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Abstract—Emotion recognition is involved in several real-world
applications. With an increase in available modalities, automatic
understanding of emotions is being performed more accurately.
The success in Multimodal Emotion Recognition (MER), pri-
marily relies on the supervised learning paradigm. However,
data annotation is expensive, time-consuming, and as emotion
expression and perception depends on several factors (e.g., age,
gender, culture) obtaining labels with a high reliability is hard.
Motivated by these, we focus on unsupervised feature learning
for MER. We consider discrete emotions, and as modalities text,
audio and vision are used. Our method, as being based on
contrastive loss between pairwise modalities, is the first attempt
in MER literature. Our end-to-end feature learning approach has
several differences (and advantages) compared to existing MER
methods: i) it is unsupervised, so the learning is lack of data
labelling cost; ii) it does not require data spatial augmentation,
modality alignment, large number of batch size or epochs; iii) it
applies data fusion only at inference; and iv) it does not require
backbones pre-trained on emotion recognition task. The experi-
ments on benchmark datasets show that our method outperforms
several baseline approaches and unsupervised learning methods
applied in MER. Particularly, it even surpasses a few supervised
MER state-of-the-art.

I. INTRODUCTION

Emotion is a key factor driving people’s actions and
thoughts, and a fundamental part of the human verbal and
nonverbal communication. Automated emotion recognition is
an important aspect of many applications, including social
assistive robots [1]], smart systems to work in customer service
[2], health-care [3]], education [4], and automated-driving cars
[S]. However, it is a highly challenging problem due to the
complex nature of emotion expression and perception, which
are hard to generalize as being dependent on several factors
such as age [6], gender [7]], cultural background [8], and
personality traits [9]. Furthermore, as humans can express
their emotions across various modalities (e.g., language, facial
expressions, gestures, and speech), it is essential to effectively
model the interactions between these modalities, containing
complementary but also (possibly) redundant information [10].

The majority of works mainly concentrated on unimodal
learning of emotions [11], [12], [13], i.e., processing a single
modality. Although there exist breakthrough achievements by
unimodal emotion recognition, due to the aforementioned
multimodal nature of emotion expression, such models re-
main incapable in some circumstances. On the other hand,
multimodal emotion recognition (MER) holds the challenges

of multimodal machine learning, e.g., representing the data
to be able to exploit the complementarity and redundancy
of modalities, data translation among modalities, co-learning,
modality alignment (e.g., capturing temporal information) and
data fusion (see [10] for details). Like most intelligent systems,
the advancements in deep learning have enhanced MER,
particularly, by utilizing the abundance of data availability.
Studies in this field (e.g., [[14], [15], [L6], [17]) so far, treat
the learning process with the supervised way, thus require an
intense labor for annotations.

This paper addresses the problem of perceived multimodal
emotion recognition when the emotions are represented as dis-
crete categories and, more importantly, we learn the features
in an unsupervised fashion. Motivated by the fact that con-
trastive learning has shown accurate and robust performance in
many domains (e.g., [18]], [19]), we adapt the contrastive loss
function [20]] to perform pairwise modality feature learning. To
the best of our knowledge, this is the first time contrastive loss
is adapted for MER. Our approach learns feature embeddings
in an end-to-end fashion (see [21] for the definition), and
differs from the prior works in terms of several aspects, which
are described as follows.

i) Modality exploitation. Our method leverages different
modalities in a contrastive learning framework. Given a data
sample represented in terms of multiple modalities, our aim
is to push the embeddings of two modalities of the same se-
quence to be close to each other while pulling the embeddings
of the same two modalities of different sequences to be apart.
Note that the sequences that are being pulled apart can be from
the same class. But, herein we do not use the class labels, thus
we only aim to make the representations of the same sequence
across modalities similar (as close as possible) to each other.
ii) Data translation & co-learning. We contrast the feature
embedding of one modality with another modality when both
are belonging to the same data sample. This can be seen as
an analogy to performing data translation and ultimately co-
learning. Unlike existing contrastive learning approaches (e.g.,
[22], [19]), we do not require data spatial augmentation (e.g.,
random crops, blurs or color distortions). Also, different from
approaches [18]], [23]], [24] relying on heavy data augmenta-
tions as well as large number of batch sizes and epochs, our
method is much more affordable.

iii) Modality alignment. The outputs of different sensors



might have different (but fixed) sample rates. However, this
is not valid for text, which makes obtaining word-aligned se-
quences not so obvious [16]. Still, multimodal data alignment
is an imperative step to perform an effective MER for several
methods (e.g., [25], [26])), resulting in the real-world applica-
tion of such methods challenging. In contrast, our method does
not require perfectly aligned modalities. We considered both
aligned samples and a mixture of aligned/misaligned samples
in our experiments (Sec. [[V-A).

iv) Data fusion. It is applied here only at inference via
the concatenation of learned feature representations. This is
different from the MER state-of-the-art (SOTA) applying data
fusion both in training and testing [27], [26], [28], [29].

v) Data labelling. Our method is free from data labeling cost
by being an unsupervised feature learning approach. Note that
there exist a few number of unsupervised approaches in the
same and/or related topics, e.g., speech emotion recognition
[30], [31], facial emotion recognition [32], facial expression
intensity estimation [33]], and multimodal sentiment and emo-
tion analysis [25]. However, our method involves the deep
architectures either pre-trained on tasks different from emotion
recognition (e.g., action recognition) or not pre-trained. This
aspect introduces a potential to apply the proposed method
to the related downstream tasks, e.g., multimodal sentiment
analysis and social interaction analysis, without the need
of customization. Some approaches (e.g., [34], [35], [36l),
instead, could supply the desired performance (e.g., outper-
forming the best of all methods of comparison time) if and
only if they are pre-trained on large emotion datasets having
the same emotion labels as in the test set.

To validate the effectiveness of our method, experiments
were realized on two multimodal emotion datasets. Results
show that the proposed method outperforms prior unsupervised
MER approaches and several baselines. Moreover, despite
performing unsupervised feature learning, our method even
surpasses some of the fully-supervised MER methods. To
summarize, the main contributions of this study are: (1)
presenting a novel unsupervised multimodal feature learning
approach, (2) being the first study adapting the contrastive loss
for MER, and (3) improving the emotion recognition results
compared to unsupervised feature learning MER SOTA. The
code of the proposed method is available at https://github.com/
ricfrr/mpuc-mer.

II. RELATED WORK

Several methods for multimodal emotion recognition (MER)
were proposed, as detailed in the recent survey papers: [37],
[38]. In this section, our summary is regarding discrete MER
research modeling text, visual and acoustic modalities, as we
tested our method on that context. Early works adapt classifiers
like SVMs, Linear and Logistic Regression [39]], [40] while,
by the time bigger datasets were developed, deep learning
architectures were also explored. For example, [27] is based
on CNNs, and [26], [28] use RNNs. Some recent studies [41],
[14], [16] adopt Transformers.

Ghaleb et al. [42]] apply deep metric learning in which
a LSTM component models the variations of the emotions
as a function of time. That is different from late fusion of
modalities [27]], [28] or building temporal features to extract
global information by assuming that emotions are expressed
simultaneously [26]. Late fusion is favorably applied by con-
catenating the learned features of all modalities in [27], [28]]
or with a pairwise scheme in [26]. Instead, the authors of
M3ER [29] propose a data-driven multiplicative fusion method
to combine the modalities, which learns to emphasize the more
reliable cues and suppresses the others by integrating Canoni-
cal Correlation Analysis as a pre-processing step. Differently,
Zadeh et al. [43] present Graph-MFN, which synchronizes
the multimodal sequences by storing intra-modality and cross-
modality interactions through time with a graph structure.
Attention mechanism has been exploited by several works as
well [44], [45], [41]], [46], [47], [150, [L7], (48], [211], [49]. For
example, Dai et al. [21] present MESM that is composed of
sparse cross-modal attention mechanism attached to the joint
learning of multimodal features.

There are a lot of attempts applying end-to-end learning
[271], [26], [50l, [51], but only [21] compared a fully end-to-
end method (defined as jointly optimizing feature extraction
and feature learning stages [21]) with the two-phase pipelines
(i.e., feature extraction is independent from multimodal learn-
ing). Indeed, it is very common in the MER litreature to apply
the feature extraction step separately. This is performed on
each modality by using either hand-crafted formulations [52],
531, [29], [26], [27], [43]) and/or deep learning architectures
[42], [26], [27]. As example of acoustic features; Log-Mel
spectrogram [27], pitch, voiced/unvoiced segmenting features
[26], [43], [29], MFCCs [28], [26], [43], [29], features ex-
tracted from SoundNet [42]]) can be given. On the other hand,
various backbones such as VGG16 [28], 13D [42], FaceNet
[42] as well as facial features; facial landmarks and facial
action units extracted by OpenFace [43]], [29] are among the
most popular visual features. For text, Glove embeddings [54]
have been frequently utilized [26], [43], [291, [41]], [S5], [L6],
[14], while Transformers are used as the backbone [41]], [55],
[16], [14], [49] or LSTMs are trained with the extracted word
embeddings [43]], [29].

Among the aforementioned approaches, [45], [55] use text
and audio, [53], (48], [42l, [27], [28], 150], [52] use video
and audio, and all others use text, audio and video together.
It is worth noting that these techniques are all supervised.
Recently, Khare et al. [49] investigated the usage of large
unlabeled multimodal datasets for pre-training a cross-modal
transformer, which is then fine-tuned for the emotion recog-
nition task. In detail, the VoxCeleb dataset [56], composed of
1.1 million videos that are associated to emotions [57], is used
to pre-train the multimodal transformer. Then, the decoder
layer is removed, and an average pooling and additional fully
connected layers are added to fine-tune the model for emotion
recognition task. Unlike [49]], we do not rely on auxiliary
large-scale datasets to pre-train our model, and both the feature
learning and inference are performed on the same datasets,
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Fig. 1. Summary of our approach. We first learn the multimodal features in an unsupervised fashion, then the downstream task (discrete emotion recognition)
is performed. We jointly train, each possible pair of modalities’ backbone using contrastive loss in order to predict the correct pairings of a batch of training
examples. The final loss is the average of all losses calculated. During inference, fi, fa, fv, fi are extracted before the projection layers (i.e., fc+RELU+fc)

and concatenated, then feed to a linear classifier for emotion recognition.

which are much smaller than the VoxCeleb dataset [S56].
Our learned features are frozen such that we do not apply
any fine-tuning as in [49]. This is an important difference
because some studies [S8]], [S9] have shown that, compared
to using frozen features that are learned in an unsupervised
fashion, fine-tuning can bring up to 17.5% improvement for the
downstream task. However, following the fine-tuning approach
would not keep the feature learning methodology “entirely
unsupervised”, as it requires the labels of the downstream
task. Moreover, our model is applicable with different modality
combinations, whereas text is an anchor modality in [49].

The MER litreature is very limited in terms of fully
unsupervised feature learning approaches. Very recently, a
Convolutional Autoencoder architecture is presented in [25].
Despite being very different from our method in terms of the
architecture, [25] is still our “direct competitor” by having
the following common aspects with the proposed method: i)
performing unsupervised feature learning without fine-tuning,
ii) being independent to the number of modalities and modality
combinations, and iii) not being task-specific.

III. OUR APPROACH

An overview of our approach is given in Fig. [T} First, the
multimodal features are learned with an unsupervised way
(Sec. [MI-B). Then, the downstream task (discrete emotion
recognition) is performed (Sec. [[lI-C). Sec. [[lI-A] describes the
modalities and Sec. presents the implementation details.

A. Modalities

The modalities and backbones we utilize are described as
follows.
» Text. The word vectors are extracted from transcripts with
the Glove word embeddings [54], following the procedure in

[43]. As the backbone, we use the Transformer in [60], which
is one of the SOTA architectures of language processing.
» Visual. We rely on two sources of visual data. One of them
is the facial images extracted by MTCNN face detector [61]
(unless faces are supplied by the dataset) from RGB video
frames. As the backbone associated to the facial images, the
R(2+1)D architecture [62] pre-trained on Kinetics-400 dataset
[63] is used. The other visual data is the facial landmarks
detected by the method in [[64]] (unless it is provided by the
dataset used), and the associated backbone is Spatio-Temporal
Graph Neural Network (ST-GCN) [65]].
» Acoustic. Mel-spectograms are extracted with the same
procedure and settings in [66]], [41], [S5] with Librosa Python
Library [67] using 80 filter banks and by selecting one frame
for every 16 frames. The dimension of the mel-spectograms
is fixed to 128. We adapt Time Convoluted Network (TCN)
[68] such that it takes mel-spectrograms as the input.

As seen, each modality has its own backbone, which have
been chosen as being the SOTA architectures for diverse
applications of language, visual and acoustic data processing.

B. Unsupervised Multimodal Feature Learning

The proposed method includes separate multi-layer projec-
tion heads onto each backbone defined in Sec. [M=Al All
projection heads have the same structure such that they are
composed of fully-connected layers (fc), where the first layer
is followed by a ReLU activation function (fc;+ReLU+ fco).
This structure is motivated by SimCLR [18], which shows
that a nonlinear projection head contributes to the performance
more than a linear projection head, and its contribution is even
more compared to not including any projection layer.

We adapt the CLIP fashion [69] training, without using
any labels of the downstream task (i.e., emotion recognition).



Given a data sample represented by a sequence of observations
in multiple modalities, our aim is to make the embeddings
of two modalities of the same sequence (positives) close
to each other, and make the embeddings of the same two
modalities of different sequences (negatives) apart from each
other. This is repeated for all possible pairs of modalities.
Notice that negative samples might belong to the same class
(i.e. exhibit the same emotion). However, herein, we assume
that the class labels are not available, and we resort to instance
discrimination with contrastive learning which encourages the
model to produce invariant representations and align the latent
spaces of all the modalities.

More formally, the contrastive loss function for a pair of
modalities (m,n) has the following form:

exp(sim(z", #{") /)
N : m .m ’
Z]’:l Lixj) exp(sim(2] 2 )/T)

where z denotes the embedding after the projection, ¢, j are
indices of samples in the current batch of size N, 7 is the
temperature parameter (scalar), 1, € {0, 1} is an indicator
function evaluating to 1 iff k£ # ¢, and sim(u,v) = m
denotes the dot product between ¢,-normalized vectors u and v
(i-e., cosine similarity). Eq. (I} is computed across all samples
i in the batch, resulting in L™ =Y.~ | L7"". In addition, we
minimize this loss for each possible pairs of modalities. Notice
that, since the negatives are drawn from only one modality (see
denominator in Eq. (E])), the loss is asymmetric, i.e., L™" is
not equal to L™™. Therefore, our final loss function (Eq. (Z))
includes the loss obtained from all the permutations of two
elements drawn with replacement from the set of modalities

M:

L™ = —log

(1

Z(m,n)EMXM IL[m#n]me

IM[(IM]|-1)
Note that, we found empirically that only contrasting different
modalities (i.e. when m # n) produces better representa-
tions. In addition, we perform temporal augmentations (see
Sec. for details) to the sequences in order to avoid
overfitting and improve performance.

Lfinal - (2)

C. Discrete Emotion Recognition

Following the common practice [[18], [70], in order to per-
form the downstream task (i.e., discrete emotion recognition),
we discard the projection layers (described in Sec. and
use the 512-dimensional feature representation extracted from
each backbone. The extracted features are concatenated (e.g.,
for 3 modalities, the combined vector holds 3x512 number
of features) and given to a prediction layer, that shares the
same design with the projection heads (i.e., fc+RELU+fc)
where its output is the emotion classes. The aforementioned
prediction layers are trained with the emotion labels using the
cross entropy loss and a variant of it (see Sec. [[V-B|for details).

D. Implementation Details

The training is performed with the SGD optimizer with the
momentum of 0.9 and the weight decay of 0.001. All models
are trained with the batch size of 32 (or 64) while the batch

TABLE I
RESULTS OF THE PROPOSED AND BASELINE METHODS ON RAVDESS
DATASET [71]] IN TERMS OF ACCURACY (ACC).

Methods Actor Facial Acoustics Facial ACC
Split  Images Landmarks (%)
Unimodal v v 60.80
Unimodal v v 58.50
Unimodal v v 62.05
Late Fusion v v v v 64.10
Attention Mec. v v v v 65.40
Ours v v v 63.78
Ours v v v 77.10
Ours v v v v 78.54
Unimodal v 72.80
Unimodal v 75.90
Unimodal v 76.35
Late Fusion v v v 80.72
Attention Mec. v v v 81.80
Ours v v 80.32
Ours v v 89.50
Ours v v v 93.17

size of our downstream task is 64 (or 128). The learning
rate is initialized as 0.001. We create a linear scheduler to
vary the learning rate over the training process such that at
every 5 epochs for CMU-MOSEI [43] and every 100 for
RAVDESS [71]], we multiply the learning rate with 0.9 (notice
that RAVDESS dataset is much smaller than CMU-MOSEI).
We do not apply any “spatial” data augmentation (e.g., random
crops, blurs or color distortions), but data sampling can have
overlapping sequences. For example, a video segment from ¢
to t+ 10, and another video segment from ¢+ 5 to ¢+ 15 can be
used in the same training. This is referred as augmentation in
the temporal dimension. We set the number of epochs to 2000,
but we also define a patience parameter such that: if after
100 consecutive epochs the validation performance does not
change, then we stop the training. In practice, the maximum
number of epochs was never been reached because the patience
parameter stopped the training before. The temperature scalar
T is taken as 0.07.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Evaluation Metrics

We used the speech part of RAVDESS dataset [71], con-
taining 2880 audio-visual recordings acted by 24 professional
actors pronouncing two lexically identical statements. Each
recording was labeled in terms of one of the eight categorical
emotions (anger, happiness, disgust, fear, surprise, sadness,
calmness and neutral), while the emotions were expressed
with two intensity (normal or strong). RAVDESS is class-
balanced except the neutral class, which was elicited 50% less
time than the other emotion classes. We adapted two cross-
validation settings following the methods [42], [48]], [27], [28]],
(131, [72], [44], [S3], [12], [52]]. The first setting considers the
identities of the actors such that the training (validation) and
the corresponding testing k-folds have no overlap in terms of
actors (shown as actor-split=v hereafter). The second setting,



TABLE 11
RESULTS OF THE PROPOSED AND THE BASELINE METHODS ON CMU-MOSETI [43] IN TERMS OF WEIGHTED ACCURACY (w-ACC) AND F1 MEASURE.
WOUT/ TEXT STANDS FOR THE EXPERIMENTS WHEN THE TEXT MODALITY IS NOT USED WHILE ALL OTHER MODALITIES ARE USED.

Methods Happy Sad Anger Surprise Disgust Fear Overall
w-ACC Fl1 w-ACC Fl1 w-ACC F1 w-ACC Fl1 w-ACC Fl1 w-ACC Fl1 w-ACC Fl1
Late Fusion 59.71  60.17 5417 2797 5458 3458  50.01 3.31 5429 3410 5492 2283 54.60  30.50
Attention Mec. 6127  61.61 55.80  36.09 5492  37.06 50.34 5.66 55.84  44.15 5725 4371 5590  38.00
Ours wout/ text 6396  61.84  50.71 1241 5488 2659  50.30 2.76 5837 3544 5479 2756 5550  27.77
Ours 68.82 6920 6293 5570 6791 70.09 6293 7273 7291 7425 6449 7485 66.70  69.50

TABLE III
RESULTS OF THE PROPOSED METHOD AND THE SOTA MER METHODS
TESTED ON RAVDESS [71]]. ATT STANDS FOR ATTENTION MECHANISM.

Methods Actor Split  Feature Learning  ACC (%)
Human performance [71] - - 80.00
Ghaleb et al. [42)] v Supervised 67.70
Ghaleb et al. [48] v Supervised 69.40
Ghaleb et al. [48] (W/ATT) v Supervised 76.30
Radoi et al. [27] v Supervised 78.70
Ours v Unsupervised 78.54
Beard et al. [44] Supervised 58.30
Song et al. [28] Supervised 90.00
Tiwari et al. [52] Supervised 93.30
Ours Unsupervised 93.17

instead, applies standard k-fold cross-validation (i.e., actor-
split=X). In both settings, k was taken as 10 and the reported
results are in terms of accuracy (ACC), which is averaged over
the 10-folds, supplying fair comparisons with the MER SOTA
[42], (481, [27], 28], [44], [53]], [52]. As the same statements
are being repeated by the actors in RAVDESS dataset [71],
the proposed method (as well as the SOTA) are based only on
visual and acoustic modalities.

The CMU-MOSEI [43] is the largest multimodal in-the-
wild dataset in the MER domain. It consists of more than 23K
utterances, belonging to more than 1000 speakers, collected
from YouTube videos. Each utterance is labeled with six
emotions: happiness, sadness, anger, fear, disgust, and surprise
with a [0,3] Likert scale for the presence of each emotion
class. Following [43], [21], [41], [29], [26l, [46], [14], [15],
[16], [17], the emotions were treated as either present or
not present (i.e., binary classification), while more than one
emotion can be present at the same time, making the task
a multi-label problem. There exist (= 3000) not-correctly
aligned sequences across the modalities. As our approach does
not require strict data alignment, we used all sequences as
supplied in CMU-MOSEI SDK [73]]. In other words, we did
not apply any data cleaning, e.g., as in [21]]. We also used the
recommended dataset split and the evaluation metrics in [43],
namely weighted accuracy [74] (w-ACC) and F1-measure.

B. Comparisons with the Baseline Methods

We compare the proposed approach with the following
baseline methods. These baselines are all supervised such
that cross-entropy and binary cross-entropy losses were used
for RAVDESS [71]] and CMU-MOSEI [43], respectively. The

corresponding results are given in Tables [I] and
Unimodal Learning. Each modality was trained with its
associated backbone (described in Sec. [[TI-A)) followed by two
fully connected (fc) layers with a ReL.U activation function.
The best results were obtained with the following parameter
settings. For acoustic data, the learning rate was initialized
with 0.001 and decreased by multiplying it with 0.9 at every
10 epochs. The batch size was 32 and number of epoch was
100. For facial images, the learning rate was 0.01, number
of epoch was 150 and the momentum was 0.9. For facial
landmarks, the learning rate was 0.001, momentum was 0.9
and the number of epochs was set as the proposed method
with patience parameter.

Late Fusion. Recall that late fusion was applied by several
SOTA methods, e.g., [27], [28], [26]. Given the modalities
and the backbones described, we concatenated the feature
embeddings of each modality, and fed them to a shallow
network composed of two fc layers with a ReLU activation
function. The batch size was taken as 32, the number of
epochs was set by the patience parameter, the learning rate
and momentum were taken as 0.001 and 0.9, respectively.
Attention Mechanism. As mention in Sec. |lI| attention mech-
anism has been frequently applied in MER, hence we adapted
it as a baseline too. We first concatenated the feature em-
beddings obtained from each modality (512 features extracted
from each backbone as in our method) and then applied the
multi-head attention mechanism of [60]. The batch size was
64, the learning rate was 0.001, and the number of epochs was
set to 2000 with the patience parameter described in Sec.
The same scheduler as the proposed method was used.

As seen in Table[l} our unsupervised feature learning method
outperforms all of the supervised baselines when acoustic
and facial landmarks are involved. It is notable that, in the
visual domain, the facial landmarks are more effective than
the facial images. Out of all baseline methods, late fusion
and attention mechanism surpass the unimodal setups, while
attention mechanism achieves slightly better results than the
late fusion. Overall, all methods perform better in the actor-
split=X setting compared to their actor-split=v/" counterpart.
This is perhaps as a result of having more training data
in the actor-split=X setting. With reference to Table [ we
have further investigated the contribution of used modalities
with respect to different emotions by inspecting the confusion
matrices. Our observation is that there is no particular modality
or a pair of modality which performs better for a specific



TABLE IV
PERFORMANCE COMPARISONS AMONG THE PROPOSED METHOD AND THE SOTA MER METHODS TESTED ON CMU-MOSETI [43]] DATASET. THE
RESULTS THAT OUR METHOD SURPASSES ARE GIVEN IN YELLOW .

Methods Happy Sad Anger Surprise Disgust Fear Overall
w-ACC F1 w-ACC F1 w-ACC F1 w-ACC Fl1 w-ACC Fl1 w-ACC Fl1 w-ACC F1
Unsupervised Feature Learning Methods
CAE-LR [25] 64.70 65.60 53.20 55.60 61.80 61.90 57.10 70.70 69.00 70.10 60.40 69.20 61.03 65.52
Ours 68.82 69.20 62.93 55.70 67.91 70.09 62.93 72.73 72.91 74.25 64.49 74.85 66.70 69.50
Fully Supervised Methods
MESM [21] 64.10 72.30 63.00 46.60 66.80 49.30 65.70 27.20 75.60 56.40 65.80 28.90 66.80 46.80
Zhang et al. [15] 71.70 - 64.30 - 66.60 - 62.30 - 72.50 - 64.60 - 67.00 -
FE2E [21] 65.40 72.60 65.20 49.00 67.00 49.60 66.70 29.10 77.70 57.10 63.80 26.80 67.60 47.40
Graph-MFN [43] 66.30 66.30 60.40 66.90 62.60 72.80 53.70 85.50 69.10 76.60 62.00 89.90 62.35 76.33
Delbrouck et al. [41] - 64.00 - 67.90 - 74.70 - 86.10 - 83.60 - 84.00 - 76.72
Huynh et al. [51] 62.70 63.00 54.40 69.70 59.60 74.30 50.60 85.70 66.00 81.30 52.90 86.40 57.70 76.73
Khare et al. [49] 68.10 68.20 64.30 72.40 67.30 74.80 65.10 87.70 73.60 82.40 63.00 86.60 66.90 78.68
CIA [46] 51.90 71.30 61.80 72.90 67.40 74.70 58.20 86.00 74.10 81.80 63.90 87.80 62.88 79.08
Tsai et al. [14] 71.00 71.00 75.00 72.10 78.30 75.00 90.50 86.10 83.00 82.50 91.70 87.80 81.58 79.08
Wen et al. [16] 72.50 72.60 75.60 70.70 77.10 74.90 90.60 86.10 85.00 83.20 91.70 87.80 82.08 79.22
Shenoy et al. [26] 70.00 68.40 76.10 74.50 83.10 80.90 87.40 84.00 90.30 87.30 89.70 87.00 82.77 80.35
M3ER [29] - 78.00 - 87.30 - 81.60 - 93.20 - 84.40 - 91.80 - 86.05

emotion class(es).

Given the better performances of late fusion and attention
mechanism compared to unimodal learning in Table [ we
inherited them to test on CMU-MOSEI dataset [43]] when four
modalities (text, facial images, acoustic and facial landmarks)
are used. Additionally, in order to investigate the contribution
of the text modality, we compare the results of the proposed
method with the performance of the proposed method when
the text is discarded (shown as wout/ text). The corresponding
results can be seen in Table [l Our method outperforms the
baselines for all emotion classes (especially for surprise) as
well as on average (see Table . Also, the performances
of our method do not fluctuate across different emotion
classes, meaning that our method generalize better than the
baseline methods. In overall there exist a drop of 11.2% and
41.73% for w-ACC and Fl-measure, respectively, when the
text modality is discarded from the pipeline of the proposed
method, showing the positive contribution of the text modality.

C. Comparisons with the State-of-the-art Methods

We compare our approach with several SOTA MER meth-
ods. Concerning RAVDESS [71]], the performances are given
in Table The fact that “human performance” is not 100%
presents the difficulty of MER task. It is remarkable that
our approach surpasses several supervised competitors: [42],
[48], [44], [28] with a margin of 2-35% despite working
in a more difficult (unsupervised) setting. It also performs
on par with supervised approaches: [27], [52]. The results
for CMU-MOSEI [43] are given in Table There exist a
very recent unsupervised feature learning approach (namely
CAE-LR [25]) tested on CMU-MOSEI [43] for multimodal
sentiment analysis. CAE-LR [25] achieved the best results for
multimodal sentiment analysis compared to other unsupervised
counterparts. Motivated by this, we adapted the authors’
code for MER. Instead of applying Logistic Regression, we

performed Linear Evaluation [58], which is the common
protocol for unsupervised learning if the downstream task is
classification (notice that we apply it for the proposed method
as well, i.e., the prediction layer). For all emotion classes and
on overall, our method achieves much better results than CAE-
LR [235]], showing the effectiveness of the contrastive loss in
multimodal setting compared to convolutional autoencoders.
It is worth noting that, on average, our method is better
than several fully supervised techniques: MESM [21]], FE2E
[21], Graph-MFN [43]], [51], CIA [46]. Considering that these
methods integrate relatively complex supervised techniques;
attention mechanisms, transformers, graphs, the better perfor-
mance of our method is very promising.

V. CONCLUSION

We presented an unsupervised multimodal feature learning
approach, which was tested on discrete emotion recognition.
Our method is a pioneer in the MER litreature, being based
on pairwise contrastive learning. Experiments show that the
performance of our approach is better than the supervised
baselines and unsupervised counterpart, while being competi-
tive to several complex supervised SOTA and even surpassing
a few. Being an unsupervised feature learning method, the
proposed approach is transferable to other domains without
retraining (not even tuning) the representation model itself.

The proposed method keeps the modality pairings the same
for all data (i.e., emotions) and the way we learn the features
gives equal importance to each modality. An alternative could
be having different modality pairings for different emotion
classes. This will be further investigated as future work.
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