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Abstract: In this paper we assess how intra-day electricity prices can improve the prediction of
zonal day-ahead wholesale electricity prices in Italy. We consider linear autoregressive models with
exogenous variables (ARX) with and without interactions among predictors, and non-parametric
models taken from the machine learning literature. In particular, we implement Random Forests
and support vector machines, which should automatically capture the relevant interactions among
predictors. Given the large number of predictors, ARX models are also estimated using LASSO
regularization, which improves predictions when regressors are many and selects the important
variables. In addition to zonal intra-day prices, among the predictors we include also the official de-
mand forecasts and wind generation expectations. Our results show that the prediction performance
of the simple ARX model is mostly superior to those of machine learning models. The analysis of
the relevance of exogenous variables, using variable importance measures, reveals that intra-day
market information successfully contributes to the forecasting performance, although the impact
differs among the estimated models.

Keywords: electricity spot prices; forecasting; intra-day electricity prices; random forests; support
vector machines; variable importance

1. Introduction

Forecasting electricity prices is a topic that has been largely explored in the last two
decades, following the process of energy markets deregulation started at the end of the
last century [1,2]. Decisions made by actors operating in the electricity market, such as
regulators, generators, traders, and final users, are conditioned by future prices. There is
a plethora of articles dealing with the estimation of models for the interpretation of the
time dynamics and prediction of electricity prices [3–5]. The set of regressors used in these
models is extremely heterogeneous, thus criteria for the selection and ranking of the most
predictive variables are necessary.

Machine learning models have recently attracted great attention in the literature [6–9].
There are many reasons behind this choice, on top of that high flexibility and possibility
to include a big number of regressors [10]. Proper modifications of algorithms based on
neural-like structures can help to adapt flexible linear polynomial structures [11].

Although some papers claim the superiority of machine learning methods to simpler
linear models in predicting electricity prices, it is not clear whether the application of
very sophisticated black-box models is really motivated by non-linearity tests and their
forecasting performances are really better than those of simpler and easier to interpret linear
models ([12], Sectons 3.4.5). The present paper tries to give a contribution to this stream of
literature by comparing the performance of two machine learning models, Random Forests
(RF) and support vector machines (SVM), with that of linear autoregressive (AR) models
with and without LASSO penalization [13] using data observed on the Italian electricity
market (IPEX).
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The results, showing that simple linear models do not perform worse (sometimes,
even better) than machine learning models, are not totally expected, but are in line with
those found by Fezzi and Mosetti [14]. The deregulated wholesale Italian electricity market
is one of the most widely studied market in the world [5,15] for several reasons. First,
IPEX is one of the most transparent electricity market in the world [16]. Micro-data on
bid-offer quantity and price are made available with a two-week delay containing detailed
information related to operator and plant name. Multivariate relations between several
variables could be explored on the Italian market, using high-frequency data and results
could be easily reproduced by any interested researchers. Second, IPEX is a typical zonal
market where a unique national market price (PUN) is observed just when market splitting
does not occur. In all the remaining settlement periods, PUN is obtained as a quantity-
weighted average of the zonal prices observed in real and virtual zones in which the country
is split. The equilibrium price is settled comparing the aggregated demand and supply
curves. The algorithm used in the auctions should take into account physical constrains due
to the limits in the transmission of power among geographical zones. When the quantities
demanded in one or more zones are higher than the limits, a congestion event occurs and
the market is split into different market zones with different equilibrium prices. For further
details, see [16]. The zonal structure of the IPEX allows researchers and practitioners to
explore the main pros and cons of markets integration, which is a hot topic in view of the
European energy markets integration pursued by the European Union [17]. The impact
of possible grid congestion events on prices and volatility observed on the Italian zonal
market [4] could be considered as a small-scale experiment of the expected effects on the
integrated European market. Finally, the high penetration of renewable sources in the
generation mix of the IPEX enables the analysis of the influence of the so-called merit order
effect [18] on equilibrium prices and quantities.

In addition to the evaluation of the forecasting performance of models, the present
paper aims at contributing to the literature in two directions. First, we include, among
the regressors, intra-day prices. There is an increasing interest in modelling intra-day
electricity markets [19–21], but their impact on the forecasting of spot prices, to the best
of our knowledge, has not been studied yet. Second, we explore the possibility to select
the best predictors extending the variable importance index, originally proposed in the
framework of RF, to SVM and linear models.

The paper is organized as follows. Section 2 introduces the main notation and math-
ematics behind the non-linear and linear models taken into account in the present study.
Moreover, it contains theory regarding the variable importance measurements. Section 3
reports the results of the analysis whereas conclusions follow in Section 4.

2. Material and Methods

Let Yt be the Data Generating Process (DGP) which has produced the observed uni-
variate time series {y1, y2, . . . , yT}, and suppose we are interested in predicting its future.
Let us assume that the unknown DGP is a possibly non-linear function f (·) of p past states
of Yt and m exogenous variables plus a random noise; the DGP can be formalized as:

yt = f (rt−1, zt) + at (1)

where at is a random shock (or disturbance term), rt−1 = [yt−1, yt−2, . . . , yt−p] and zt is the
vector of exogenous variables available at time t.

The observed time series of length T, {y1, y2, . . . , yT}, can be rearranged in a set of
T − p pairs of type {(yt, rt−1)}T

t=p+1, producing the following matrix
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Y =



yp+1 yp · · · y2 y1
...

...
...

...
...

yt yt−1 · · · yt−p+1 yt−p
...

...
...

...
...

yT yT−1 · · · yT−p+1 yT−p


which forms the first p + 1 columns of the (T − p)× (p + m + 1) data matrix D = [Y : Z],
where Z is the (T − p)×m matrix of the exogenous variables.

Starting from this general setting, in the following paragraphs we will briefly introduce
the methods that will be used to forecast electricity spot prices: linear autoregressive models,
LASSO-regularized autoregressive models, SVM, and RF.

The first specification of the function f (·) in (1) determines the well-known autoregres-
sive model with exogenous variables (ARX), which will be considered as the benchmark
model. There are many reasons underlying the choice of the benchmark. First, AR linear
models are the simplest and easiest way to approximate the DGP of time series. Moreover,
parameters can be very conveniently interpreted because they measure partial correlation of
each regressor with the dependent variable. Finally, linear models are not computationally
intensive and are implemented in any statistical software. For these reasons, most of the
papers dealing with energy forecasting relies on the estimation of linear AR models.

The general formulation of an ARX(p,g1, . . . , gm) with m exogenous variables is
the following:

yt = c +
p

∑
i=1

φiyt−i +
m

∑
i=1

Λi(B)zi
t + at (2)

where at is a white noise with zero mean and Λi(B) = λi
0 + λi

1B + · · ·+ λi
gi

Bgi , B is the
backshift operator. This is a general formulation which allows the exogenous variables
to be delayed. Although a general formulation has been introduced, in the present work
we will use only one time span for each exogenous variable. Equation (2) implies a linear
model in which the regressors are the set of delayed yt, rt−1, and the m exogenous variables
zt = [z1t, z2t, . . . , zmt]. So, for the generic time span t, with t = p+ 1, p+ 2, . . . , T, the record
of regressors is xt = {rt−1, zt}.

Since model (2) contains a large number of covariates, in order to reduce the variance
of the parameter estimates and control for overfitting, a regularised version of the same
model is fit, as well. Thus, a first modification of the ARX model is denoted as ARX-L model
and implements a selection of explanatory variables and the shrinkage of their coefficients
towards zero through the LASSO-regularized linear least-squares regression [22,23]. The
coefficient estimates are obtained by minimizing:

1
2

T

∑
t=p+1

(
yt − x>t β + β0

)2
+ λ||β||1.

The second modification of the ARX model is called ARX-L Int. and it takes into
account not only the regressors but also the interactions between each pair of them and
then it performs a selection of explanatory variables through the LASSO-regularized linear
least-squares regression.

Support vector machines (SVM) are machine learning models born for classifica-
tion [24] and then adapted to regression [25–27]. The regularized loss function for SVM is

T

∑
t=p+1

Vε(yt − f (xt)) +
λ

2
||β||22,
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with loss

Vε(e) =

{
0 if |e| < ε

|e| − ε otherwise.

shown in Figure 1.

e

V
(e

)

− ε 0 ε

0

Figure 1. ε-intensive loss function.

When f (·) is linear, it can be shown that the regressors xi enter the solution of the
minimization only through the inner products 〈xi, xj〉 = x>i xj and this allows the use of
the so-called kernel trick for expanding the class of functions that approximate f (·). Indeed,
we can approximate the unknown expectation function using a basis expansion:

f (x) ≈
S

∑
s=1

βshs(x) + β0,

where hs(·) are basis functions and S is the number of basis functions used to approximate
f (·). Since only inner products are relevant for the solution, one does not need to explicitly
compute this expansion, but one can simply substitute the inner products with the kernel
function k(xi, xj) = ∑S

s=1 hs(xi)hs(xj).
In our application we used the radial-basis function:

k(xi, xj) = exp
(
−γ||xi − xj||22

)
.

Since this expansion through basis functions introduces interactions among the regres-
sors, we expect SVM to be able to capture the mutual dependence of the within-week and
within-year seasonal patterns.

The last model considered is the Random Forests (RF; Breiman, 2001). It follows a
non-linear approach to the forecasting problem and it originated outside the time series
ambit, so it is necessary to motivate its application in this context. RF is a modification of
the bootstrap aggregation procedure called bagging introduced by [28]. Bagging belongs to
the family of ensemble learning models and consists in producing a number B of bootstrap
samples from the available observed sample, estimating a model, called base learner,
on each bootstrap sample and then aggregating their predictions. Ordinary bootstrap
is suitable for independent and equally distributed observations, so not for time series.
Nevertheless, in the case of time series, one assumes that all of the memory of the past
regarding yt, required for a one-step-ahead prediction, is preserved in the lagged vectors
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rt−1, so under this assumption the units to be sampled are not the single yt (with the related
exogenous), but the rows of the matrix D. Alternatively, limited to the submatrix Y of
D, resampling the rows of Y can be viewed as applying the moving block bootstrap [29],
where the block length is equal to p + 1 and the overlapping blocks are the vectors [yt, rt−1].
Ref. [30] have explored the applicability of bagging for time series forecasting. The base
learner used in RF is the regression tree, which is the specification of a decision tree when
the target variable is continuous. A decision tree [31] is a machine learning model that
recursively partitions the data space generated by k explanatory variables into regions,
identified by the leaf nodes of the tree, that are homogeneous with respect to a target
variable, and fits a simple model in each region. To identify these regions, the splitting
and pruning activity is evaluated using a measure of node impurity. The application of
this kind of model for time series forecasting is not new in literature; for example, Ref. [32]
compared the predictive power of eight machine learning models, including the regression
tree, whereas [33] studied the empirical forecast performances of boosting algorithms for
predicting real world time series considering as base models the regression tree and the
multilayer perceptron. As said before, RF is a modification of the bagging algorithm with a
decision tree as base learner, introducing a random selection of input features which causes
a collection of de-correlated trees. In fact, if in bagging method the sampling is completed
considering instances from only the training set, with random forest the tree-growing
process is performed also through random selection of input variables. The parameters
involved in a RF specification are the number of trees forming the forest (NT), the number of
covariates that are randomly selected at each split step (mtry) and the minimum number of
observations presented into a leaf node (nodesize). When the target variable is continuous,
a typical choice for mtry is bk/3c, where k is the number of the considered explanatory
variables, whereas 5 is the choice for nodesize.

Variable Importance Measures

When using RF, the well interpretable structure of the tree is lost, but it is possible
to retrieve some information regarding the explicative role played by the regressors via
variable importance measure (VIM). A VIM is a tool that can be computed not only in the
context of the RF. In fact, we can distinguish between two types of methods, when dealing
with VIM, that is model-specific and model-agnostic methods [34]. The model-specific
methods use specific elements of the structure of the considered model whereas the model-
agnostic methods do not assume anything about the structure of the considered model.

The method described below, applied in the RF context, belongs to the first type of
methods. Following [31], let {X1, X2, . . . , Xk} be the set of predictor variables for the target
variable Y, the importance of a variable Xj ∈ {X1, X2, . . . , Xk} in explaining Y is defined
as the total decrease in heterogeneity of Y given the by the knowledge of {X1, X2, . . . , Xk}
when the regressors’ space is partitioned recursively. A VIM, called Total Decrease in Node
Impurity (TDNI), derived by this approach is obtained by the sum of all the decreases in
the heterogeneity index in the nodes of the tree. Given the different nature of the variables
forming {X1, X2, . . . , Xk} in many contexts of application, we need to ask if the nature of
a regressor plays a role in the evaluation of its importance. Ref. [31] noted that the TDNI
measures tend to favor covariates with more values (for example continuous variables
are favored over categorical variables), so a correction that overcome this limit must be
applied. In this study, the heuristic correction proposed by [35,36] was implemented, given
that the set of covariates was composed by continuous, dichotomous and polytomous
category variables. Ref. [36] have shown that this method can effectively reduce the bias
due to different measurement levels of the covariates, producing a correct ranking of them
according to their importance.

In order to investigate the influence of the predictor variables on the electricity price
predicted by the other methods implemented in the paper, we use a model-agnostic method
based on permutations [34]. It is based on the loss function L(ŷ, X, y) which quantifies
the goodness of fit of the model in use, where X denotes the matrix containing the ob-
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served values of the covariates, y denotes the observed values of Y and ŷ denotes the
corresponding predictions.

This loss function can be the value of log-likelihood or any other model performance
measure, such as, for example, the root mean squared error. The method can summarized
in the following steps: compute the loss function for the original data L0 and then, for
each regressor Xj, (1) modify the matrix X by permuting its j-th column, obtaining Xj;
(2) compute the predictions ŷj based on Xj; (3) calculate the loss functionLj; and (4) quantify
the importance of Xj using directly Lj or calculating vimj

D = Lj −L0 or vimj
R = Lj/L0. In

general, this procedure is performed several times, in order to lose the dependency of the
result to the particular permutations observed, and so the final VIM is an average VIM.

As it is well known, decision and regression trees model interactions through different
paths of partitions of the feature space: the variables and values selected at lower layers of
the trees depend on the variables and values selected in upper layers. Of course, RF is an en-
semble of decision trees. Support vector machines/regressions produce interactions among
variables by using bivariate kernels, that is, by building a new feature space that includes
these non-linear functions of every variable pair. Thus, both methods automatically include
interactions among variables. However, being black-box models, it is not straightforward
to disentangle the direct effect of one variable from its effect through interactions with other
variables. It is important to stress that the variable importance method used in this paper
to assess the predictive power of each regressor, measures the effect produced by excluding
one variable from the model. In principle, it is possible to think of methods to evaluate
the importance of the interactions, even though, to the best of our knowledge nobody did
it. For example, to measure the interactions among the variables X1, X2, X3 we could use
the difference between the loss in RMSE when randomly permuting all of them and the
sum of the RMSE losses due to the permutation of each of three variables taken one at a
time. However, the number of measures to consider would be extremely large because
all variables potentially interact. Consider the extremely simple case of four regressors:
X1, X2, X3, and X4. We would have to measure the interactions among:

• Every unique pair (Xi, Xj),
• Every unique triplet (Xi, Xj, Xk),
• All variables (X1, X2, X3, X4).

This amounts to 11 measures of interaction. For m variables, the number of interactions
to consider is 2(m−1). In our model, we consider tens of variables and the number of
interaction measures to consider are in the order of millions.

3. Empirical Analysis

The time series used in the present work concern the electricity prices from the Italian
Power Exchange (IPEX) market. They cover the period from 1 January 2015 to 31 August
2019; the eight months of 2019 were left out for out-of-sample forecasting. The data have
an hourly frequency; therefore, each day consists of 24 load periods, with 00:00–01:00 a.m.
defined as period 1. Spot price is denoted as Ptj, where t specifies the day and j the load
period, t = 1, 2, . . . , N; j = 1, 2, . . . , 24.

The Italian electricity market is divided into different zones, which were the following
six until 31 December 2020: North (NOR), Centre-North (CNOR), Centre-South (CSOU),
South (SOU), Sicily (SIC), and Sardinia (SAR). In the map displayed in Figure 2, the six
physical zones of the Italian market are shown. The map holds just until the end of 2020,
while from January 2021 the geographical structure of the market has been modified: one
region of the Centre-North zone has been moved to the Centre-South macro-region and
a new macro-zone has been introduced, formed by just one region, Calabria, which has
been separated from the South macro-zone. Considering that electricity prices and demand
have been strongly affected by the COVID-19 outbreak and the structural change of the
zonal market in 2021, the choice to stop the data collection in 2019 is highly motivated. It
is important to bear in mind that, usually, auctions are made by considering all bids and
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offers made by market operators at national level. The final unique national price is set
by the intersection of the aggregated national supply and demand curves. Inefficiency of
the interconnections among zones, which can be observed on the map, implies however a
market splitting in two or more macro-zones with different equilibrium prices fixed by the
intersections between aggregated partial demand and supply curves. For this reason, time
series of zonal prices are often studied and modeled separately. Different probabilities of
congestion events between macro-zones and different generation mix can be observed in
the Italian macro-zones: this motivates separate estimated models for each zone.

Figure 2. Electricity physical zones in force up to 31 December 2020 (Source: TERNA S.p.A.).

In this study, following a widespread practice in literature, each hourly time series was
modeled separately, thereby eliminating the problem of modeling intra-daily periodicity.
Moreover, each zone was considered separately. Figure 3 shows the time series of prices in
a typical peak hour (12 a.m.) observed in the North zone.

Some stylized facts of electricity prices can be observed, such as the seasonal pattern
related to astronomical seasons and the presence of a few spikes. It is worth stressing that
multi-scale seasonality is observed on electricity prices: besides yearly fluctuations, weekly,
and daily cycles are observed strictly related to the cycles of demand. Several sources of
price spikes can be mentioned. They are always related to a sudden increase or decrease in
demand and supply of electricity which can be caused by extreme weather events (very hot
or cold days) or by plant failures. Of course, parameter estimates can be strongly influenced
by the presence of spikes and robust methods should be applied [5].



Forecasting 2023, 5 88

50

100

2015 2016 2017 2018 2019
Time

P
ric

e 
(E

ur
o/

M
W

h)

Figure 3. Time series of spot prices observed in the North zone at Noon (12 a.m.).

Table 1 shows the unit root test (Phillips–Perron), for each zone of the market and
for all settlement periods of the day. Figure 4 displays the autocorrelation function until
lag 120 of the level of prices observed in each zone in the middle of the day. Plots in each
hour of the day are very similar and are not shown for lack of space. The test always
rejects the presence of a unit root, while from the ACF plots weekly seasonality is evident.
This seasonality is captured in the RF specification by the number-of-day variable, and by
harmonics in the other models. Models could be estimated on first differences to check for
robustness. However, as the results on unit root are very clear, we decided to avoid this
analysis, to stay focused on the main goal of the paper.

Table 1. Phillips–Perron unit root test with constant and trend. The test statistics are shown for each
hour and zone. The 99% critical value is −3.968721.

Hour NOR CNOR CSOU SOU SIC SAR

1 −10.81 −14.08 −16.01 −17.00 −18.30 −16.41
2 −10.98 −14.42 −16.93 −17.74 −21.71 −17.41
3 −11.32 −14.32 −17.22 −18.24 −22.64 −17.87
4 −12.27 −15.29 −17.80 −18.95 −22.62 −18.45
5 −13.21 −15.93 −18.25 −19.23 −22.15 −18.90
6 −12.82 −15.50 −17.80 −18.56 −23.26 −18.35
7 −14.48 −16.47 −16.82 −17.78 −23.49 −16.92
8 −16.82 −18.92 −19.31 −19.72 −25.57 −19.02
9 −18.81 −20.52 −21.55 −23.18 −25.68 −21.34

10 −18.14 −19.15 −21.59 −23.08 −23.96 −21.52
11 −16.97 −18.42 −20.91 −22.79 −23.76 −21.13
12 −16.77 −18.19 −20.84 −22.24 −23.60 −20.87
13 −15.18 −16.34 −18.72 −21.36 −23.44 −19.56
14 −15.98 −17.57 −19.26 −21.13 −22.57 −20.37
15 −18.66 −20.08 −21.59 −22.30 −23.18 −22.35
16 −18.24 −19.38 −19.39 −21.70 −23.35 −20.95
17 −17.29 −17.58 −17.50 −19.38 −22.76 −18.97
18 −13.48 −13.75 −13.98 −15.86 −19.99 −14.55
19 −12.62 −13.14 −14.26 −15.94 −23.09 −14.50
20 −13.61 −15.99 −17.15 −18.15 −22.89 −17.23
21 −13.39 −20.31 −20.87 −22.13 −23.59 −21.41
22 −12.96 −19.07 −19.17 −20.45 −23.56 −20.26
23 −10.49 −13.72 −14.03 −14.71 −18.64 −15.39
24 −9.24 −11.37 −11.61 −12.83 −15.66 −12.52
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Figure 4. Time series of spot prices observed in the North zone at Noon (12 a.m.).

Many authors indicate mean reversion (see, for instance, [10,12]) as a typical feature
of electricity price time series because unit root test tend to reject the null of integration.
This is hard to believe because gas prices are well described by integrated processes and
electricity prices depend also on gas prices (at the time of writing, the relation between
gas and electricity prices is extremely evident!). The reason for the rejection of unit root
tests is that the signal (with unit root) is generally buried in a high-variance noise (multi-
scale seasonality, relation to weather conditions, strategies of the companies playing in
the market, plant outages, lines congestions, etc.). So why are we modelling levels and
not increments?

1. We provide regressors that, in case of unit roots, are certainly cointegrated with the
outcome variable, namely the intermediate markets. Regressions with cointegrated
variables are valid.

2. We are interested in short-term forecasts and for this case even the eventual attraction
of a stationary model prediction towards the marginal mean of the time series is
generally negligible.

3. The range of the time series tends to be constant throughout the time and this enables
the use of tree-based models (such as RF), which produce predictions only in the
range observed in the training set.

In this study, we integrate the information given by the price at time t− 1, . . . , t− 7,
labelled as y1, y2, . . . , y7, with a set of deterministic and exogenous regressors (see [1,37])
listed below, in order to improve the capability of the models in hand to predict the
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future: Data can be downloaded, upon request (luigi.grossi@unipd.it), at the follow-
ing link: https://drive.google.com/drive/folders/1N-seSvGxQ7hzhocO4hm4WJpxzai1
BVqV?usp=share_link (Last update: 30 November 2022).

• The day of the year (day),
• The day of the week (dayweek), a categorical variable with seven classes,
• A calendar dummy for holidays (calendar),
• The one-day-ahead predicted demand of electricity (demand, source: Italian Electricity

Market Manager, GME),
• The one-day-ahead predicted wind generation (wind, source: TERNA SpA),
• Four Intra-Day Market (IDM) prices at time t− 1.

The day of the year is a discrete variable with values from 1 to 366 counting the day
number since 1st January of every year. It is used only for the RF, whereas it is replaced
by sinusoids at the first 16 harmonics with base period 365 for all the other models. In
other words, the following 32 regressors are added to the models: cos(ωjt), sin(ωjt) with
ωj = 2π j/365 and j = 1, 2, . . . , 16.

The reason for this choice relies on the following motivation. Since RF are based
on trees, which approximate smooth functions with steps, we provide the RF regression
with information on the within-year seasonal periodicity through a variable counting the
number of days since the beginning of each year letting the trees find the differences in
the sub-periods. Instead, for linear models, such as ARX and ARX-L, or models, such as
SVM, that take smooth transforms of the regressors, we provide information on the within-
year seasonal periodicity through low-frequency sinusoids. The choice of the number of
harmonics (16) is based on the authors’ experience working with Italian price data: the
number of harmonics used for other countries is generally much smaller, but the typical
drop in electricity consumption (and, thus, prices) on Winter and Summer holidays in Italy
requires more sinusoids to be well captured.

Differently from what has been completed so far in the literature, we explore the role
played by prices observed on Intra-Day Market (IDM). The IDM allows market participants
to modify the schedules defined in the Day-Ahead Market by submitting additional supply
offer or demand bids and is organized in seven sessions. Nevertheless, in this study we
consider only the first four (IDM1, IDM2, IDM3, and IDM4) with the following timing:
IDM1 opens at 12.55 p.m. of the day before the day of delivery and closes at 3 p.m. of
the same day (its results are made known within 3.30 p.m. of the day before the day of
delivery); IDM2 opens at 12.55 p.m. of the day before the day of delivery and closes at
4.30 p.m. of the same day (its results are made known within 5 p.m. of the day before the
day of delivery); IDM3 opens at 5.30 p.m. of the day before the day of delivery and closes
at 11.45 p.m. of the same day (its results are made known within 00.15 p.m. of the day of
delivery); and IDM4 opens at 5.30 p.m. of the day before the day of delivery and closes
at 3.45 a.m. of the day of delivery (its results are made known within 4.15 a.m. of the day
of closing of the sitting). Given the different schedule of the sessions, the four regressors
related to the IDM market are not all available for all the 24 h.

As seen in Section 2, the methods under study depend on some hyper-parameters and
their tuning is performed as follows. For the ARX-L and ARX-L Int. the hyper-parameter for
L1 penalization, λ, is fixed zone by zone and hour by hour by 10-fold cross-validation. For
SVM, we use a radial kernel function with ε and γ determined by 10-fold cross-validation
on a grid of 3× 7 predetermined values, whereas for RF, mtry and nodesize are set equal to
the typical choices, and NT = 10,000.

We calculate the one-day ahead prediction using a rolling window procedure for the
eight months of 2019 and the forecasting performance is evaluated by means of a modified
version of the Root Mean Squared Percentage Error (RMSPE) and the Mean Absolute
Percentage Error (MAPE).

Two simple benchmarks have been introduced. The first is the Random Walk (RW),
under the trivial hypothesis that the price observed in t could be predicted by the price
observed in t − 1 (naive model). Comparisons of the estimated models to the RW are

https://drive.google.com/drive/folders/1N-seSvGxQ7hzhocO4hm4WJpxzai1BVqV?usp=share_link
https://drive.google.com/drive/folders/1N-seSvGxQ7hzhocO4hm4WJpxzai1BVqV?usp=share_link
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shown in Table 2. The second benchmark is the “naive week” RW, under the hypothesis
that the daily price in t could be predicted by the price in t− 7 (same day of the previous
week). Results are displayed in Table A1. Adjustment for holidays has been considered.
As can be noted, all values are less than 1, proving that all models perform better than the
corresponding naive model.

Table 2. Comparison of forecasting performances to those of the RW model over peak (14 h) and
off-peak (10 h) hours. Values are obtained as the ratio of the model’s average RMSE to the average
RMSE under the Random Walk assumption, over the prediction horizon in the same hour group
(peak and off-peak).

Area ARX ARX-L ARX-L Int. RF SVM

Peak hours NOR 0.706 0.735 0.727 0.736 0.702
CNOR 0.727 0.744 0.740 0.766 0.731
CSOU 0.756 0.774 0.774 0.780 0.766
SOU 0.775 0.803 0.795 0.793 0.785
SIC 0.833 0.861 0.862 0.847 0.850
SAR 0.776 0.786 0.782 0.787 0.777

Off-peak hours NOR 0.779 0.814 0.802 0.807 0.787
CNOR 0.803 0.822 0.822 0.826 0.815
CSOU 0.841 0.848 0.856 0.843 0.845
SOU 0.824 0.835 0.844 0.830 0.831
SIC 0.846 0.866 0.859 0.845 0.851
SAR 0.846 0.848 0.861 0.835 0.841

Moreover, the significance of prediction differences between models is evaluated with
the one-tailed Diebold–Mariano test [38], with the null hypothesis declared as “prediction
performance of model A is equal or worse than model B”. Nevertheless, in what follows,
we show and discuss only the results obtained applying RMSPE, given that the same
conclusions arise from the MAPE analysis. MAPE values are shown in Table A2.

Table 3 contains the ratio of the mean value of RMSE over peak (14 h) and off-peak
(10 h) hours over the corresponding average price. For instance in Table 3, the value in
the first line, first column, is obtained as the ratio of the RMSEs generated by ARX model
in each of the 14 peak hours in the NOR zone, over the average price observed on the
forecasting horizon in the NOR zone. This generalized version of the RMSPE is better than
the proper RMSPE because it avoids the bias related to cases in which prices close to zero
generate very large ratios. It is of interest to distinguish between these two types of hours
because companies adopt different strategies when demand is high or low. All the models
perform better during the off-peak hours, since when demand is low the supply curve is
rather flat and the elasticity of the price rather low (i.e., unexpected changes in demand
have a small effect on the equilibrium price). Moreover, the predictive performances seems
equivalent for the North and the Center-North of Italy, whereas they become worse moving
from the North to the South and islands. Electricity prices for Sicily appear quite difficult
to accurately predict due to the frequent and scarcely predictable switch between two
regimes: as a separate market with a higher price and as part of the Italian market with
a common (lower) price. Looking at the values of the RMSPE, in the peak hours SVM
seems to outperform the other models in the North whereas the ARX seems to show better
predictive capacities in the remaining areas. In the off-peak hours ARX seems to outperform
the other models in all the areas except for Sicily and Sardinia where RF seems to predict
slightly better the spot prices.

In order to inspect more deeply the predictive performances of the models, the perfor-
mances on the single hours were considered. Table 4 displays, for each hour, the model
with the lowest RMSE and in brackets the number of significant Diebold and Mariano
tests. This number ranges between 0 and 4, with 0 meaning that the RMSE of the best
model is not significantly lower than the RMSE of the other 4 competitors, and 4 meaning
that the RMSE of the best model is always significantly lower. For most of the hours the
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ARX has the lowest RMSE in all the areas, with the exception of North and peak hours,
where the SVM outperforms for most of the hours, and Sicily, Sardinia, and off-peak hours,
where RF outperforms for most of the hours. Nevertheless, in very few cases the number
of significant Diebold and Mariano tests reaches 4.

Table 3. Mean value of RMSPE over peak (14 h) and off-peak (10 h) hours. Values are obtained as the
percentage ratio of RMSE to the average price observed over the prediction horizon in the same hour
group (peak and off-peak).

Area ARX ARX-L ARX-L Int. RF SVM

Peak hours NOR 12.12 12.62 12.47 12.63 12.05
CNOR 12.28 12.57 12.50 12.94 12.35
CSOU 13.42 13.74 13.73 13.85 13.60
SOU 18.69 19.36 19.18 19.12 18.92
SIC 30.85 31.91 31.95 31.38 31.51
SAR 15.75 15.96 15.88 15.98 15.78

Off-peak hours NOR 10.84 11.33 11.16 11.22 10.96
CNOR 11.80 12.08 12.07 12.13 11.98
CSOU 14.17 14.28 14.42 14.20 14.24
SOU 15.14 15.33 15.51 15.24 15.27
SIC 24.02 24.58 24.39 23.99 24.15
SAR 14.69 14.72 14.94 14.50 14.61

Table 4. Best model according to minimum RMSE—peak and off-peak hours.

PEAK HOURS

Hour NOR CNOR CSOU SOU SIC SAR

8 SVM (2) ARX (2) ARX (1) ARX (1) ARX (3) ARX (1)
9 ARX (2) ARX (2) ARX (0) ARX (2) ARX (2) ARX (0)
10 ARX (3) ARX (1) ARX (1) ARX (2) RF (0) ARX (0)
11 SVM (1) ARX (0) ARX (0) ARX (1) ARX (2) RF (0)
12 SVM (3) ARX (0) ARX (0) RF (0) ARX (2) ARX (0)
13 SVM (3) ARX (1) ARX (0) RF (0) ARX (1) RF (0)
14 SVM (2) ARX (0) ARX (0) ARX (0) ARX (2) ARX (0)
15 SVM (1) ARX (1) ARX (0) ARX (0) ARX (1) ARX (1)
16 ARX (0) ARX (1) ARX (1) ARX (1) ARX (2) ARX (3)
17 SVM (1) ARX (0) ARX (3) ARX (4) ARX (2) ARX (3)
18 ARX (1) ARX (1) ARX (3) ARX (4) ARX (3) ARX (2)
19 SVM (1) ARX-L Int. (0) SVM (1) ARX (4) RF (3) SVM (0)
20 SVM (0) ARX-L (0) ARX-L (2) ARX (1) ARX (4) ARX-L Int. (2)
21 SVM (1) ARX-L Int. (1) ARX-L (2) ARX-L (0) ARX (3) RF (1)

OFF-PEAK HOURS

Hour NOR CNOR CSOU SOU SIC SAR

1 ARX (3) ARX (3) ARX (2) ARX (3) SVM (0) ARX (1)
2 ARX (3) ARX (4) ARX (2) ARX (3) ARX (0) ARX (2)
3 ARX (4) ARX (4) RF (1) RF (1) ARX-L Int. (0) RF (1)
4 ARX (4) ARX (3) ARX (3) ARX (2) RF (0) RF (1)
5 ARX (4) ARX (4) ARX (3) ARX (3) RF (0) RF (0)
6 ARX (2) ARX (4) RF (0) RF (0) ARX-L Int. (0) RF (0)
7 ARX (3) ARX (3) ARX (1) ARX (0) ARX (3) ARX (0)
22 RF (0) SVM (1) ARX-L Int. (0) RF (0) RF (2) ARX-L (1)
23 SVM (0) SVM (1) SVM (0) SVM (0) ARX (0) RF (2)
24 RF (2) ARX (0) ARX-L (0) ARX-L (0) RF (0) SVM (1)

In order to investigate more deeply the observed results, we analyze the role of the
used explanatory variables in the models’ performance calculating the VIM for RF, ARX-L,
and SVM. The implemented methods are described in Section 2. To summarize the results,
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we took into account only the covariates that occupy one of the first five positions in the
ranking produced by the VIMs. Moreover, with the aim to discriminate the relevance of
the ranking, we assign the values reported in Table 5 to the five positions.

Table 5. Values assigned to the first five positions in the ranking.

Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5

1 0.8 0.6 0.4 0.2

Figures 5–7 compare the relevance of regressors obtained in the different zones using
the modified version of the variable importance index when RF predictions are evaluated,
and using the model-agnostic method based on permutations for the evaluation of forecasts
from SVM and ARX-L.
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Figure 5. Variable importance measures for the RF. Weighted percentage of times the variables are
within the fifth position out of 24 h. y1, . . ., y7, are labels of lagged variables yt−1, . . . , yt−7, respectively.

The bars represent the weighted percentage of times the variables are within the fifth
position out of the 24 h. To evaluate correctly the results, we have to consider that prices
for the last two sessions of the IDM are not available for all the 24 h, so for IDM3 and IDM4
the bars refer to the weighted percentage out the 12 and 8 h, respectively.

For all three models, the lagged spot prices until the seventh lag, and, in particular,
the first and the seventh delay, are among the most important variables.

Intraday prices generated across all IDMs are at the top in the VIM rankings, as well.
Nevertheless, differences can be spotted comparing the three models. In general, all the
IDMs seem less important for both SVM and ARX-L, than for RF.

In the case of RF, the IDM1 and IDM2 are the most important in all the six zones, and
the importance of IDM1 is comparable with the first lagged spot price.
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Figure 6. Variable importance measures for the ARX-L. Weighted percentage of times the variables are
within the fifth position out of 24 h. y1, . . ., y7, are labels of lagged variables yt−1, . . . , yt−7, respectively.
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Figure 7. Variable importance measures for the SVM. Weighted percentage of times the variables are
within the fifth position out of 24 h.

When ARX-L is used (Figure 6), the IDM4 plays a predominant role within the IDMs
in the Center-South and Sardinia, whereas in North and Centre-North IDM2 is the most im-
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portant. Differently from the other zones, in Sicily intra-day markets are almost negligible,
while the autoregressive structure looks very strong.

Looking at Figure 7 concerning SVM, IDM1 is the most important of the four IDMs in
all the zones moving from Centre-South to the islands, whereas in North and Centre-North
IDM2 is the most important. Moreover, the day of the week variable plays a relevant role
in all zones.

The high relevance of the autoregressive structure of spot prices until the seventh lag
is a common feature of all models in all zones. It is sensible to assume that this common
feature could be the main explanation of the excellent forecasting performance of linear
AR models. To test this assumption, the forecasting exercise has been repeated removing
the lagged spot prices from the set of regressors. As pointed out by one of the reviewers,
the model obtained by stripping the model from lagged prices is improperly called AR
model because a simple regression model on exogenous variables is estimated. However,
we prefer to maintain the same label to stress the link with the previous tables. The fitting
of the all models without lagged prices is obviously worse. The exercise has been carried
out just to measure the different contribution of past information on the prediction using
different models. The decrease in the forecasting performance is expected, but the extent
of the deterioration is different and gives an idea of the relevance of exogenous variable
in various models. We are aware that the exercise has no practical implications. For this
reason we do not perform any out-of-sample forecasting test. The comparison between
the models with and without the lagged prices is displayed in Table 6, which contains the
percentage variation of the average RMSE computed on the two versions of the models for
each zone, that is:

(
RMSE (MAE) with past prices

RMSE (MAE) without past prices
− 1
)
× 100.

All figures in Table 6 are negative, as expected. Similar results have been found for MAE.

Table 6. Percentage variation of average RMSE over peak and off-peak hours with respect to the case
in which no lagged values of the dependent variable were included in the regressors set.

Area ARX ARX-L ARX-L Int. RF SVM

Peak hours NOR −10.41 −7.00 −8.57 −10.82 −11.47
CNOR −12.73 −8.78 −10.17 −10.82 −13.43
CSOU −10.62 −9.26 −10.26 −9.13 −11.39
SOU −5.68 −5.05 −5.53 −4.36 −6.29
SIC −4.62 −9.56 −7.43 −4.23 −5.69
SAR −10.90 −7.51 −9.38 −7.70 −10.57

Off-Peak hours NOR −14.20 −10.76 −11.03 −11.93 −15.38
CNOR −17.20 −14.41 −14.59 −13.43 −16.68
CSOU −14.88 −12.87 −11.73 −10.22 −13.79
SOU −10.28 −9.84 −8.43 −7.66 −9.40
SIC −3.35 −10.30 −11.22 −2.38 −3.67
SAR −16.59 −11.39 −11.63 −10.12 −14.90

Looking at the peak hours, the biggest reduction in predictive capability in all zones
except Sicily, occurs for SVM; nevertheless, this reduction is similar to that of ARX models.
Therefore, the impact of past prices on the predictions of ARX and SVM models is bigger
than in all the other cases.

During the off-peak hours, the ARX models show the highest reduction of predictive
capability in all zones, but the North. The case of RF is quite interesting. For this model, the
reduction of forecasting ability due to the exclusion of lagged spot prices is lower than for
SVM and ARX models in almost all 24 h. The relevant role played by IDMs in RF models
seems to replace the contribution of lagged spot prices.
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The effect of exogenous covariates on the forecasting performance has been explored
as well. In this case, the percentage variation of the average RMSE (MAE) over each zone is
computed as follows:(

RMSE (MAE) with exogenous variables
RMSE (MAE) without exogenous variables

− 1
)
× 100.

As expected, the sign of these variations for RMSE (Table 7) is always negative. Similar
results have been found for MAE.

During peak hours, RF models show the lowest reduction in predictive power in all
zones except Sicily, whereas during off-peak hours and in all zones except Sicily, ARX and
SVM models lose more predictive power than other models.

Comparing the last two analyses reported in Tables 6 and 7, the highest reduction in
the predictive power occurs when the exogenous variables are removed, during the peak
hours in Northern Italy (NOR+CNOR), for all models but RF. This result stresses the crucial
role played by IDMs in forecasting spot prices in an area which covers more than 50% of
the total national power generation.

On the contrary, during off-peak hours, for all models and hours, the highest reduction
in the predictive power occurs when the lagged spot prices are removed, showing a lower
contribution to the predictive accuracy of the exogenous variables with respect to lagged
prices. To have an idea about the impact of intra-day prices, the same exercise could have
been performed by simply removing the IDM variables. However, as can be seen from
the variable importance plots (Figures 5–7), the most important variables are always t− 1
and t− 7 lags on the day ahead price and the IDM variables. Wind and Demand are never
crucial. For this reason, we expect that the exercise will lead to the same results obtained
when all exogenous regressors are included.

Table 7. Percentage variation of the mean values of RMSE over peak and off-peak hours with respect
to the case in which no exogenous variables were included in the regressors set.

Area ARX ARX-L ARX-L Int. RF SVM

Peak hours NOR −15.46 −13.87 −13.33 −8.93 −15.51
CNOR −14.19 −13.63 −13.19 −8.22 −13.77
CSOU −10.98 −10.12 −9.28 −6.87 −9.48
SOU −7.79 −4.45 −4.43 −3.79 −5.97
SIC −4.53 −1.72 −1.68 −3.28 −2.68
SAR −8.08 −7.52 −7.41 −4.84 −7.68

Off-Peak hours NOR −9.69 −5.75 −7.26 −6.16 −8.51
CNOR −6.34 −3.80 −4.66 −3.73 −5.05
CSOU −3.02 −1.46 −1.67 −1.48 −2.17
SOU −3.38 −1.45 −1.62 −1.70 −2.57
SIC −1.57 0.67 −0.62 −2.26 −1.92
SAR −1.94 −1.20 −0.80 −1.65 −2.21

4. Conclusions

The initial research question motivating this study concerns the potential prevalence
of sophisticated non-linear methods, such as SVM and RF models, on the simple linear AR
model, taken as the benchmark, in predicting one-day ahead spot price. We found that,
when estimated in the macro-zones of the Italian electricity market, there is not a clear
dominance of one model and in all hours of the day. SVM regressions seem to outperform
the other models in the North zone in peak hours (10 h out of 14). It is worth stressing
that North is the most important area of the Italian market as it covers about 50% of the
national generation. AR models perform better in the other zones. However, statistical
prevalence is hard to be found, suggesting that the simplest model (ARX, that is AR with
exogenous variables) in general makes a good job in predicting spot prices. Summarizing
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the results shown in Table 4, the simple ARX model gives the best prediction in 79% of
cases considering peak hours in CNOR and CSOU.

Connected with the initial research question, we have studied the issue of variable
selection connected to the forecasting performance of models. In addition to the autore-
gressive structure of the generating process, we considered some exogenous variables
commonly used in the literature and available on the Italian market, that is, predicted
demand and wind generation, and intra-daily market prices. To the best of our knowledge,
the impact of intra-daily market information on the prediction of spot prices is a new
research question, never explored before. The influence of regressors on the forecasting
ability of different models has been measured using variable importance measures (VIM),
which give a clear idea about the most relevant set of regressors. VIM have been originally
developed in the framework of RF, given that the structure of the trees involved in the
forest and, consequently, the role of the variables are lost. In this paper, we have extended
the VIM analysis to ARX and SVM models by applying a model-agnostic method based on
permutations. We have found that, for all models, lagged spot prices up to seven days, and
IDMs play a crucial role in the prediction step.

For RF, IDM1 and IDM2 are the most important regressors in all six zones, and the
importance of IDM1 is comparable to that of the spot price of the same hour on the previous
day. For SVM and ARX models, the importance of IDMs is less evident than for RF, although
their role is not negligible. The analysis of the impact of the autoregressive structure of the
spot prices on the forecasting ability has revealed that, in Northern Italy and in peak hours,
IDMs are a crucial set of information to predict spot prices.

The final message is that, for forecasting electricity prices, variables’ construction and
selection (or feature engineering, using machine learning jargon), both in the step of dataset
preparation and during model estimation is more important than the use of complex
non-linear models. Linear models, combined with penalization criteria, provide good
forecasting performances, and have great computational and interpretation advantages.

Further research will be devoted to the study of some theoretical properties of RF
for dependent data and to the introduction of additional exogenous variables, such as
marginal technologies, weather variables, and fuel prices. The main limit of the paper is
that just two machine learning models among the large range of machine learning models
proposed in the literature have been considered. Although RF and SVM are massively
used in the prediction of time series there are other emerging techniques that would be
worth to explore. Among these, we just mention the Gradient Boosting and the Dynamic
Trees [39] for online forecasting, which have proven to be very effective in the prediction of
electricity prices [40,41]. The comparison with other promising machine learning models
will be explored in future papers. A possible integration with robust interval prediction
will be also studied.
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Appendix A

Table A1. Comparison of forecasting performances to those of the “Naive Week” RW model over
peak (14 h) and off-peak (10 h) hours. Values are obtained as the ratio of the model’s average RMSE
to the average RMSE under the “Naive Week” assumption, over the prediction horizon in the same
hour group (peak and off-peak).

Area ARX ARX-L ARX-L Int. RF SVM

Peak hours NOR 0.701 0.729 0.721 0.730 0.696
CNOR 0.697 0.713 0.709 0.735 0.701
CSOU 0.710 0.728 0.727 0.733 0.720
SOU 0.713 0.738 0.731 0.729 0.722
SIC 0.707 0.731 0.732 0.719 0.722
SAR 0.722 0.731 0.728 0.732 0.723

Off-peak hours NOR 0.674 0.704 0.694 0.698 0.681
CNOR 0.686 0.702 0.702 0.705 0.696
CSOU 0.697 0.702 0.709 0.698 0.700
SOU 0.705 0.714 0.722 0.710 0.711
SIC 0.674 0.689 0.684 0.673 0.677
SAR 0.708 0.709 0.720 0.698 0.704

Table A2. Mean value of MAPE over peak (14 h) and off-peak (10 h) hours. Values are obtained as
the percentage ratio of MAE to the average price observed over the prediction horizon in the same
hour group (peak and off-peak).

Area ARX ARX-L ARX-L Int. RF SVM

Peak hours NOR 9.02 9.29 9.15 9.16 8.78
CNOR 9.09 9.22 9.13 9.42 8.97
CSOU 9.83 10.06 10.04 10.12 9.88
SOU 13.51 14.29 14.19 13.85 13.86
SIC 22.47 23.76 23.67 23.14 23.20
SAR 10.90 11.07 11.03 11.08 10.95

Off-peak hours NOR 8.32 8.63 8.51 8.51 8.33
CNOR 8.82 9.01 8.99 9.02 8.92
CSOU 10.46 10.63 10.75 10.58 10.59
SOU 11.03 11.29 11.47 11.22 11.22
SIC 17.47 18.15 17.96 17.56 17.69
SAR 11.02 10.93 11.12 10.81 10.94

Table A3. Percentage variation of the mean values of MAE over peak and off-peak hours with respect
to the case in which no lagged values of the dependent variable were included in the regressors set.

Area ARX ARX-L ARX-L Int. RF SVM

Peak hours NOR −11.89 −8.58 −10.54 −13.52 −13.79
CNOR −13.80 −9.99 −12.03 −12.43 −15.49
CSOU −12.25 −10.89 −11.97 −11.93 −13.99
SOU −6.42 −4.81 −5.50 −5.45 −6.41
SIC −4.46 −9.98 −7.79 -3.72 −5.48
SAR −13.36 −9.31 −11.56 −10.94 −13.20

Off-Peak hours NOR −15.69 −12.94 −13.61 −14.70 −17.95
CNOR −18.55 −16.00 −16.74 −15.58 −18.78
CSOU −17.45 −14.92 −14.29 −13.28 −16.69
SOU −12.99 −12.24 −11.25 −10.39 −12.41
SIC −6.33 −13.31 −14.50 −5.05 −5.47
SAR −18.14 −13.12 −14.48 −12.25 −17.22
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Table A4. Percentage variation of the mean values of MAE over peak and off-peak hours with respect
to the case in which no exogenous variables were included in the regressors set.

Area ARX ARX-L ARX-L Int. RF SVM

Peak hours NOR −15.31 −13.57 −12.33 −8.52 −15.82
CNOR −14.41 −13.16 −12.64 −7.96 −14.15
CSOU −11.63 −9.94 −9.14 −7.19 −10.62
SOU −10.71 −5.40 −4.87 −5.53 −9.44
SIC −6.37 −1.91 −2.06 −5.10 −5.09
SAR −10.70 −9.02 −8.86 −6.64 −10.22

Off-Peak hours NOR −7.32 −4.29 −5.49 −4.57 −5.55
CNOR −5.32 −3.51 −3.71 −2.76 −3.40
CSOU −3.13 −1.32 −1.11 −1.07 −1.36
SOU −3.92 −1.49 −1.48 −1.49 −2.41
SIC −1.00 1.00 −0.15 −2.55 −3.27
SAR 0.13 −0.36 0.32 −1.19 0.29

Table A5. Mean value of RMSE over peak (14 h) and off-peak (10 h) hours. In parenthesis the
standard deviation. The lags of the dependent variable have been omitted.

Area ARX ARX-L ARX-L Int. RF SVM

Peak hours NOR 7.585 (0.723) 8.244 (1.364) 8.356 (1.408) 7.939 (0.711) 8.759 (1.944)
CNOR 7.988 (0.758) 8.664 (1.518) 8.81 (1.519) 8.235 (0.589) 9.293 (2.026)
CSOU 8.370 (0.873) 8.854 (1.564) 8.989 (1.631) 8.496 (0.84) 9.278 (1.844)
SOU 10.506 (2.614) 10.926 (2.853) 10.898 (2.856) 10.597 (2.481) 10.947 (2.879)
SIC 22.343 (3.698) 24.824 (6.295) 24.876 (6.275) 22.632 (3.604) 23.704 (3.522)
SAR 9.770 (1.241) 9.874 (2.063) 9.965 (2.041) 9.566 (1.444) 10.199 (1.971)

Off-Peak hours NOR 6.079 (0.63) 6.114 (0.728) 6.044 (0.693) 6.13 (0.753) 6.284 (0.763)
CNOR 7.187 (0.797) 7.085 (0.747) 7.087 (0.73) 7.067 (0.628) 7.255 (0.744)
CSOU 8.647 (1.364) 8.495 (1.551) 8.448 (1.515) 8.214 (1.209) 8.582 (1.349)
SOU 8.686 (1.43) 8.735 (1.533) 8.672 (1.573) 8.496 (1.259) 8.684 (1.398)
SIC 15.281 (4.816) 16.860 (8.264) 16.910 (8.233) 15.112 (4.569) 15.431 (4.741)
SAR 9.136 (1.121) 8.602 (1.336) 8.796 (1.136) 8.367 (0.999) 8.899 (1.173)

Table A6. Mean value of MAE over peak (14 h) and off-peak (10 h) hours. In parenthesis the standard
deviation. The lags of the dependent variable have been omitted.

Area ARX ARX-L ARX-L Int. RF SVM

Peak hours NOR 5.737 (0.494) 6.314 (1.100) 6.417 (1.144) 5.934 (0.485) 6.720 (1.587)
CNOR 5.982 (0.524) 6.620 (1.320) 6.752 (1.344) 6.105 (0.459) 7.135 (1.776)
CSOU 6.247 (0.539) 6.867 (1.427) 6.971 (1.488) 6.405 (0.566) 7.252 (1.690)
SOU 7.655 (1.754) 8.289 (2.256) 8.265 (2.244) 7.766 (1.658) 8.342 (2.350)
SIC 16.243 (3.451) 18.578 (5.812) 18.676 (5.804) 16.599 (3.601) 17.550 (3.387)
SAR 6.954 (0.639) 7.354 (1.742) 7.452 (1.736) 6.875 (0.742) 7.704 (1.750)

Off-Peak hours NOR 4.747 (0.506) 4.770 (0.549) 4.744 (0.536) 4.800 (0.614) 4.937 (0.637)
CNOR 5.461 (0.497) 5.382 (0.543) 5.417 (0.547) 5.389 (0.469) 5.540 (0.536)
CSOU 6.580 (1.107) 6.472 (1.256) 6.478 (1.269) 6.337 (1.064) 6.607 (1.159)
SOU 6.528 (1.126) 6.601 (1.244) 6.598 (1.297) 6.449 (1.105) 6.592 (1.167)
SIC 11.468 (3.788) 12.906 (7.405) 12.932 (7.390) 11.369 (3.676) 11.522 (3.665)
SAR 6.981 (0.979) 6.509 (1.180) 6.732 (1.030) 6.393 (0.919) 6.860 (1.041)
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