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Abstract: The design of automatic control systems for general anesthesia is a challenging
task due to the severe safety requirements and process constraints. This is even more
complex when model-based control techniques are used due to the significant variability
of the process model. Additionally, issues like noisy measurements and interference also
influence the control system overall performance. In this context, adequate filtering and
control system sampling period selection should be analyzed to test their influence on the
controller. In this paper, an MPC system for the depth of hypnosis, where the BIS signal
is used as a controlled variable, is analyzed. The main purpose is to test and evaluate
how the process noise affects the performance of the control system. The analysis is
performed in a simulation study using a dataset of virtual patients representative of a wide
population. Results show that a satisfactory performance is obtained when the noise is ex-
plicitly taken into account in the controller tuning procedure for a specific sampling period.

1. Introduction

Control systems for the anaesthesia process need to face many challenging problems, which are mainly related
to the presence of a human being in the control loop. Among others, the most critical issues are related with the
robustness due to the inter- and intra-patient variability. In the context of control systems that exploits a Model
Predictive Control (MPC) approach, these issues are even more critical since the model uncertainty affects the
predictions and, as a consequence, they can be detrimental for the correct determination of the control action [1].

The application of MPC techniques to the control of depth of hypnosis (DoH) in the anaesthesia process using
propofol has been analyzed in several works, e.g. [2–9]. This interest is motivated mainly by the possibility of pre-
dicting the patient response to drug administration [4,7]. In particular, the methods described in [2,3] are focused
on inter-/intra-patient variability, targeting the most vulnerable aspect in MPC approaches, namely, model uncer-
tainties. These approaches usually results in a complex control system with heavy computational requirements and
re-tuning or adaptation is not trivial [9]. For example the MPC based control system proposed in [2] exploits state
observers, which provide the drug concentration estimation in body compartments. These estimations are used for
predicting the effect of the drug in the control signal computation. The estimator uses a Kalman filter technique,
which handles model uncertainties at the expense of a large settling time of the BIS in the induction phase.

Another example can be found in [3], where authors propose a piece-wise linearization of the Hill function to
eliminate the nonlinear component from the control loop, thus simplifying the model that represents the patient.
The resulting control scheme uses a hybrid multi-parametric-MPC (mp-MPC) approach, which is successfully
evaluated considering the induction as well as the maintenance phases for a set of 12 virtual patients. A similar
approach has been presented in [5, 6], where the piece-wise linearization of the Hill function is combined with a
hybrid MPC.
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Fig. 1: Schematic representation on the patient PK-PD model for propofol dosage response.

A control system exploiting the pharmacokinetic/pharmacodynamic (PK/PD) model and its application to the
linear MPC has been devised in [7]. In particular, the Hill function compensation is introduced in the feedback
loop and the EPSAC algorithm is used as the feedback controller. The control system proposed in [8] also uses the
inverse of the nonlinear part of the pharmacodynamic model to provide the linearization of the system. The authors
provide a different approach for the propofol chemo-dynamics, considering a time delay. The main analyzed issue
is related to the mismatch in time delays between the used model and the patient. Results from a clinical trial
prove that MPC based system can be effective in DoH control in general anaesthesia.

From the analyzed works, it appears that MPC-based control systems are able to provide a satisfactory perfor-
mance, that is, to meet the clinical requirements. However, the BIS signal used as a feedback measure is charac-
terized by a high signal-to-noise ratio that needs to be considered in the control algorithm [12, 13]. Despite this,
the noise handling issue in the anaesthesia process is frequently treated as a secondary problem or even neglected
during the control system design, even if it is well known that, if the process noise is not handled properly in the
control system, it can result in a severe performance degradation or even controller instability.

Bearing in mind the previously mentioned aspects, this work is devoted to analyze the performance of a DoH
MPC control system for intravenous anaesthesia affected by the process noise. The DoH level is represented by
the BIS and propofol dosage is used as control variable. The main goal of this study is to provide a quantitative
measure that reflects the performance degradation due to the noise presence when compared to noise-free case. The
considered MPC control architecture has been previously introduced in [11] and it exploits a realistic nonlinear
patient model. The original structure is extended here with a suitably designed additional low-pass filter that
attenuates the process noise. We have tested the system by using both white noise and real process noise that
reflects not only the noise related with signal acquisition process but also other unmeasurable interferences and
disturbances. Furthermore, the use of different sampling periods for the feedback controller has been analyzed.
The evaluation is made in simulation using widely accepted performance indexes.

The paper is organized as follows: Section II reviews the PK/PD model of propofol used in the control scheme.
Section III describes the proposed control architecture for the DoH, the GPC algorithm, the noise characteristics
and the tuning procedure. Section IV presents the simulations results for the set of virtual patients and performance
evaluation. Finally, conclusions are given in Section V.

2. Patient Model

The PK/PD model used to describe the patient response to the propofol administration is well known from the
literature [14, 17, 18]. In particular, regarding the PK, a three compartment mammillary system can be modelled.
A state space model can be derived, where the states are the quantity of drug in each compartment, the input is
the drug dosage and the output is the plasmatic concentration, which is proportional to the concentration of the
drug in the central blood compartment. The conversion of this model in a transfer function form yields a linear
third-order PK term:

PK(s) =
Cp(s)
U(s)

=
1

V1

(s+ k21)(s+ k31)

(s+ p1)(s+ p2)(s+ p3)
(1)

where Cp is the plasmatic concentration, U is the propofol infusion rate and p1, p2, p3 are parameters that depend
on the demographics of the patient (age, weight, height, gender) [15].
The PK term is connected in series with the PD part, which consists of a first-order linear system in series with a
static nonlinearity (Hill function). The linear part of the PD has the plasmatic concentration as input and the effect
site concentration Ce as output and it can be modelled by means of this transfer function:

PD(s) =
Ce(s)
Cp(s)

=
ke0

s+ ke0
(2)

where ke0 = 0.456 [min−1].
Finally, the Hill function expresses the relationship between the effect-site concentration and the BIS value. Its
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Fig. 2: The GPC-based control scheme proposed in [11] with the additional filter Fn, for a noise attenuation.

expression is [7, 10, 16]:

H = E0 −Emax

(
Ce(t)γ

Ce(t)γ +Cγ
e50

)
, (3)

where E0 is the patient’s measured value of the BIS before the beginning of the anesthesia procedure, Emax is the
maximum effect that can be reached by the drug administration, γ is the steepness of the function (in other words,
it means the sensitivity of the patient to the propofol), and Ce50 is the drug concentration that is needed in order to
achieve half of the maximal effect. Figure 1 shows the block diagram of the complete propofol response model.
It appears that the PK/PD model is actually a Wiener model and this can be exploited in the design of the (MPC)
controller.

2.1. Virtual Patients Dataset

The inter-patient variability is taken into account by considering a set of patients, which has been already proved
to be representative for a very wide range of adult population [5, 7]. The values of the model parameters for
thirteen individuals can be found in [18]. In this context, it is worth noting that the parameters of the last patient
are obtained by calculating the average values of the parameters of the other twelve patients. Thus, it is sensible
to consider this thirteenth patient as the nominal case for the tuning of the controller (see Section 3.4).

3. Anaesthesia control system

In this section the evaluation scenario is briefly introduced. The analysis is performed using the MPC-based
architecture proposed in [11]. In the approach presented here the original control scheme has been extended with
an additional filter in order to reduce the impact of noise on the controller. The feedback MPC controller is
implemented using the GPC algorithm, which is also reviewed. Moreover, we provide description of the noise
characteristics in the BIS signal used to measure the DoH, including the information from the real signal analysis.
Finally, the resulting control system tuning is described. Indeed, a proper tuning is necessary, due to the presence
of the additional noise filter in the control loop that affects the performance of the controller.

3.1. Control Scheme

The control structure is shown in Figure 2, where it can be observed that the patient is represented by the nonlinear
model previously introduced. However, in practice, exact values of the model components are unknown and need
to be calculated using an inaccurate PK/PD model. For this reason, in the compensator structure we refer to these
elements as P̃ and H̃ for the linear and the nonlinear part, respectively, in order to clearly distinguish it from
real ones. As already mentioned, P̃ can be obtained for each individual patient based on their physiological data.
Instead, since H̃ cannot be obtained for each individual patient, its value is computed by considering the average
values of the parameters reported in literature [14–16]. The P̃ block input signal u(t) represents the propofol dosage
rate and its output is the estimated effect site concentration Ce(t) of the patient. To compensate the nonlinear
behaviour present in the PK/PD model, the inverse of average Hill function H̃−1 is computed [11].
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In the resulting control scheme, w(t) is the filtered value of r̂(t), which is the effect site concentration reference
value that reflects the desired BIS reference r(t). The r̂(t) value is computed using H̃−1 that relates the BIS and the
estimated effect site concentration Ce(t) of the patient. In the nominal case, we have therefore that Ĉe(t) = C̃e(t)
and the resulting feedback signal is equal to C̃e(t). This situation changes only when the controlled process output
is affected by the disturbances d(t). In practice, model uncertainties are unavoidable, and for this reason, the θ(t)
signal will be used to compensate differences related to modelling uncertainties and for the disturbances induced
by surgical intervention. The value of θ(t) signal depends on the mismatch between the effect site concentration
Ĉe(t) and estimated effect site concentration Ce(t) computed using the BIS signal through the inversion of average
Hill function. Thus, the w(t) signal is used as the reference for the GPC controller, while the controlled variable
is ỹ(t), containing information regarding patient model mismatch and disturbances (the feedback signal). The
resulting contribution of the θ(t) signal is attenuated by the Fd filter, placed in the feedback loop, which reduces
the effect of uncertainties and disturbances on the GPC controller, simultaneously guaranteeing a zero steady-state
tracking error.

Moreover, the original scheme has been extended with the Fn filter that is used to reduce the noise component
n(t) in the BIS feedback signal. Fn is selected as a first-order low-pass filter:

Fn(s) =
1

Tns+1
(4)

where Tn represents its time constant. As can be observed, Fn affects the control loop dynamics and for this
reason, Tn needs to be adjusted among other design variables during a control system tuning procedure (explained
in Section 3.4).

3.2. Generalized Predictive Controller

As it is well known [21], the GPC algorithm uses a vector of control signals that minimizes a multi-segment cost
function of the following form:

J =
N

∑
j=N1

[ŷ(t + j|t)−w(t + j)]2 +
Nu

∑
j=1

λ [∆u(t + j−1)]2 (5)

where ŷ(k+ j|t) refers to the optimal prediction of the process output obtained with known information up to the
time instant t, ∆u(t + j− 1) is a future set of control signal values obtained from the cost function optimization,
∆ = (1− z−1) is a differentiation term, N1 and N define the prediction horizons, Nu is the length of the control
horizon expressed in discrete time samples, and λ weights the future control efforts (with respect to the tracking
errors) along the control horizon. The desired performance of the GPC algorithm is obtained by adjusting the
weighting factor in addition to the prediction and control horizons. The reference trajectory along the prediction
horizon is denoted as w(k+ j) [21]. In (5), the j-set future prediction of process output with information up to
discrete time instance t, ŷ(k+ j|t), is obtained using the linear discrete time CARIMA model characterizing the
controlled system [21]. The prediction equation in vectorial form can be written in the following form:

ŷ = Gu+ f; (6)

where ŷ are the future process outputs, G is the dynamics matrix, u are the control signal values (decision variable)
and f are the values of the free response of the process (see [21] for more details).

Additionally, the constraints of the process, like saturation limits or actuator slew rates, can be handled in the
optimization procedure. In general, they are expressed as a set of inequalities in vectorial form, R∆u ⩽ c, which
are considered during the optimization procedure [21]. Finally, the quadratic optimization problem (QP) can be
formulated as:

J(u) =
1
2

uT Hu+bT u+ f0

subject to:
R∆u ⩽ c

where H = 2(GT G+λ I), bT = 2(f−w)T G, f0 = (f−w)T (f−w) and w is the vector of reference signals [21].

3.3. Noise in Depth of Hypnosis

The BIS is an empirically derived scale, where a proprietary algorithm transforms the EEG and computes a mea-
sure between 100 and 0 that indicates the patient’s anesthetic state in real time. In most cases, the BIS monitor
provides a new value every second. Its value has a significant noise component, which can be modeled as a white
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Fig. 3: Real noise from the experimental test.

Gaussian additive noise [18]. Analyzing the real BIS signals obtained from clinical data provided by Department
of Anesthesiology, Critical Care and Emergency of the Spedali Civili di Brescia Hospital, Brescia (Italy) it was
obtained that its power spectral density (PSD) has the average value of 39.3392 [18]. An example of the BIS signal
from the real clinical data is shown in Figure 3.

From the signal processing point of view, this high measurement noise can be attenuated through a filter added
a posteriori, which is designed to reduce the noise dominant frequencies and pass others in interesting bandwidth.
However, in the control architecture introduced previously, this approach will affect the overall accuracy of the
control system. For example, it might result in a sluggish response or there can be the robustness issue due to
the changes in the control loop dynamics. In the approach presented here, the noise filter Fn is taken into ac-
count during control system tuning procedure, where all parameters are set to obtained the desired control system
performance.

3.4. System Tuning for Noise Handling

The control architecture, shown in Section 3, requires the tuning of the GPC controller parameters [22], that is,
N, Nu and λ , as well as of the proposed filters parameters, Tr, Td and Tn. Following the tuning procedure for a
noise-free case from [11,19], the tuning is performed to meet the desired performance characterized by the clinical
specifications.

During the induction phase, the controller have to reach the desired DoH level, defined as the BIS value equal
to 50, in around 5 minutes avoiding a significant undershoot. For the maintenance phase, the controller needs to
minimize the effect of unmeasurable disturbances due to surgical stimuli. For the presented approach we follow
the same methodology used in [18], where unmeasurable disturbances were represented as a two consecutive steps
in the BIS level signal. They are of amplitude 10 and -10 within time interval of 10 minutes. During this phase,
the BIS signal value should be kept in the BIS range from 40 to 60 to reduce the probability of health issues for
the patient.

In the analyzed system, the performance in the induction phase is mainly limited by the Fr filter time constant
Tr and for comparison purposes we use the value Tr = 22.4 proposed in [11], which is fixed for all the tested
configurations. In this way, we assure that the resulting changes in the control system performance are directly
linked to the effect of the noise.

The remaining tuning parameters are obtained using an optimization procedure based on genetic algorithms
[23]. The objective function to minimize is the worst-case Integral Absolute Error (IAE) of the process output by
considering the average patient. The IAE performance index is defined as

∫
∞

0 |r(t)− y(t)|dt. The optimization is
performed for the average patient (see Section 2.1) considering additive white Gaussian noise with the determined
PSD and a noise amplitude of ±2.5. Additionally, the optimization is repeated for different sampling periods to
test how this factor influences the control system performance in the presence of noise. In this way, the noise
issue can be handled by the whole control system and not only by the specific filter. As a result, we obtain tuning
parameters values that are summarized in Table 1. The determined set has been compared to the optimal tuning
for analyzed control architecture for the noise-free configuration with a sampling period of 1 second (shown as
1n f ).

4. Simulation Study

In this section, simulations using a set of patients models are evaluated. Moreover, for the analyzed scenario,
the saturation constraints are handled with the GPC controller. For this the control signal u(t), representing the
propofol infusion rate [mg/s], was limited between a minimum value of 0 and a maximum dosage of 6.67 [mg/s].
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Table 1: Control system tuning parameters obtained for different sampling periods Tm.

Tm N Nu λ Td Tr Tn
1n f 27 7 1.60 22.7 22.4 –
1 24 2 14.43 47.33 22.4 24.64
2 15 19 10.27 54.36 22.4 16.63
5 15 18 100.80 32.59 22.4 57.66

10 13 5 94.66 63.37 22.4 86.99

These limits were obtained using a standard concentration for Propofol 20 [mg/ml] [18].

4.1. Performance Indexes

The proposed approach has been evaluated on the data set of virtual patients (see Section 2.1). For the performance
evaluation, we consider a set of indexes, proposed in [7]. During the induction phase (set-point following) follow-
ing verification measures have been selected: TT, BIS-NADIR, ST10, ST20, US45 were computed following the
procedures detailed in [7, 23]. The performance in the maintenance phase was measured using only two selected
meaningful indices, the TT and BIS-NADIR. Both were computed individually for the negative and the positive
step (changes in the disturbance signal), represented respectively by n and p subindexes.

4.2. Tests on patients database

The obtained tuning parameters for different sampling periods have been evaluated for a set of the 13 virtual
patients. However, it needs to be highlighted that during the tuning optimization procedure only the average patient
has been used. Due to this, the performed simulations shows how the analyzed control scheme responds to the
inter-patient variability simultaneously considering noise issues. The simulation scenario consists of a step change
in the BIS reference from 100 to 50 at time 0, representing the induction phase. This should end in approximately 5
minutes, following the clinical specifications. Once the induction phase target is achieved, the maintenance phase
starts. In this phase we evaluate the response of the system to disturbances (e.g. surgical stimuli) represented as
a step signal of amplitude 10 in the BIS level, introduced at minute 11 of simulation time, followed by another
step of amplitude -10 after 5 minutes. During the simulation, we use additive white Gaussian noise to replicate the
actual measurement noise (see Section 3.3).

As an example, the result obtained for Tm = 1 is shown in Figure 4. It can be observed that, for this configuration,
the control system provides a satisfactory performance for both the induction and maintenance phases, despite
presence of the noise. Moreover, the control architecture handles adequately the inter-patient variability providing
the necessary robustness due to the model uncertainties. Additionally, to show the influence of the sampling period,
we perform the same simulation for Tm = 5 and the obtained results are shown in Figure 5. For this case, the control
system needs slightly more time to reach the desired BIS zone for the induction phase. Regarding the maintenance
phase, it can be observed that disturbance compensation is similar to the previous case where Tm = 1 was used.
The performance evaluation for the induction phase, using the previously defined indexes, is summarized in Table
2, where the average values for all 13 patients are considered for all the tested sampling periods. For comparison
purposes, the performance obtained for a noise-free case using the same control architecture with Tm = 1 is also
included and marked as 1n f . The obtained values indicate that sampling periods between 1 and 5 seconds are
acceptable from the performance point of view. Moreover, the performance evaluation for the maintenance phase
is shown in Table 3. A performance degradation is also visible for this phase, obtaining the lowest performance for
the configuration with Tm = 10. From the obtained results, it can be determined that the noise issue can be handled
properly in the analyzed control scheme. However, the performance degradation is visible and grows when the
sampling period increases.

The response of the analyzed control system to real noise signal (see Figure 3) is shown in Figure 6, where the
simulations considers also the step disturbances in the maintenance phase. As in the previous case, the obtained
performance meets the requirements. It appears that the process noise can be properly handled by the control
system if it is explicitly taken into account during the design stage. This property is especially important in the
MPC-based control scheme, due to known sensibility to process noise that frequently results in a poor robustness
of the controller. However, in the analyzed case, the increased robustness to the noisy BIS signal comes at the
expense of the performance degradation.

6



0 2 4 6 8 10 12 14 16 18 20
20

40

60

80

100

B
IS

 [
-]

Setpoint

0 2 4 6 8 10 12 14 16 18 20

Time [min]

0

1

2

3

4

5

6

7

P
ro

p
o
fo

l 
[m

g
/s

]

Fig. 4: Control system performance for the 13 patients with white noise and sampling period Tm = 1 second.

5. Conclusions

In this paper, the performance degradation due to the noise presence in the control loop for the DoH in intravenous
anesthesia has been analyzed. As a test-bed we have considered an MPC-based control scheme where the BIS
signal is used to represent the DoH level and propofol infusion is used as a controlled variable. To assure the
proper noise handling, an additional filter in the feedback loop has been included. However, its presence requires
the retuning of the overall control system. A simulation study, considering a representative set of virtual patients
has been used to test different noise characteristics and sampling periods. Moreover, for the evaluation of the
control system, a widely accepted set of performance indexes was used. The obtained results confirmed that
clinical requirements can be satisfied if the noise issue is explicitly considered during the design stage.
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Fig. 6: Control system performance for real noise form the process and sampling time, Tm = 2 seconds.
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