dunlap-Kenkremodel of DL for photons11–15, as well as other
DL regimes16–18. Likewise, DL can arise in time-modulated resonator
arrays19,20, with applications in optical switching, filtering, and beam
reshaping. However, so far only the first and secondorders of DLs have
been experimentally achieved in the curved waveguide array setup11,12,
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limited by the considerable bending losses in highly curved arrays. To
push DLs to high-order regimes may be desirable to enhance wave-
packet localization strength so as to increase light-matter interaction.
Furthermore, this localization enhancement may also facilitate the
robust transport of wave packets against external noise.

Recently, the concepts of synthetic dimensions have emerged as
ideal platforms for exploring various light transport behaviors, such as
in time21–32, frequency33–38, and orbital angular momentum39–42 spaces.
Benefit from their intrinsic conveniences of control with external
modulations, numerous fundamental physical concepts that are diffi-
cult to demonstrate in spatial lattices have been realized in synthetic
dimensions, ranging from parity-time symmetry23, the topological
invariant’s measurement41, topological band windings36–38 to non-
Hermitian skin effect30, and topological phase transitions in Floquet
quasi-crystals32. Of all synthetic-dimension lattices, one promising
platform is the temporal mesh lattice which can be constructed by
mapping conceptually from two coupled fiber loops22–32. Thanks to the
convenient and flexible introduction of modulations within the fiber
loops, effective gauge fields can be readily created in the lattices,
which give rise to various intriguing light transport phenomena, such
as Bloch oscillations22,25, Berry-curvature induced anomalous
transport27, Anderson localization26,31, topological phase transitions
and Hofstadter butterfly32. However, it remains fully unclear whether
such discrete-time photonic quantum walks can realize the Dunlap-
Kenkre model of DL, thus providing a fertile setting to demonstrate
high-order DL regimes that have been so far elusive.

In this work, we show that discrete-time photonic quantum
walks in synthetic temporal mesh lattices can indeed realize the
continuous Dunlap-Kenkre model of DL, and report on the obser-
vations of high-order DLs under artificial ac electric fields of strong
amplitude. We show that the width of lattice’s quasi-energy band
structure is controlled by a synthetic ac field, which collapses as the
field’s amplitude is tuned to a series of Bessel function’s roots,
corresponding to various orders of DLs. In experiments, we observe
up to fifth-order DL and demonstrate that higher-order DLs possess
smaller mean-square displacements during propagation and
stronger robustness against stochastic noises than lower-order
ones. However, contrary to the continuous Dunlap-Kenkre model,
in the discrete-time quantum walks band flattening is not found
at very high modulation amplitudes, where delocalization is
ubiquitous. By combining the less-localized first-order and highly-
localized fifth-order DLs, we propose a fully-reconfigurable
temporal cloaking scheme where the first- and fifth-order DLs
contribute to the opening and closing of the temporal cloak. We
demonstrate that both the width and opening time of cloak can be
freely tuned to fit the protection requirements of temporal events.
The study on higher-order DLs and tunable temporal cloaking may
find applications in robust signal transmission, processing, and
temporal waveform reshaping.

Results
Theoretical model of high-order DLs
A synthetic temporal lattice can be created by connecting two
coupled fiber loops with a tiny length difference, as illustrated in the
inset of Fig. 1a. The length difference can induce a relative time
delay for pulse traveling in the two loops, forming a pulse train that
can be mapped to a discretized temporal lattice22–32. The lattice site
n labels the transverse pulse position while the step m represents
the pulse circulation number in the two loops. After each circula-
tion, the pulse in the long loop obtains a time delay, corresponding
to the hopping from n to n + 1. While in the short loop it obtains a
time advance, resulting in the hopping from n to n − 1 sites. To
create an additional ac electric field within the temporal lattice, we
can apply opposite phase modulations of ±ϕ(m) in the two fiber
loops. Here we consider the simplest case of sinusoidally varying

phase modulation ϕ(m) = Δϕcos(ωm +φ), where Δϕ, ω, and φ
represent the modulation amplitude, frequency, and initial phase,
respectively. Then a pulse will acquire a phase shift of –ϕ(m) from
site n to n − 1 and an opposite phase of ϕ(m) when travelling from n
to n + 1. Such a direction-dependent phase factor is a photonic
analogue of Peierls phase, which corresponds to an effective vector
potential Aeff =ϕ(m) applied in the temporal lattice34,43,44. Note that
the vector potential itself is harmonically oscillating in time, it can
lead to an ac electric field for photons33, i.e., Eeff(m) = −dAeff/
dm =ωΔϕsin(ωm +φ).

Under the action of the ac electric field, the pulse evolution in the
temporal lattice can be described by the following equation

um
n = cosðβÞum�1

n+ 1 + i sinðβÞvm�1
n+ 1

� �
e�iϕðmÞ

vmn = i sinðβÞum�1
n�1 + cosðβÞvm�1

n�1

� �
eiϕðmÞ

(

, ð1Þ

where um
n and vmn denote the pulse amplitudes in short and long loops

at lattice site n and time step m. The power splitting ratio of the
directional coupler is defined as sin2(β)/cos2(β), with β∈[0, π/2]. Con-
sider the eigen Bloch mode supported by the temporal lattice

∣ψi= um
n

vmn

� �
=

U

V

� �
eiQneiθm, ð2Þ

where (U,V)T denotes the eigenvector,Q and θ are the transverse Bloch
momentum and longitudinal propagation constant, respectively.
Substituting Eq. (2) into Eq. (1), we can obtain the instantaneous band
structure of the temporal lattice (see Supplementary Note 1)

θ ± ½QðmÞ�=∓cosðβÞcos½QðmÞ�± π
2
, ð3Þ

where Q(m) =Q‒ϕ(m) is the time-dependent Bloch momentum, “±”
denote the upper and lower branches of band structure. As shown in
the band structure of Fig. 1b, the application of an ac electric field can
induce the periodic shifting of Bloch momentum within a region of
range 2Δϕ in the Brillouin zone. To obtain the averaging effect, we
should ensure the adiabaticity and keep the continuous-time approx-
imation valid by choosing a slow modulation frequency ω = 2π/M,
where the integer M is the modulation period. In this limit, the time-
independent quasi-energy band structure can be obtained by
performing the time averaging of instantaneous band structure over
one driving period, i.e., (see Supplementary Note 2)

hθ± i=
1
M

Z M

0
θ ± ðmÞdm=∓J0ðΔϕÞcosðβÞcosðQÞ±

π
2
: ð4Þ

where J0(Δϕ) is the zeroth-order Bessel function. Figure 1c shows
the quasi-energy band structure versus different modulation
amplitude Δϕ and its projection onto the 〈θ〉-Δϕ plane. It shows
that the effect of the ac electric field is tomodify the bandwidth, i.e.,
the scope of quasi-energy band structure. Specifically, the band-
width will collapse as Δϕ is tuned to a series of zeros of J0 function
(labelled by the red lines and dots), at which different orders of DLs
occur. The exact mapping of the discrete-time photonic quantum
walks with the continuous Dunlap-Kenkremodel of DL, obtained for
a coupling angle β close to π/2 and a slow modulation frequency, is
presented in Supplementary Note 2. To see how the ac electric field
controls the lattice evolution dynamics, we consider a Bloch-mode
wave packet impinging on the lattice with initial Bloch momentum
Q, the averaged group velocity can be derived from the quasi-
energy band structure, which reads

hvg, ± i= � ∂hθ ± i=∂Q=∓J0ðΔϕÞcosðβÞsinðQÞ: ð5Þ
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After a driving period M, the wave packet can accumulate a total
transverse displacement

Δn± =Mhvg, ± i= ∓MJ0ðΔϕÞcosðβÞsinðQÞ: ð6Þ

Meanwhile, the packet will experience the envelope broadening
during propagation, which can be quantitatively described by the
averaged diffraction coefficient

hD± i=∂2hθ ± i=∂2Q= ± J0ðΔϕÞcosðβÞcosðQÞ: ð7Þ

As Δϕ takes one of the roots of J0 function, both the wave packet
transverse shifting and broadening vanish, 〈vg,±〉 = 〈D±〉 =0, the packet
will restore to its initial incident position with initial profile after each
driving period, showing the characteristic features of periodic revival
for DLs. However, since different orders of DLs share the common
features of periodic wave-motion and broadening cancelation, one
cannot distinguish them in terms of 〈vg,±〉 and 〈D±〉.

To distinguish different orders of DLs, one needs to inspect the
explicit evolution process within a driving period. In fact, due to the

non-vanishing instantaneous group velocity vg,±(m) = −∂θ±(m)/
∂Q = ∓cos(β)sin[Q − Δϕcos(ωm +φ)] and diffraction coefficient
D±(m) = ∂2θ±(m)/∂2Q = ±cos(β)cos[Q − Δϕcos(ωm +φ)], the wave
packet experiences delocalization at each step within a driving
period. Quantitatively, the degree of delocalization during propa-
gation can be characterized by a statistic parameter of instanta-
neous mean-square displacement, 〈n2(m)〉5,11,31

hn2ðmÞi=
P

n½n2ð∣um
n ∣

2 + ∣vmn ∣
2Þ�

P
nð∣um

n ∣
2 + ∣vmn ∣

2Þ : ð8Þ

which measures the displacement of wave-packet with respect to
the initial reference position. According to Eq. (8), 〈n2(m)〉 depends
quadratically on the occupied position n, indicating that it will
increase with the packet’s transverse displacement and diffraction
spreading. Different-order DLs exhibit different wave-packet
dynamics and hence 〈n2(m)〉 evolutions. More specifically, the
maximum mean-square displacement 〈n2(m)〉max within a single
driving period can be adopted to characterize the localization
strength of different-order DLs.
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Fig. 1 | Principle of different-order DLs in ac-driven synthetic temporal lattices.
a Schematic diagram of a synthetic temporal mesh lattice constructed bymapping
from two coupled fiber loops as shown by the inset figure. The opposite sinusoidal
phase modulations ±ϕ(m) are incorporated into the two fiber loops to generate a
direction-dependent phase factor accompanying light hopping in the temporal
lattice, corresponding to an effective time-periodic vector potential and hence an
ac electric field therein. b Instantaneous band structure of synthetic temporal lat-
tice, where the Blochmomentum follows a periodic oscillation under the driving of

ac electric field with driving period M = 2π/ω and driving amplitude Δϕ. c Quasi-
energy band structure versus the driving amplitude Δϕ and its projection onto the
〈θ〉-Δϕ plane, obtained by performing time averaging over the instantaneous band
structurewithin one driving periodM. Here only the upper band is plotted. The red
lines denote the specificmodulation amplitudes at J0 Bessel function’s zeros where
the quasi-energy band structure collapses, corresponding to the occurrence of
different-order DLs.
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Experimental realization of high-order DLs
To verify the theoretical analysis, we experimentally build a coupled
double fiber-loops circuit, as shown schematically in Fig. 2. Two
fiber loops with an average length of ~5 km are connected via a 75:25
(corresponding to β = π/3) directional coupler. The length differ-
ence of the two loops is ~30m, corresponding to a relative time
delay of ~150 ns. The required sinusoidal phase modulation is pro-
vided by the incorporated phase modulator (PM) in the short loop
driven by an arbitrary waveform generator (AWG). The initial Bloch-
mode wave packet is prepared from a single optical pulse with a
duration time of ~100 ns injected from the long fiber loop (see
Materials and Methods). The detection of wave packet evolution at
each step is realized by recording the pulse-train intensity dis-
tributions extracted from the two loops. Other details about the
experimental setup andmeasurement are also provided inMaterials
and Methods.

In the experiment, we excite a Bloch-mode wave packet from the
upper band as the incidence, which carries an initial Blochmomentum
Q =π/2. Figure 3a depicts the packet transverse displacement Δn after
a single driving period as a function of the phase modulation ampli-
tude Δϕ. Here the modulation frequency is fixed as ω =π/60, corre-
sponding to a driving period of M = 2π/ω = 120. It shows that the
displacement Δn follows an oscillatory variation of J0 Bessel function
with the increase ofΔϕ, which is in perfect accordancewith theoretical
prediction of Eq. (6). Specifically, Δn = 0 occurs at Δϕ = 2.4, 5.5, 8.7,
11.8, and 14.9, as denoted by the blue dots, clearly validating DLs from
the first to fifth orders.

In Figs. 3b and 3c, we illustrate the simulated and experimental
wave packet evolutions by choosing several specific modulation
amplitudes of Δϕ = 0, 3.8, 2.4, 14.9. For comparison, we firstly
consider the packet evolution in the absence of modulation with
Δϕ = 0. In this case, the packet exhibits a constant group velocity of
vg = ‒cos(β)sin(Q) = ‒0.5, corresponding to a maximum left dis-
placement of Δn = vgM = −60, as shown in Fig. 3b(i). In Fig. 3c(i), we
get ameasured displacement ofΔn = −59.2, whichmatches well with

the theoretical prediction. For a non-zero modulation amplitude
Δϕ = 3.8, as shown in Figs. 3b(ii) and 3c(ii), the packet exhibits a
maximum right displacement of Δn = 24.5, in accordance with the-
oretical result of Δn = ‒MJ0(Δϕ)cos(β)sin(Q) = 24.2. It shows that the
presence of modulation (ac electric field) can modify the wave-
packet group velocity, which reaches the maximum displacement
for the field-free case. Additionally, the wave packet manifests a
curved evolution trajectory under the ac field driving with a time-
varying group velocity, in contrast to the straight trajectory with a
constant velocity for the field-free case. Also note that both the
field-driven and field-free cases exhibit diffraction-free evolutions
without packet broadening. This is attributed to the vanishing dif-
fraction coefficient 〈D〉 = 0 for Q = π/2 according to Eq. (7). Besides
the rightward motion of wave packet, the ac driving can also lead to
leftward motion of packet when the choice of modulation ampli-
tude Δϕ corresponds to a negative averaged group velocity.

We show the simulated and measured pulse intensity evolutions
for the 1st- and 5th-order DLs in Figs. 3b(iii), 3b(iv), 3c(iii), and 3c(iv).
One sees that the wave packet displays an oscillatory trajectory during
propagation and restores to its initial position and profile after a single
driving period. The packet for the 1st-order DL possesses much larger
oscillation amplitude compared to that of the 5th-order one. Addi-
tionally, the wave packet experiences obvious diffraction spreading
during the 1st-order DL process. In contrast, the packet width remains
nearly unchanged with negligible broadening for the 5th-order DL.
Hence, higher-order DLs possess much stronger localization strength
than lower-order ones.

To quantitatively characterize the localization strength of dif-
ferent orders of DLs, we plot in Fig. 3d the measured mean-square
displacement 〈n2(m)〉 evolutions by choosing the 1st- and 5th-order
cases. The comprehensive comparisons of pulse intensity evolu-
tions andmean-square displacements from the 1st- to 5th-order DLs
are provided in Supplementary Note 3. Here, at each step m, the
mean-square displacement 〈n2(m)〉 for the 5th-order DL is much
smaller than that of the 1st-order one. As also summarized in the
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inset of Fig. 3d, themaximummean-square displacement 〈n2(m)〉max

decreases from 48.1 to 14.9 as the order increases from 1 to 5, clearly
demonstrating that the wave packet can be better localized for the
higher-order DL. Quantitatively, 〈n2(m)〉max decreases by 61% from
1st to 2nd orders while it decreases by 31% and 21% from 2nd to 4th
and 5th orders, respectively. As we discussed in Supplementary
Note 5, the decrements of 〈n2(m)〉max for higher-order DLs can be
further improved by enlarging the driving periodM. Themechanism
for enhanced localization strength of high-order DL can be attrib-
uted to the faster variation rate of wave-packet momentum under
larger ac electric field driving (see Supplementary Note 4). As shown
schematically in Supplementary Fig. S4, a larger electric field can
drive a Bloch wave packet to oscillate across a larger regime in the
extended Brillouin zone, leading to more times of packet Bragg
reflections at each Brillouin zone edge and center. More frequent
Bragg reflections will cancel the net accumulated packet motion in
one direction within a driving period and hence give rise to the
stronger localization strength.

Enhanced robustness of high-order DLs against random noises
In previous sections, we have adopted the localization strength as a
signature to distinguish different orders of DLs. In this section, we

will investigate the robustness of DLs against external random
noises to further demonstrate the advantages of high-order DLs
over low-order ones. Generally, we consider a randomly distributed,
time-varying modulation-phase noise superimposed onto the
sinusoidally-varying modulation phase, i.e., ϕ(m) = Δϕcos(ωm +φ)
+ϕnoise(m). To check the influence of different-type noises on the
dynamics of DLs, we choose three representative noise models with
respective uniform, Gaussian, and gamma probability density
functions. Our simulation results reveal that different types of
noises of comparable expected values and standard derivations
give rise to nearly the same evolution dynamics, indicating that the
enhanced robustness against noise is a universal behavior for high-
order DLs that is applicable to a generally applied noise (see Sup-
plementary Note 7 for detailed comparisons and discussions). In
our experiment, we choose the simplest uniform noise as a repre-
sentative example, where ϕnoise(m) is randomly chosen from a
uniform distribution over [−δϕ/2, δϕ/2], with δϕ being the range of
noise. The superimposed modulation waveforms are schematically
shown in Fig. 4a, where we have chosen both a strong and a weak ac
field amplitude. In the presence of random noise, DLs of different
orders will degrade, giving rise to the broadening of wave packet.
Quantitatively, to describe the degree of wave-packet broadening,
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displacement of wave packet Δn after a single driving period versus phase mod-
ulation amplitude Δϕ. b Simulated pulse intensity evolutions in one driving period
with total stepM = 120. (i) and (ii) correspond to directional transports with Δϕ =0
and 3.8, respectively. (iii) and (iv) correspond to the 1st- and 5th-order DLs,

respectively. c Measured pulse intensity evolutions. (i)-(iv) correspond to the
simulated results in b(i)-b(iv). dMean-square displacement 〈n2(m)〉with respect to
step m for 1st- and 5th-order DLs. The inset figure shows the maximum mean-
square displacement 〈n2(m)〉max versus the order of DL.
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we utilize the inverse participation ratio (IPR), which is defined
as26,30

IPR =
P

nð∣um
n ∣

2 + ∣vmn ∣
2Þ2

½Pnð∣um
n ∣

2 + ∣vmn ∣
2Þ�2

, ð9Þ

with0<IPR≤1. A higher IPR reflects lesswave packet spreading and thus
better localization, also suggesting stronger robustness against
external noise.

The solid curve in Fig. 4b depicts the theoretical variation of
IPR after one driving period as the modulation amplitude increa-
ses continuously from Δϕ = 0 to Δϕ = 15. Here the probability
density function of uniformly distributed noise is inserted in
Fig. 4b, where we fix the uniform noise range at δϕ = 0.15π. It
shows that the IPR reaches a peak value at each order of DLs,
indicating that DL can efficiently suppress the noise-induced wave
packet broadening. To verify this, in the experiment we choose
modulation amplitudes at different orders of DLs, where the
measured IPR can match well with the theoretical results. More-
over, as the order increases from 1 to 5, the IPR for different order
DLs increases from 0.06 to 0.13, suggesting that higher-order DLs
possess superior robustness against stochastic noises over lower-
order ones. Figures 4c-4e illustrate the measured pulse intensity
evolutions for Δϕ = 0, 2.4 (1st-order DL), and 14.9 (5th-order DL),
respectively. Here for each case, we have performed statistic
averaging for 10 times of experiment results. Without the ac
electric field, the wave packet experiences the most serious
expansion, showing cone-like (ballistic) packet boundaries
(Fig. 4c). For the 1st-order DL, the wave packet width has expan-
ded by about 5 times after one driving period (Fig. 4d). In contrast,
the wave-packet width almost conserves for the 5th-order DL
thanks to the stronger robustness against noise (Fig. 4e). More
detailed pulse intensity evolutions from the 1st- to 5th-order DLs
in the presence of the random noises are shown in Supplementary
Note 6. The enhanced robustness of high-order DLs against noises

can be explained from the slope of quasi-energy band structures
at each zero of J0 Bessel function. As shown in Fig. 1c, the slope of
J0 Bessel function at each zero becomes smaller as the zero’s order
increases, such that under the same perturbation strength δϕ,
higher-order DL at higher-order zero gets smaller bandwidth
expansion from the collapsed point and hence stronger localiza-
tion properties.

Tunable temporal cloaking by combining higher- and lower-
order DLs
As we demonstrate in previous sections, higher-order DLmanifests
smaller packet displacement and stronger robustness against
noises, which are desirable for robust signal transmission. On the
other hand, lower-order DL exhibits larger displacement within a
driving period and can restore to its initial position after the
driving period, which are helpful for signal delay and reconstruc-
tion. In this section, we combine both higher- and lower-order DLs
to design a temporal cloaking scheme. As shown schematically in
Fig. 5a, a wave packet impinges into the first region where we use
fifth-order DL to realize robust signal transmission. At the inter-
face of regions 1 and 2, we use first-order DL and introduce a
constant relative phase shift to achieve wave-packet splitting. Such
a splitting can circumvent an event, thus forming a temporal cloak.
Then we switch back to high-order DL at the interface of regions 2
and 3, where packet recombination occurs after finishing one
driving period.

The relative constant phase shift between regions 2 and 1 plays a
role of an effective gauge potential, which can induce a constant band
shifting and hence wave packet splitting. Assume that the constant
biased phase in regions 1 and 2 is denoted byϕl, (l = 1, 2), such that the
band structures are θl,± = ∓cos(β)cos(Q −ϕl)±π/2 (Fig. 5b), with the
corresponding eigen states given by

∣ψl, ± i=
Ul, ±

Vl, ±

� �
eiQneiθl, ±m, ð10Þ
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density function P(ϕnoise) of uniform noise with δϕ =0.15π. c Measured pulse
intensity evolution for Δϕ =0. d, eMeasured pulse intensity evolutions for the 1st-
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where

Ul, ±

Vl, ±

� �
=

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + e∓2λl

p 1

�e∓λl e�iðQ�ϕl Þ

� �
, ð11Þ

and λl = arsinh[cot(β)sin(Q −ϕl)]. Consider a wave packet incidence
from the upper band in region 1, it will exhibit refraction at the inter-
face of region 1 and 2. According to the conservation law of Bloch
momentum at the interface, as denoted by the dashed line in Fig. 5b,
the incident wave packet in region 1 can match two packets of the two
branches in region 2, i.e.,

U1, +

V 1, +

� �
= c2, +

U2, +

V 2, +

� �
+ c2,�

U2,�
V 2,�

� �
, ð12Þ

where c2,+ and c2,‒ are the occupation coefficients of the upper and
lower bands. By combing Eqs. (11) and (12), we further obtain

c2, + = V 1, +U2,� � U1, +V 2,�
� �

= U2,�V2, + � U2, +V2,�
� �

c2,� = U1, +V 2, + � V 1, +U2, +

� �
= U2,�V 2, + � U2, +V 2,�
� �

(

: ð13Þ

Specifically, for ϕ2‒ϕ1 = π/2, we can achieve |c2,+|2 = |c2,−|2 = 0.5,
indicating the wave packet is equally splitting in power. In region 2,
the two split wave packets exhibit 1st-order DLs under a low-
amplitude ac electric field driving. Since the two packets occupying
two bands have opposite group velocities, they will transport
separately with mirror-symmetric trajectories, therefore creating a
time window, i.e., a temporal cloak. After finishing one-period DL in
region 2, the two packets restore to their initial positions and
manifest a packet recombination at the interface of regions 2 and 3,
leading to the closing of the temporal cloak. Note that due to the

periodic revival nature of DL, the packet recombination process is
just the time reversal of the packet splitting. In region 3, the packet
then goes on exhibiting fifth-order DL.

In our experiments, the temporal event to be cloaked ismimicked
by the pulse intensity absorption between n = −1 and n = 1 at
m = 80 step realized by changing the intensity modulators’ transmit-
tances of two loops. For comparison, we first show the wave packet
evolution of the 5th-order DL without a temporal cloak in Fig. 5c. It
shows that even though the 5th-order DL manifests strong robustness
against the noise in the driving electric field, it is still severely affected
by the absorption event. In contrast, by introducing the above tem-
poral cloak, as depicted in Fig. 5d, the absorption event can be cir-
cumventedperfectly by the timewindow, such that thepacket restores
to its input state of the 5th-orderDL after the cloaking region. Figure 5e
illustrates the output wave packet intensity distributions detected at
step m = 162 with and without the temporal cloak. By comparing with
the packet direct transmission without absorption event, the output
packet is completely unaffected with the protection of the temporal
cloak, as if the event does not exist.

Next, we demonstrate that the temporal cloak possesses flexible
tunability both in the cloaking window size and its opening time. As
shown in Fig. 6a, since the two split wave packets belonging to the
lower and upper bands have positive and negative group velocities,
they will propagate towards opposite directions. The width of
the cloaking window is defined by the maximum spacing of the two
split packets, which is reached at the center of one driving period
m =M/2, i.e.,

Wmax =
Z M=2

0
∣vg,�ðmÞ � vg, + ðmÞ∣dm=MW0, ð14Þ
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where W0 = 2cos(β)
R 1=2
0 sin[Δϕsin(2πm/M)]d(m/M), denoting the aver-

aging width increase within one step (see Supplementary Note 8).
Equation (14) suggests that the cloaking window width is proportional
to the driving period M, as also plotted in Fig. 6b. For experimental
demonstrations, we design two cloaks of different sizes by choosing
twodrivingperiods ofM = 80andM = 50, respectively. Figure 6c shows
the packet evolution with the two cloaks. The width of the first cloak
reaches Wmax = 31 with W0 = 0.37, such that it can circumvent three
absorption events. While the size of the second cloak is smaller with
the width beingWmax = 17.5, within which only one absorption event is
cloaked. With its flexible tunability, our temporal cloak can adapt to
random perturbation events with different trigging and duration time.

It is worth comparing our temporal cloaking mechanism to the
conventional dispersion-based temporal cloaking schemes. Pre-
viously, the temporal cloaking is achieved in optical fibers where the
normal and anomalous group velocity dispersions (GVDs) of optical
pulses contribute to the opening and closing of temporal cloak45,46.
Nevertheless, it is technically challenging to modify and modulate the
GVD coefficient of optical fibers, which highly limits the manipulation
of cloak’swindow size andopening time.Here, by combingboth lower-
and higher-order DLs using strategic ac-field driving, we demonstrated
a temporal cloak with dynamically controllable cloaking size, shape,
and opening time, manifesting itself as a superior cloaking scheme.

Ourparadigmmayfindpractical applications in scenariosof robust
digital communications47,48 as well as secure communications49,50. In a
practical digital communication system, the information to be trans-
ferred is usually carried by optical pulse trains. However, due to the
presence of absorption and scattering events during propagation, the
waveforms of pulse trains will get deformed, leading to the degradation
of signal transmission quality. Here, by utilizing our temporal cloaking
scheme, these unwanted events can be efficiently circumvented,
enabling robust digital communications. Meanwhile, the absorption
and scattering events can also act as spying signals through which the
transmission signals can bemonitored. The presence of temporal cloak
can avoid such spying signals and hence could be adopted in secure
communications. Finally, let’s estimate the feasibility of our temporal
cloak in a practical communication system. In our system, the pulse
width and time interval between adjacent lattice sites are chosen as
~100ns and ~75 ns, and the cloakwidth reaches ~45 lattice sites (Fig. 5d),
corresponding to abroad timewindowof ~3375 ns. Such a cloak size can
thus accommodate a typical temporal event in a low-speed

communication system at MHz ~ GHz ranges. By adjusting the mod-
ulation waveform, the size and shape of cloak can be further engi-
neered, which further broads its application scenarios. Furthermore, to
extend our temporal cloak to high-speed communication systems, the
pulse width and lattice period should be scaled down to ps ~ ns ranges,
accordingly. This could be realized by reducing the length difference
between the twofiber loops andusinghigh-speedoptical and electronic
devices in the circuit. Meanwhile, dispersion compensation techniques
should be also utilized to reduce the influence of GVD for the short-
pulse, high-speed systems.

Discussion
In conclusion, we have shown that photonic quantum walks in syn-
thetic temporal mesh lattices can provide a fertile platform to realize
the Dunlap-Kenkre model of DL, and experimentally demonstrated
different orders of DLs by applying artificial ac electric fields from
sinusoidal phasemodulations. By tuning the modulation amplitude to
the roots of 0th-order Bessel function, we have realized the collapse of
quasi-energy band structures and observed from first- up to fifth-order
DLs, with a corresponding increase of localization strength over the
full oscillation cycle. Remarkably, in the presence of external random
noise, the higher-order DLs display much greater robustness against
noise. The strategic quasi-energy band engineering enabled by our
photonic platform can be harnessed to realize temporal cloaking.
Specifically,wedesigned andexperimentallydemonstrated a temporal
cloaking scheme by combining the higher- and lower-order DLs, with
excellent tunability in terms of both cloaking window size and its
opening time. It should be mentioned that the size of the temporal
cloak is also not unlimited due to the presence of inevitable noise from
optical amplifierswithin thefiber loops. The tunability couldbe further
optimized by using lower-power amplifiers with relatively lower noise,
for which other lower-loss optical components should also be utilized.
Because the generation of ac electric field is universal in fiber-optic
systems, our demonstrated DL effect in temporal lattice can be
transplanted to other synthetic dimensions, such as the frequency
dimension of light33–38.

Generally, the cloaking can be realized either by exploiting the
wave packet’s self-imaging effects in a uniform region or by intro-
ducing a time-reversal operation onto the wave packet in two cas-
cading regions. For the former mechanism, there are two typical
methods to achieve the packet’s self-imaging, i.e., the effects of
Bloch oscillations (BOs)1,2,14,25 under a dc-field driving or our DL
scheme under an ac-field driving. As discussed in details in Sup-
plementary Note 9 and 10 and Supplementary Movie 1, our DL-
based cloaking scheme has following advantages over BO-based
one. Firstly, the BO-based cloak reproduces the shape of the band
structure and hence can’t be reshaped for a fixed lattice. By con-
trast, our DL-based scheme allows flexible reshaping of the cloak by
varying the initial phase of ac driving even though the driving
amplitude is fixed51. Furthermore, for BO- and DL-based cloaks with
same oscillation period M, the DL’s cloak is larger than that of BOs.
For the time-reversal mechanism, the cloaking can be realized
through negative refraction of two split beams. Compared with the
DL scheme, the negative refraction requires negative refractive-
index materials in real space52,53, which is difficult to achieve. In
synthetic dimensions, negative refraction is usually realized
through an out-of-phase shift of gauge potentials in two cascading
regions34,54–56, which requires the precise and fixed utilization of
modulation phases, and hence is not flexible and reconfigurable as
the DL scheme. Finally, since our synthetic lattice is built fully in the
temporal domain, the correponding cloaking is limited to one-
dimensional systems and only applicable for temporal waveforms.
However, if we combine the spatial cloaking methods with our
temporal ones, a high-dimensional, composite spacetime cloakmay
also be envisaged57,58.
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As a final comment, it should be noted that the order of DLs is
not unlimited due to onset of Landau-Zener tunneling3,4,42 and even
the breakdown of the lattice’s continuous-time approximation under
sufficiently large electric-field driving, corresponding to inevitable
bandmixing and the failure of continuous time-averaging picture for
describing DLs. Specifically, for increasing values of the modulation
amplitude Δϕ, one can qualitatively distinguish three different
regimes (see Supplementary Note 2 for more detailed discussion): (i)
For low-to-moderate modulation amplitudes, the continuous-time
limit of the dynamics is valid and the field does not couple the two
bands. In this regimewe have DL like in the usual single-band Dunlap-
Kenkre model, with quasi-energy band collapse observed at specific
values of Δϕ, corresponding to the roots of J0 Bessel function. (ii) For
moderately high values ofmodulation amplitude, the ac field couples
the two bands and nonadiabatic Landau-Zener tunneling is not neg-
ligible anymore. The quasi-energy band collapse is imperfect. (iii) At
very highmodulation amplitudes, such thatΔϕω ceases to be smaller
than 1, the discrete nature of temporal evolution cannot be dis-
regarded anymore. In this regime, rather than the usual band flat-
tening effect arising from the vanishment of Bessel function J0(Δϕ)
for large Δϕ, one even observes an increase in quasi-energy band-
width, resulting in dynamical delocalization. Hence, our discrete-
time photonic quantum walk setup realizes a scenario of DL which
can greatly deviate from the conventional Dunlap-Kenkre model of
continuous-time systems, providing a fascinating platform to unravel
a transition from continuous- to discrete-time localization features.
For real applications, where noise and/or imperfections in the sys-
tems are unavoidable, the most stable operational regime includes
themoderate- to high-order DLs, i.e., typically from3rd to 6th orders.
In this case, the localization is considerably tight and more robust
against noise than low-order DL regime.

Finally, our results could inspire further theoretical and experi-
mental studies as well as unravel new phenomena beyond the tradi-
tional Hermitian paradigmof discretized light transport. Thanks to the
ability to engineer gain and loss in the syntheticmesh lattice setups23,32,
the correspondence between photonic quantum walks and the
Dunlap-Kenkremodel, unravelled in this work, could also pave theway
toward the experimental demonstration of DL effects and related
phenomena in the non-Hermitian realm. These include the experi-
mental access to DL in parity-time systems59 and the observation of
non-Bloch band collapse and chiral tunneling in lattices displaying the
non-Hermitian skin effect30,60. From the perspective of applications,
due to the excellent tunability and strong robustness against noises,
the high-order DLs we achieved could hold great promise for robust
signal transmission, protection, storage, and processing.

Methods
Experimental setup and measurement
The light pulses are generated by modulating a continuous-wave light
beam with an intensity modulator (IM), which is driven by the pulse
from an arbitrarywaveformgenerator (AWG). After being injected into
the long loop, the pulse will circulate in the two loops. During circu-
lation, the optical loss is compensated by erbium-doped fiber ampli-
fiers (EDFAs). To overcome the transient of EDFA, the signal pulse is
combinedwith a pilot light operated at awavelength of 1530 nm.Then,
the pilot light and spontaneous emission noise are removed by band-
pass filters (BPFs). To detect the optical pulses, we couple the signals
out of the loops and record them by photodiodes (PDs) and oscillo-
scopes (OSCs). The polarization states of light pulses are controlled
through polarization controllers (PCs). A polarization beam splitter
(PBS) and the subsequent PD are utilized to monitor the polarization
state. Here, the phase modulation is only imposed in the short loop,
which has a form of –2ϕ(m). The difference between the modulation
phases in the two loops is –2ϕ(m), which is same with the one men-
tioned in the main text. Since not the phase but the phase difference

has a physical meaning, such a scheme of phase modulation is
equivalent to the one mentioned in the main text. Finally, after ~200
circulations in the loops, all pulses are absorbed through switching off
IMs. In addition, all the modulators are driven by AWGs. To realize the
DL effect, a sinusoidally-varying phase modulation is introduced into
the short loop. Since the DL arising from the collapse of the quasi-
energy band structure happens only for a series of particular mod-
ulation amplitudes, one needs to carefully control the amplitude of the
phase modulation.

Preparation of Gaussian-envelope wave packet
To generate a Gaussian-envelope pulse sequence with specific Bloch
momentum, we inject a single optical pulse into the long loop and
impose phase and intensity modulations into the two loops24,27. By
controlling the driving signals of IMs, the short loop is switched on and
off alternately with the increase of the circulation numberm while the
long loop stays on during the circulation. After 30 circulations, a pulse
train with Gaussian envelope is formed. In addition, by imposing a
constant phase shift α in the short loop during the 30 circulations, the
Bloch momentum of wave packet can be chosen and has a form of
Q = (π − α)/2. To excite the eigen mode at the upper or lower band, we
set phase and intensity modulations at the 31th circulation according
to the eigen vector.

Data availability
All the data supporting this study are available in the paper and Sup-
plementary Information. Additional data related to this paper are
available from the corresponding authors upon request.
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