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Abstract: Background and Objective: The automatic control of anesthesia is a demanding
task mostly due to the presence of nonlinearities, intra- and inter-patient variability and
specific clinical requirements to be meet. The traditional approach to achieve the desired
depth of hypnosis level is based on knowledge and experience of the anesthesiologist.
In contrast to a typical automatic control system, their actions are based on events that
are related to the effect of the administrated drug. Thus, it is interesting to build a
control system that will be able to mimic the behavior of the human way of actuation,
simultaneously keeping the advantages of an automatic system.
Methods: In this work, an event-based model predictive control system is proposed and
analyzed. The nonlinear patient model is used to form the predictor structure and its linear
part is exploited to design the predictive controller, resulting in an individualized approach.
In such a scenario, the BIS is the controlled variable and the propofol infusion rate is the
control variable. The event generator governs the computation of control action applying
a dead-band sampling technique. The proposed control architecture has been tested in
simulation considering process noise and unmeasurable disturbances. The evaluation has
been made for a set of patients using nonlinear pharmacokinetic/pharmacodynamic models
allowing realistic tests scenarios, including inter- and intra-patient variability.
Results For the considered patients dataset the number of control signal changes has been
reduced of about 55% when compared to the classical control system approach and the
drug usage has been reduced of about 2%. At the same time the control performance
expressed by the integrated absolute error has been degraded of about 11%.
Conclusions: The event-based MPC control system meets all the clinical requirements. The
robustness analysis also demonstrates that the event-based architecture is able to satisfy the
specifications in the presence of significant process noise and modelling errors related to
inter- and intra-patient variability, providing a balanced solution between complexity and
performance.

1. Introduction

In total intravenous anaesthesia (TIVA) the main goal is to achieve a desired patient state during surgical interven-
tion addressing three main aspects: analgesia, hypnosis and muscular relaxation. In the traditional approach, the
anaesthesiologist manually adjusts the amount of drugs basing on patient’s vital signs and on their experience [1].
Due to this, the whole process relies on the human, who can be affected by stress, lack of continuous attention

1



and tiredness (especially during lengthy interventions) and this can provoke non-optimal drugs dosage [2, 3].
As a consequence, this can lead to postoperative complications originated by under or over dosage of the drug.
Some of these issues can be addressed by an automatic control for drug infusion system designed to support the
anaesthesiologists in this complex task [1, 2, 4]. From the control system point of view, TIVA is a multiple-input
multiple-output (MIMO) system [5]. However, there still exist limitations like the lack of the online pain measure
that prevent the design and implementation of the complete MIMO control system [6, 7]. For this reason, most
of the closed-loop control systems are focused on the single-input single-output (SISO) problem where only one
drug and one controlled variable are considered [3, 8–10]. Alternatively, a MISO (multiple-input single output)
approach can be implemented, where the control problem takes into account the drugs coadministration and their
resulting effect on a single controlled variable [10, 11]. In this work we focus on a SISO control problem, that is,
the depth of hypnosis (DoH) task, where the dosage of the hypnotic drug propofol is the control variable and the
Bispectral Index Scale is the controlled variable.

The control systems development for the DoH has attracted the attention of researchers mainly due to its chal-
lenging and complex nonlinear nature [5,12]. Moreover, important effort has been put on Model Predictive Control
(MPC), because of its anticipatory character and constraints handling mechanism [13,14]. The application of MPC
techniques to the control of the DoH in the anaesthesia process using propofol has been analyzed in several works,
e.g. [12–20]. This interest is motivated mainly by the possibility of predicting the patient response to drug ad-
ministration [14,17]. In particular, the methods described in [12,15] are focused on inter-/intra-patient variability,
targeting the most vulnerable aspect in MPC approaches, namely, model uncertainties. These approaches usually
results in a complex control system with heavy computational requirements and re-tuning or adaptation is not
trivial [20]. From the clinical perspective they are also interesting since they can be used to design personalized
control for an individual patient, by exploiting a parameterized patient model based on individual physiological
characteristics like gender, weight, height and age to improve the prediction capability [3, 21, 22].

Disregarding the predictive control approach used, most of the mentioned developments are affected by a sig-
nificant degradation of the control performance when the process noise is considered [11,17,23,24]. The presence
of noise in the control system usually results in a noisy control action that, in many cases, implies a non-optimal
use of control resources. This problem can be partially addressed by placing a noise filter in the feedback-loop.
However, the filtering action needs to be a compromise between noise attenuation and process dynamics modifi-
cation [22]. Unfortunately, the same problem appears in the DoH control task and this issues is even more critical
when the predictive control approaches are used. Taking into account this problem, an event-based control system
can be used as a flexible alternative to classic time-based schemes as it can reduce the noise impact on the con-
trol action variability providing efficient use of control resources [22, 23, 25]. The application of an event-based
paradigm enables the possibility to trigger the controller task basing on the controlled variable dynamics rather
than a time progress, which is the main difference when compared to the classical time-based control system. The
event-based control approach is an effective and efficient control technique that was already proposed for biopro-
cesses and energy systems, where the optimal usage of control resources is critical [26]. Usually, these savings in
resource usage are made at expense of the control performance, because the event-based control system focuses
on keeping the controlled variable within the established limits rather than at a fixed reference value. These prop-
erties are also interesting from the DoH perspective in the anaesthesia process. The event-based approach for the
DoH was already investigated in [23, 25, 27], where the control system was built using a Proportional-Integral-
Derivative (PID) controller and its modification. It was shown that the proposed control approaches are able to
reduce the number of control system computations, replicating the anaesthesiologist way of actuation. Event-based
MPC controllers are significantly less investigated in context of the anesthesia process. A preliminary study was
presented in our previous work [20] where the DoH was considered. Therein, a virtual band on the actuator was
imposed and taken into account in the optimization procedure and, consequently, the controlled process was up-
dated in an asynchronous way. The system was verified on one representative patient proving the feasibility of such
a method. However, to the authors best knowledge and available bibliographic references, there is no event-based
predictive controller with sensor dead-band sampling applied to the DoH in the anaesthesia process. Considering
the described potential advantages for the application of event-based control in anaesthesia, a broader hypothesis
analyzed in this paper from a clinical point of view is the following: would event-based control reduce the usage
of drug thereby improving patient outcomes in terms of recovery and minimal risk for over-dosing?

Taking into account the introduced features and possible benefits, in this paper an event-based MPC control
system with dead-band sampling is proposed. Thus, the main contribution of this work consists in the design,
development and evaluation under realistic scenario of a predictive event-based control system. The proposed
control system exploits a nonlinear pharmacokinetic/pharmacodynamic (PK/PD) patient model for the design of
a predictive controller architecture based on the Generalized Predictive Control algorithm. The whole system is
based on a previously proposed control system for the DoH [21], where the nonlinear behavior of the DoH process
is compensated using the inverse of the nonlinear Hill function. Furthermore, the robustness of the controller is
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augmented by the external predictor and an additional filter. In the proposed event-based approach, the control
action is updated with a high frequency when the controlled variable goes outside the established tolerance. On
the contrary, when the controlled variable remains withing the defined band, the control action is updated with a
low sampling frequency, limiting the control effort. Simultaneously, this provides the safety measure that assures
the required performance for the closed-loop control system. Thus, the event-based system works with a variable
sampling rate, by adapting the controller invocation to the patient DoH represented by the BIS, that is, by adapting
the control effort (propofol dosage) to achieve the desired clinical requirements. With this working principle, the
control system mimics the anaesthesiologist way of actuation, keeping all the advantages of the closed-loop control
at the same time. The designed controller has been extensively tested under realistic scenarios, taking into account
real noise extracted from clinical test as well as unmeasurable disturbances. The obtained results are compared
with the classic MPC control scheme from [11], which has been designed by explicitly taking into account the
noise issue in the DoH control problem. Moreover, the robustness to inter- and intra-patient variability is evaluated
by applying a Monte Carlo technique to provide a population wide patients distribution.

The paper is structured as follows. Section 2 is devoted to the propofol PK/PD model description that is ex-
ploited in the developed control system. The clinical requirements and control specifications are provided in Sec-
tion 3. In Section 4, the proposed event-based MPC control architecture is proposed considering the synthesis,
the design, the tuning and the implementations aspects. The simulation study used for the evaluation of proposed
control system in presented in Section 5. This also includes the inter- and intra-patient variability analysis. Finally,
conclusions are summarized in Section 6.

2. Pharmacokinetic-pharmacodynamic model of propofol

The PK/PD model used to describe the patient response to the propofol administration is well known from the
literature [28–30]. In particular, regarding the PK, a three compartment mammillary system can be modelled.
A state-space model can be derived, where the states are the amount of drug in each modeled compartment. In
this case, the input is the drug dosage and the output is the plasmatic concentration, which is proportional to the
concentration of the drug in the central blood compartment. The conversion of this model in a transfer function
form yields a linear third-order PK term:

PK(s) =
Cp(s)
U(s)

=
1

V1

(s+ k21)(s+ k31)

(s+ p1)(s+ p2)(s+ p3)
(1)

where Cp is the plasmatic concentration, U is the propofol infusion rate, p1, p2 and p3 are parameters that depend
on the demographics of the patient (age, weight, height, gender), V1 is the volume of the first compartment and
k21 and k31 represent the flow between the compartments [31]. The PK term is connected in series to the PD part,
which consists of a first-order linear system in series with a static nonlinearity (Hill function). The linear part
of the PD has the plasmatic concentration as input and the effect site concentration Ce as output and it can be
modelled by means of this transfer function:

PD(s) =
Ce(s)
Cp(s)

=
ke0

s+ ke0
(2)

where ke0 = 0.456 [min−1].
Finally, the Hill function expresses the relationship between the effect-site concentration and the BIS value. Its
expression is [14, 32, 33]:

H = E0 −Emax

(
Ce(t)γ

Ce(t)γ +Cγ
e50

)
, (3)

where E0 is the patient’s measured value of the BIS before the beginning of the anesthesia procedure, Emax is the
maximum effect that can be reached by the drug administration, γ is the steepness of the function (in other words,
it means the sensitivity of the patient to the propofol), and Ce50 is the drug concentration that is needed in order to
achieve half of the maximal effect.

By grouping the two linear parts PK(s) and PD(s) into one linear term P(s), the system of Figure 1 results,
where the propofol infusion rate is the input and the BIS is the process output. Moreover, the intermediate variable,
between P and the Hill function block H is the effect site concentration Ce. The resulting model has a Wiener
structure and this configuration will be used to build the event-based controls system.

2.1. Patients dataset

The proposed control technique is designed by taking into account the dataset of patients that has been previously
exploited for control system design and verification [13, 14, 21]. This dataset is composed of twelve individuals
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Fig. 1: Patient model with resulting Wiener structure.

but an additional thirteenth patient, determined as the algebraic average of the other individuals, is included. Then,
the dataset will be used to analyze intra-patient variability by applying a Monte Carlo technique, while another
big dataset will be created to evaluate the inter-patient variability.

3. Clinical requirements and limitations

In the designed event-based control architecture the control variable is the propofol infusion rate and the controlled
variable is the desired DoH level, which is measured through the BIS signal. The anesthesia process is divided
into two phases. The first one, the induction phase, is a time period necessary to achieve desired level of the
DoH from the patient’s awake state. Then, the second phase begins. Its the main goal is to maintain the DoH
level at the desired range despite the disturbances and it is referred as the maintenance phase. Following the
clinical requirements, the desired level of the DoH corresponding to BIS value of 50, should be achieved in
approximately 3 minutes in the induction phase. However, this is not a hard constraint and the reference must be
reached within 5 minutes to minimize an uncomfortable situation for the patient during intervention. Additionally,
in the maintenance phase, the BIS should be kept between 40 and 60. The value should be maintained within the
defined range regardless of the process noise and disturbances (mainly originated by nociceptive stimulations).
Other limitations that need to be considered are related to the physical limitations and clinical recommendation in
the drug dosage system. The physical minimum infusion rate is 0 [mg/s] and represents the non-infusion of the
drug. However, following a safety measure applied in the clinical practice, a minimum nonzero baseline infusion
ub should be used. This baseline infusion is used to avoid null values for the drug infusion system even if the value
of the BIS is below the desired reference. The baseline infusion for propofol is therefore set to ub = 6 [mg/kg/h]
following the recommendation in [34]. Moreover, in the induction phase, the maximum dosage limit is set to 6.67
[mg/s], which originates from the used pump and propofol concentration (Graseby 3400, Smiths Medical, London,
UK and Diprivan 20 [mg / ml]). For the maintenance phase the maximum infusion rate is set to 4.00 [mg/s], which
reflects the clinical practice for the considered type of the surgery.

4. Event-based MPC control scheme

The proposed control scheme, shown in Figure 2, is based on the predictive control architecture previously pre-
sented in [21], which allows the implementation of a personalized control system. It consists of three main com-
ponents: an event generator, a controller structure and an external predictor [21,35]. The event generator provides
the information for the controller structure when a new control action should be computed due to a new event oc-
currence. The controller structure consists of a set of feedback GPC controllers, where one of them is selected in
accordance with the actual sampling period (time elapsed between two consecutive events). Moreover, the external
predictor (composed of P̃, H̃−1 and Fd blocks) is used to compensate the nonlinear element of the patient model,
making possible to exploit a linear MPC such as the GPC algorithm. In this scheme, the controlled variable y(t)
is the BIS signal, which is monitored continuously with a sampling time Tbase and the control variable u(t) is the
propofol infusion rate, which is updated with a variable sampling time Tf . In such a way, the new control action
is computed by the selected controller when a new event is generated. The detailed functionalities and working
principle of main components are provided hereafter.
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Fig. 2: Event-based control approach for propofol anaesthesia.

4.1. External predictor

The main goal of the external predictor is to compensate for the nonlinear element of the patient model, denoted
as H̃. To this end, the inverse of average Hill function H̃−1 is calculated [21]:

H̃−1 =Ce50
γ

√
Ē −E0

E0 − Ē −Emax

and is used to relate the BIS and the estimated Ce(t) of the patient (note that Ē refers to the actual BIS measure). In
the control architecture, P̃ is the linear part of the PK/PD model of the patient. Its input u(t) is the propofol dosage
rate and its output is C̃e(t), which is the estimated effect site concentration Ce(t). Then, w(t) is the filtered value of
r̂(t), which represents the estimated equivalent effect site concentration for the desired BIS reference value r(t).
To obtain the r̂(t) value, the inverse Hill function is employed. Thanks to the application of the external predictor,
the control problem is reduced to the linear system that controls the effect site concentration Ce(t) that needs to
be achieved for desired BIS level. When the process is affected by modelling uncertainties or by disturbances d(t)
(induced by surgical intervention), the difference between the effect site concentration Ĉe(t) obtained from the
patient and the effect site concentration C̃e(t) obtained from the model is different from zero. This signal signal
passes through the first-order low-pass filter Fd , defined as

Fd(s) =
1

Tds+1
, (4)

which attenuates the effect of disturbances and uncertainties and it is denoted as θ(t). Finally, the controller
structure is used to provide the closed-loop control, where the w(t) value is used as the reference for the set of
GPC controllers and the feedback signal is ỹ(t), which contains disturbances from the process. The reference
first-order low-pass filter Fr, defined as

Fr(s) =
1

Trs+1
, (5)

is used to reduce the undershoot in the induction phase and it is designed using a two degree of freedom approach
(more details on tuning procedure is provided in Section 4.7).

It needs to be highlighted that predictor blocks are based on an inaccurate PK/PD patient model (since real
values are unknown) and in the predictor structure they are denoted with the “˜” mark to clearly differentiate them
from the actual ones. More detailed information regarding the compensation scheme can be found in [21].
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4.2. Controller Structure

The event-based control scheme shown in Figure 2 has been implemented using the idea introduced in [35] and
adapted to control the DoH in anaesthesia process. The proposed architecture operates using the following working
principle:

• The BIS signal process output is monitored within a constant sampling period Tbase at the event generator
block, while the control signal update is obtained at an event occurrence time instant and applied to the
infusion pump with a variable sampling period Tf , that is, in an asynchronous way.

• Tf is defined as a set of multiple values of Tbase and results in Tf = f Tbase, f ∈ [1,nmax]. Additionally,
Tf ≤ Tmax, being Tmax = nmaxTbase the highest sampling period, which is selected to provide a minimum
performance for safety reasons.

• For the anaesthesia process Tbase and Tmax are defined taking into account clinical practice and specifications.

• Once the control signal is sent to the infusion pump at time instant t, the DoH process state is checked at
the event generator block within the base period Tbase. The event generator block verifies if the controlled
variable meets some specific condition and for this the BIS signal is used. When the condition is satisfied,
a new event is triggered with resulting sampling period Tf and a new control signal is calculated by the
controller. If no events occur, the controlled process is updated in any case after a Tmax time interval to
assure the minimum performance.

• Following the introduced working principle, the controller will compute the control signal using a variable
sampling period Tf . Due to this, a set of predictive feedback controllers will be used, each of them designed
for a specific sampling period Tf = f Tbase, f ∈ [1,nmax]. Moreover, to avoid adverse bumps during controller
commutations, signals resampling techniques are applied.

4.3. Event-based predictive control algorithm

The developed control system uses a model predictive controller exploiting the GPC algorithm. To implement the
proposed control architecture, a set of controllers is designed, one for any possible sampling rate Tf . Each GPC
controller of the set is implemented and designed using the linear part of the model P (presented in Section2),
which is discretized for any sampling rate Tf .

In general, the GPC algorithm provides the control sequence that minimizes the cost function defined as [36]:

J =
N f

2

∑
j=N f

1

δ
f [ŷ f (t + j|t)−w(t + j)]2 +

N f
u

∑
j=1

λ
f [∆u f (t + j−1)]2 (6)

where ŷ f (t + j|t) is a prediction of the system output, ∆u f (t + j−1) are increments of control signal and w(t + j)
refers to the controller setpoint over the prediction horizon. The GPC tuning parameters are: the minimum and
maximum prediction horizons N f

1 and N f
2 , the control horizon N f

u , the future error scaling index δ f , and the
control weighting factors λ f [36]. Taking into account that there is no time delay in the process, the value of
N f

1 is set to 0 and, consequently, the resulting prediction horizon will be referred as N f = N f
2 for simplicity. The

GPC algorithm provides the future control actions u f (t),u f (t +1), ...,u f (t +N f
u −1) that will drive the controlled

variable y f (t + j) close to desired reference w(t + j). This is performed by minimizing the J cost function through
QP (Quadratic Programming) optimization. During this procedure the constraints of the process are also taken
into account during the calculation of the optimal control move.

4.4. Event generator

In the proposed control system, the decision on when new events are triggered is managed by the event generator
block shown in Figure 3. This element considers two conditions and when one of them is meet, a new event is
triggered. When a new event is generated, the current value of ỹ(t) is send to the control structure with variable
sampling rate, forming the y f vector and a new control value is computed (propofol infusion rate). The first
condition is used to monitor the BIS signal and exploits the dead-band sampling method [35], generating a new
system event when the absolute value between two variables is bigger than a established interval β . The condition
can be formalized as:

|r(t)− y(t)|> β (7)

and detects when the process output, y(t) = BIS(t), differs from the desired set-point r(t), more than a specific
threshold β . Note that the controlled variable is ỹ(t); however, it is more natural for the anaesthesiologist to use
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Fig. 3: Event generator block details.

the BIS values, as the threshold for its allowable range is clearly defined, being this the main reason for using
this signal for event generation. The second complementary condition is a safety measure, used for minimum
performance requirements and is a time-based condition. In this case, the maximum time interval between two
consecutive events (between two control signals computation), is given by Tmax, that is,

t − tlast ≥ Tmax (8)

where tlast refers to the time instant when the last event was triggered. Both criteria are verified with the shortest
sampling time Tbase. However, the events are triggered with a variable rate Tf . Finally, the events occurrence
will determine the feedback-loop sampling time that will produce the control signal updates in an asynchronous
way [35].

4.5. Signal sampling, resampling and reconstruction techniques

As mentioned previously, the calculation of a new control signal is performed in an asynchronous way, with
variable sampling rate Tf . Due to this, to execute the GPC algorithm, the past samples of the process output and
of the control signal needs to be accessible for each sampling rate Tf . For this, a resampling and reconstruction
techniques must be applied for corresponding signals.

• Resampling - Following the introduced working principle, the controller structure block gets the new infor-
mation from the controlled process only when a new event is triggered. The received data is accumulated
in the controller structure element and is resampled to create a base vector yb that includes the previous
samples of the controlled variable with Tbase rate. This procedure is accomplished by applying a linear inter-
polation technique among two consecutive signal values. Then, the obtained signal is sampled with the Tbase
frequency and stored. In fact, the yb(k) vector is created with k = 0,Tbase,2Tbase,3Tbase, . . . . After that step,
the required samples with past information need to be provided with the new sampling rate Tf , that creates
a new vector y f of past values sampled with Tf rate. Finally, the y f vector contains the past process data
sampled with actual sampling rate Tf and that information is used to compute the next value of the control
signal.

• Reconstruction - This procedure is applied to the control signal and is executed in the opposite direction
than for the controlled variable. In the proposed scheme, the control signal values are always saved with
a Tbase sampling rate and stored as the ub vector. In the first step, the required past values are calculated
and then the update of ub is performed. For the new sampling rate Tf , the past information is calculated
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using ub and accumulated in temporary vector u f
p. Subsequently, the u f

p and y f vectors are used to feed the
GPC algorithm and to compute the new control signal u f (Tf ) = ub(k). Finally, the ub vector is updated by
keeping the control action constant among two successive system events.

4.6. Control system constraints

The constraints handling mechanisms is one of the most important advantages of the MPC approach. From the
practical standpoint, this is an important feature since it allows all the system limitations to be included during the
computation of the control variable, which usually results in a better performance.

Following the information provided in Section 3, the minimum value of the control signal can be defined as
umin = ub [mg/s], where ub refers to baseline infusion for propofol that has been set to ub = 6 [mg/kg/h]. The
saturation of the control variable are defined separately for the induction and maintenance phases and are set
to umax = 6.67 [mg/s] and umax = 4 [mg/s], respectively. Following the QP formulation, the saturation limits
umin ≤ u(t)≤ umax are expressed as a set of inequalities on control signal increments:

lumin ≤ T∆u+u(t −1)≤ lumax

where T is a lower triangular matrix of ones (N ×N) and l is a vector of ones (1×N). Moreover, the slew-rate
infusion pump limitations are directly included in the vector ∆u of the control action increments. Such a type of
constraints can be represented using the ∆umin ⩽ u(t)−u(t −1) ⩽ ∆umax inequality. The vectorial representation
is as follows:

l∆umin ⩽ ∆u ⩽ l∆umax

Also these constraints are defined for each anaesthesia phase separately to match the performance requirements.
For the induction phase, they are set to have −1 ⩽ ∆u ⩽ 1 [mg/s] and for the maintenance phase −2 ⩽ ∆u ⩽
2 [mg/s]. The aforementioned constraints are implemented as the series of inequalities limiting the controlled
variable and are included into the QP optimization problem [21, 36].

4.7. Control system tuning

There are three parameters that are related to the event-based mechanism and that have influence over the control
performance: they are the dead-band sampling threshold β , and the Tbase and Tmax sampling rates. In the analyzed
system, Tbase has been selected as 1 second and matches the BIS monitor data rate. Then, Tmax has been set to
10 seconds (that is, n=10) because of safety reasons, as this ensures the minimal performance of the closed-loop
control system [11]. Indeed, in a previous work [22], it was shown that the sampling period of 10 second is the
maximum value that allows the clinical requirements to be met in terms of accuracy and disturbance compensation
capability in the presence of measurement noise. Additionally, the value of β has been fixed to 5. With this
threshold, with dead-band sampling and for a BIS reference set to 50, the event-based control system working
interval is BIS=50±5, being inside the desired tolerance for the desired BIS range between 40 and 60 with the
necessary safety margins.

Moreover, it is necessary to design the set of GPC controllers to assure the performance defined by the clinical
requirements. For this, the GPC parameters need to be tuned. By taking into account the specific requirements, it
is worth handling the set-point following and disturbances rejection tasks (that is, the induction and maintenance
phases) separately. In fact, from the control system point of view, each of this tasks requires different properties
(e.g. disturbance compensation in maintenance phase requires aggressive response of the controller, whereas more
conservative tuning is necessary in the induction phase to reduce the undershoot). Due to this, the controller
is tuned for maintenance and induction phase separately, applying a two degree-of-freedom approach, that is,
dividing the tuning procedure into two stages [37]. At the first stage, the GPC controllers from the set and the Fd

filter are designed. During this procedure the parameters N f , N f
u , λ f , and Td (related, respectively, to the prediction

horizon, the control horizon, the control signal weighing factor and the Fd filter time constant) are obtained using a
Genetic Algorithm (GA) optimization procedure in order to minimize the performance index defined as Integrated
Absolute Error:

IAE =
∫

|r(t)−BIS(t)|dt. (9)

Formally, the following cost function is minimized:

min
N f ,N f

u ,λ f ,Td

max
k∈{1,...,13}

IAEk(N f ,N f
u ,λ

f ,Td), (10)

where IAEk(N f ,N f
u ,λ

f ,Td) refers to the IAE performance measure, calculated from the kth patient of the dataset,
and the objective is to minimize the maximum error obtained for all the dataset of the 13 patients. The schematic
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Fig. 4: Schematic chart for the control system tuning using the GA optimization procedure.

chart for the GA optimization task is shown in Figure 4. The tuning procedure is performed applying the design
rule for event-based GPC from [35], where the tuning of GPC controller for Tbase sampling time is used to derive
tuning parameters of the remaining controllers from the set. The second tuning stage is focused on the set-point
following task and in this case the optimization is simply executed to determine an adequate value of the Fr filter
time constant Tr whereas all the remaining parameters are kept the same as for maintenance phase. Additionally,
the defined control system constraints were active in both stages of tuning procedure. The resulting control system
parameters are summarized in Table 1.

Tbase β n N1 N1
u λ 1 Td Tr

1 5 10 24 2 14.4 47.3 24.6

Table 1: The GPC tuning parameters for Tbase sampling rate.

5. Simulation results

The performance of the proposed event-based control system is evaluated in simulation to verify that the clinical
specifications are met. Simulations have a duration of 20 minutes and include both the anesthesia induction and
maintenance phases. The induction phase starts at minute 0 when the BIS set-point r(t) is changed from 100 to the

9



desired value of 50. Once the BIS target is obtained, the maintenance phase begins. During this phase the ability
of the control system to reject disturbances is assessed. To simulate the occurrence of a disturbance on the BIS
due to surgical stimuli, a double step signal d(t) is applied [11]. It consists of a positive step of amplitude 10 that
occurs at minute 11 of the simulation. It is followed, 5 minutes later, by a negative step of the same amplitude that
brings d(t) back to zero, thus simulating the end of the surgical stimuli. The effect of noise is also considered.
The noise signal already employed in [22], which has been extracted from real clinical data, is added to the BIS.
The noise and disturbance signals are shown in Figure 5. The simulations are performed on the dataset of patients
described in Section 2.1. In these first simulations, a perfect knowledge of the linear element of the patient model
(P̃ = P) is assumed. As regards the Hill function, the average parameters are used instead of the patient’s specific
ones (H̃ ̸= H).
To better show the behavior of the event-based control system the first simulation is performed on the average
patient of the dataset. The results obtained are shown in Figure 6. The top plot shows the BIS signal, the middle
plot shows the propofol infusion rate and the bottom plot shows the behavior of the event generator. In particular,
the presence of a vertical line indicates the generation of an event, while its height represent the resulting sampling
rate. From the BIS plot it is possible to observe that the clinical specifications are satisfied. Indeed, during the
induction phase the BIS reaches the target value in approximately two minutes and during the maintenance phase
the BIS is kept close to the target despite the presence of noise and of the double step disturbance. By observing
the events plot it appears that the controller generates more events, and thus a shorter sampling rate, in those
phases where the BIS is far from the target value. For example, during the induction phase, and between minute
15 and minute 16 when the positive step disturbance occurs and the BIS tends to rise, and between minute 16
and minute 18 when the negative step disturbance occurs and the BIS tends to drop. On the contrary, when the
BIS remains close to the target value, less events are generated, with a consequent longer sampling period. For
example, between minute 8 and minute 11 the maximum admissible sampling rate of 10 seconds is always selected
because the BIS remains close to the target value. The resulting propofol infusion profile is not affected by the
presence of residual noise and it resembles the control action typically performed by an anesthesiologist. Indeed,
the propofol bolus performed in the induction phase is common in clinical practice and the infusion rate remains
constant for long periods of time when the BIS is close to the target. However, the controller promptly responds
to significant deviations of the BIS signal from the set-point value.
The simulation is then performed on all the patients of the dataset. The results regarding the induction phase are
shown in Figure 7. The BIS target is always reached in less than 4 minutes for each patient of the dataset without
undesired undershoots. Only for one patient the BIS falls slightly below 40. This is due to the presence of noise
and it is not significant from a clinical point of view. Once the BIS has reached the target it is properly maintained
within the recommended range from 40 to 60 despite the presence of noise. The results regarding the maintenance
phase are shown in Figure 8. The positive step disturbance occurring at minute 11 is promptly compensated by
the controller without causing undershoots. Only for one patient the BIS drops below 40 but it remains above the
threshold of 30. Also the negative step is properly compensated.
The event-based control system performance is compared with the classical time-based MPC controller developed
in [22], which has been designed to handle the noise in the predictive DoH control system. The performance
indexes used for the comparison are the IAE, the integral absolute value of the control action (IAU), defined as:

IAU =
∫

|u(t)|dt, (11)

and the total variation of the control action (TV), defined as:

TV =
∞

∑
k=1

|u(k)−u(k−1)| (12)

where u(k) and u(k− 1) are the values of the control action at two consecutive sampling instants. The TV index
is a measure of the control effort and it has been previously used to compare an event-based PID controller with
its time-based counterpart [23]. From the anaesthesia process point of view, it is desired to reduce control signal
changes especially taking into account the noisy characteristic of the BIS signal used as feedback information.
Finally, the total number of events generated is also considered. The results obtained for each patient of the dataset
are shown in Table 2. It is worth noting the significant reduction in the number of control signal updates (denoted
in the table as events) provided by the event-based controller with respect to the classic time-based controller. In
the classic controller they equal the simulation time because they are synchronously generated and they match the
sampling period that is equal to 1 second. With the event-based controller the number of control signal updates is
reduced from a minimum of 39.3% up to a maximum of 62.2%, with an average reduction of about 54.3%. This
is not paid off with a reduction of the control performance as indicated by the IAE. Indeed, with the event-based
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Table 2: Performance indexes: comparison between classic time-based controller (Classic) and proposed event-
based (EB) for the patients dataset. The ∆ value refers to the percentage change of the index taking as the reference
the classical time-based system.

IAE[-]∗103 IAU[mg] TV[-] Events[-]
Patient Classic EB ∆ [%] Classic EB ∆ [%] Classic EB ∆ [%] Classic EB ∆ [%]

1 6.49 7.60 17.1 543.7 516.1 -5.1 117.4 115.2 -1.8 1200 574 -52.2
2 8.06 9.15 13.6 563.6 557.8 -1.0 113.4 114.6 1.0 1200 637 -47.0
3 8.07 8.83 9.3 682.2 678.3 -0.6 118.5 101.7 -14.2 1200 501 -58.3
4 5.86 6.95 18.6 549.3 539.9 -1.7 109.4 87.8 -19.7 1200 517 -57.0
5 5.97 6.93 15.9 419.9 405.8 -3.4 86.2 90.5 4.9 1200 566 -52.9
6 7.53 8.70 15.6 637.9 619.3 -2.9 113.0 99.5 -11.9 1200 580 -51.7
7 6.71 7.28 8.5 575.1 555.5 -3.4 114.1 98.9 -13.3 1200 530 -55.9
8 7.54 8.62 14.3 663.2 658.4 -0.7 115.6 100.0 -13.4 1200 534 -55.5
9 10.19 11.56 13.4 566.6 566.4 -0.1 98.9 89.3 -9.8 1200 729 -39.3
10 7.78 8.17 4.9 516.0 504.4 -2.3 78.5 73.8 -5.9 1200 555 -53.8
11 5.69 5.67 -0.4 450.1 437.4 -2.8 94.1 95.2 1.1 1200 454 -62.2
12 5.45 6.02 10.3 451.0 440.0 -2.4 76.2 79.5 4.4 1200 469 -60.9
13 6.93 7.72 11.3 579.8 576.4 -0.6 110.4 99.7 -9.7 1200 484 -59.7

mean - - 11.7 - - -2.1 - - -6.8 - - -54.3

controller there is a small average IAE increase of 11.7% with respect to the time-based controller. However, this
has no relevant deleterious effects on the performance from a clinical point of view. Concurrently, the total amount
of drug used (IAU) and the TV are reduced, on average, of 2.1% and of 6.8%, respectively. This indicates that the
control action is less subject to unnecessary variations introduced by noise.

5.1. Robustness analysis

A robustness analysis with respect to inter-patient and intra-patient variability is also performed. As regards the
inter-patient variability the robustness of the controller over a wide population is assessed. To this end, 500 patients
are generated with a Monte Carlo method (MCM). The patient models are generated by randomly selecting the
gender, and by using a rectangular distribution of age, height and weight between 18-70 years, 150-190 [cm]
and 50-100 [kg], respectively. The Hill function parameters distributions are selected as in [31, 32]. As for the
simulation on the dataset, P is set equal to P̃ and H̃ is selected as the average Hill function. The simulation results
regarding the induction phase are shown in Figure 9. For each of the 500 patients the BIS target value is reached in
less than 3 minutes and the undershoot always remains above the BIS value of 30, thus confirming the satisfactory
results obtained on the design dataset. The simulation results regarding the maintenance phase are shown in Figure
10. For each of the 500 patients the double step disturbance is properly compensated without causing undershoots
of the BIS below the value of 30 and rises of the BIS above the value of 70. As before, the performance is then
compared with that of the classic time-based controller and the results are shown in Table 3. Also in this case the
event-based controller provides a reduction of the number of events, of the TV and of the IAU at the expense of a
slightly greater IAE.
As regards the intra-patient variability, the robustness of the controller with respect to the mismatches of the linear
part of the model is assessed. To this end, for each of the thirteen patients of the dataset, 500 perturbed models
P are generated with a MCM on the PK/PD model parameters using the statistical distribution reported in [31],
while P̃ is determined by using the average parameters values. So, in this case, we have mismatches both in the
linear part of the model (P̃ ̸= P) and in the Hill function model (H̃ ̸= H). As an illustrative example, the set-
point responses for the 500 perturbed models of the average patient of the dataset are shown in Figure 11. Also
in presence of intra-patient variability, the BIS target value is reached in less than 3 minutes and the undershoot
always remains above the BIS value of 30. The load disturbance responses for the same set of perturbed models
are shown in Figure 12. Also in this case the double step disturbance is properly compensated without undershoots
of the BIS below the value of 30 and rises of the BIS above the value of 70. The same results obtained with the
perturbed models of the average patient are obtained also for the perturbed models of the others patients of the
design dataset as shown in Figure 13 for the induction phase and in Figure 14 for the maintenance phase. Also in
case of intra-patient variability, when the performance is compared with that of the classic time-based controller,
it appears that the event-based controller provides a reduction of the number of events, of the TV and of the IAU
that is paid by a slightly greater IAE, as shown in Table 4. It should be highlighted that the obtained results are
important from the clinical practice standpoint since propofol overdosing can lead to undesired effects on the

11



0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10
Real noise profile

0 2 4 6 8 10 12 14 16 18 20

Time [min]

0

2

4

6

8

10

Disturbance

Fig. 5: Noise and disturbance profiles used for simulations.

patient in the form of arterial hypotension and post-operative delirium [38]. In light of these possible problems, it
is advantageous to obtain the desired clinical effect (the DoH level) by using a control technique that ensure the
correct dosage.

Table 3: Performance indexes for inter-patient variability using mean values for analyzed batch.

IAE [-]∗103 IAU [mg] TV [-] Events [-]
Classic 6.30 459.2 91.0 1200

EB 7.68 443.9 87.3 599
∆ 21.8 -3.3 -4.3 -50.13

Table 4: Performance indexes for intra-patient variability using mean values for analyzed dataset of Patients.

IAE [-]∗103 IAU [mg] TV [-] Events [-]
Classic 7.18 551.4 101.1 1200

EB 8.12 538.7 94.8 567
∆ 13.1 -1.9 -4.9 -52.8

6. Conclusions

In this paper an event-based model predictive control system for depth of hypnosis has been presented. The control
architecture employs an external predictor to compensate the nonlinear component of the process and an event-
based GPC algorithm with sensor deadband to reduce the variability of the control signal. The proposed system
provides a reduction of the number of control signal changes despite the presence of process noise and unmea-
surable disturbances. The performance of the analyzed control system has been evaluated using an in-silico study.
In realistic conditions, it was possible to reduce the number of control signal changes of about 55% on average.
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Fig. 6: Results for the average patient 13 using the proposed predictive event-based control system.

On the other side, the control system performance is only 11% less than in the classical time-based framework.
Moreover, the proposed event-based approach was able to reduce the amount of the drug used of about 2.1% on
average. Taking into account these results, the developed event-based predictive control architecture on the one
hand is able to meet the clinical requirements and on the other hand it can reduce significantly the influence of the
noise simultaneously saving the control resources (quantity of administrated drug). Additionally, the execution of
control actions is similar to the anesthesiologist actuation so that it is likely that this kind of controllers can be
more accepted in the clinical practice where the anesthesiologist acts as a supervisor. These findings are important
from an interdisciplinary point of view, since the application of the proposed advanced control technique allowed
the achievement of the desired performance simultaneously mimicking the human way of actuation.
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