
Computers in Biology and Medicine 150 (2022) 106144

A
0

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

ComEDA: A new tool for stress assessment based on electrodermal activity
Mimma Nardelli a,∗, Alberto Greco a, Laura Sebastiani b, Enzo Pasquale Scilingo a

a Bioengineering and Robotics Research Centre E. Piaggio and Dipartimento di Ingegneria dell’Informazione, University of Pisa, Largo Lucio Lazzarino
1, Pisa, 56122, Italy
b Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Paolo Savi 10, Pisa, 56126, Italy

A R T I C L E I N F O

Keywords:
Electrodermal activity (EDA)
Skin conductance
Stress
Arousal
Complexity
Phase space reconstruction

A B S T R A C T

Non-specific sympathetic arousal responses to different stressful elicitations can be easily recognized from the
analysis of physiological signals. However, neural patterns of sympathetic arousal during physical and mental
fatigue are clearly not unitary. In the context of physiological monitoring through wearable and non-invasive
devices, electrodermal activity (EDA) is the most effective and widely used marker of sympathetic activation.
This study presents ComEDA, a novel approach for the characterization of complex dynamics of EDA. ComEDA
overcomes the methodological limitations related to the application of nonlinear analysis to EDA dynamics, is
not parameter-sensitive and is suitable for the analysis of ultra-short time series. We validated the proposed
algorithm using synthetic series of white noise and 1/f noise, varying the number of samples from 50 to 5000.
By applying our approach, we were able to discriminate a statistically significant increase of complexity in
the 1/f noise with respect to white noise, obtaining 𝑝-values in the range [4.35 × 10−6, 0.03] after the Mann–
Whitney test. Then, we tested ComEDA on both EDA signal and its tonic and phasic components, acquired from
healthy subjects during four experimental protocols: two inducing a sympathetic activation through physical
efforts and two based on mentally stressful tasks. Results are encouraging and promising, outperforming state
of the art metrics such as the Sample Entropy. ComEDA shows good performance not only in discriminating
between stressful tasks and resting state (𝑝-value < 0.01 after the Wilcoxon non-parametric statistical test
applied to EDA signals of all the four datasets), but also in differentiating different trends of complexity of
EDA dynamics when induced by physical and mental stressors. These findings suggest future applications to
automatically detect and selectively identify threats due to overwhelming stress impacting both physical and
mental health or in the field of telemedicine to monitor autonomic diseases correlated to atypical sympathetic
activation. The Matlab code implementing the ComEDA algorithm is available online.
1. Introduction

Electrodermal activity (EDA) is a general term that reflects any
variation in the bioelectric properties of the skin. These alterations are
caused by the activity of eccrine sweat glands, which is regulated by the
sympathetic nervous system, through the sudomotor innervation [1,2].
EDA signals can be divided into two main components: a tonic com-
ponent, which incorporates the baseline slow drifts and spontaneous
fluctuations (skin conductance level, SCL), and the phasic component,
that depicts the short-term fast-varying response to external stimuli
(skin conductance response, SCR) [3]. In contrast to other autonomic
nervous systems (ANS) correlates, e.g., heart rate variability (HRV),
EDA is solely controlled by the sympathetic nervous system and can
be considered a pure arousal indicator [4–6].

ANS dynamics are intrinsically complex and the interplay between
autonomic sub-systems is characterized by nonlinear relationships [7–
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9]. For this reason, the chaos theory represents an effective comple-
mentary tool to unveil hidden information of the ANS. For instance,
the nonlinear analysis of HRV and blood pressure time series [10,11]
has provided relevant results in distinguishing emotional and cognitive
responses [12–14].

On the other hand, only a few studies have investigated the com-
plexity of the EDA signals. During a sympathetic activation, the EDA
dynamics response is characterized by a sequence of rapid spiky in-
creases, followed by a slower exponential decay back to baseline [3,
15–17]. This peculiar dynamics has limited the application of many
nonlinear analysis methods, e.g. entropy algorithms, because their
approach, based on the study of similarities of phase space vectors,
results to be less accurate when the mean and the standard deviation of
the time series show remarkable fluctuations [18,19]. Among the few
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previous studies, the application of symbolic information and approxi-
mate entropy to EDA has highlighted a more task-specific response of
nonlinear theory indexes to mental cognitive stressors, with respect to
traditional time-domain features, as the electrodermal response ampli-
tude [20]. Svetlak et al. suggested that complexity analysis can be more
sensitive to the huge amount of functional and spatial mechanisms
influencing EDA modulation from various areas of the brain during
mental efforts [21].

In this study, we use chaos theory to investigate the complexity
of EDA dynamics, to overcome the limitations of standard analysis
in the time and frequency domain, which has been demonstrated to
distinguish different arousal levels, but is unable to identify different
kinds of stressful elicitations. In fact, the sympathetic activation can
be related to a wide range of stressor conditions, which go from
physical efforts [22–24], to stressful mental tasks [25–27]. A compar-
ison between EDA responses to physical and cognitive stressors using
different acquisition systems and sites, has been reported in [28]. In
all the experiments, EDA gradually decreased to a plateau during the
baseline recorded in resting-state condition, and increased during the
arousing tasks, presenting multiple electrodermal responses during the
whole task duration. Considering EDA quantifiers in time and frequency
domains, statistically significant differences between resting state and
stressful tasks were reported in [29]. However, the traditional analysis
of the EDA signal during stressful tasks, while effectively recognizing
the arousal rise related to stress, does not allow the correct identifica-
tion of its origin, whether physical or cognitive, since the values of the
parameters follow the same trend. In that study, in fact, an increase
of the skin conductance level was found during orthostatic, physical,
and cognitive stress protocols. In all three experimental protocols, a
consistent increment in the values of EDAsymp, a new estimator of
sympathetic activity based on the power spectral density of EDA, was
also identified.

Although different tasks often induce a similar response in the EDA
time series, neural patterns of sympathetic arousal responses follow-
ing physical efforts or mental stressors are clearly not unitary [30].
Hippocampus, amygdala, and prefrontal cortex play a crucial role in
cortisol regulation in response to mental stressors, whereas the brain-
stem, the nucleus of the solitary tract, and the ventrolateral medulla are
mainly involved during physical fatigue [31–33]. The central regulation
of EDA dynamics is characterized by numerous and complex regulatory
mechanisms and different neural pathways. Indeed, previous studies
have hypothesized that EDA changes could be influenced by different
independent pathways originated at cortical (premotor cortex and pyra-
midal pathways) or subcortical levels (hypothalamus and amygdala) [3,
20,34]. Moreover, another EDA regulation center has been identified in
the reticular formation localized to the brainstem [34].

We propose here ComEDA, an ad-hoc algorithm based on the recon-
struction of EDA dynamics in the phase-space. Our method overcomes
the issues related to the typical amplitude fluctuations of the EDA
signal, by computing the angular distances of the points in the phase
space to analyze the trajectories of the EDA attractor. This approach
of complexity analysis has been already applied to other physiological
signals with similar characteristics, e.g. electrohysterogram [35], with
satisfactory and promising results. Once the attractor is successfully
reconstructed we quantify its spacial complexity using the normalized
quadratic Rényi entropy of the probability density function (PDF) of
such distances, computed through a kernel density estimation tech-
nique. Our approach is designed for a reliable analysis of ultra-short
EDA time-series, in order to capture the complex dynamics of the fast
EDA response to stressful tasks. Furthermore, it is worthwhile noting
that we do not resort to pre-set parameters that can lead to unspe-
cific results, but each parameter used in the algorithm is computed
according to the input time series.

We tested our method on four different datasets of EDA signals
acquired from healthy subjects during four experiments, two protocols
2

structured to induce physical effort and two protocols based on stressful
mental tasks. Specifically, we analyzed the complexity of EDA dynamics
during a hand-grip task, performed at the submaximal voluntary con-
traction, a forced maximal exhalation protocol, a mental computation
task, and a Stroop Color and Word test. For each task, we applied the
ComEDA algorithm on the physiological signals acquired during each
task compared to the preceding resting-state condition, considering
three different input time series: the EDA signal and the two main
signals into which it can be decomposed, i.e. tonic and phasic, extracted
by using the cvxEDA approach [17]. Performance of ComEDA were
compared with state of the art Sample Entropy (SampEn) [19,36].

Experimental results demonstrate that the novel ComEDA approach
proposed here is able to distinguish different changes in complex
dynamics of EDA time series, reflecting the two typologies of stressful
stimuli, i.e. physical efforts and mental fatigue.

2. Materials and methods

We tested ComEDA algorithm as a method to quantify complexity
of dynamical systems by using both synthetic time series and physio-
logical signals. In Section 2.1 we describe data simulation, whereas in
Section 2.2.1 the details about the four experimental protocols used to
acquire EDA signals are reported. The pre-processing of EDA signals by
using cvxEDA, and the complexity analysis follow in Sections 2.3 and
2.2.2. Fig. 1 shows the overall scheme of the experimental design we
followed in this study to acquire and process real data.

2.1. Synthetic series

We first tested the ComEDA algorithm on simulated series of white
gaussian noise (WGN) and 1/f noise, as reported in previous scientific
literature on complexity indexes [37–39]. We simulated 200 realiza-
tions of WGN and 200 realizations of 1/f series of 5000 samples, and
we applied the ComEDA method to discriminate the corresponding
complexity level by using windows of different sizes in the range
[50, 5000] samples, with intervals of 300 samples. We compared the
complexity degree referred to the two processes by using the statistical
analyses described in Section 2.4.

2.2. Physiological data

2.2.1. Data acquisition
In this study we designed and conducted four different experimen-

tal protocols based on stressful stimuli (see Fig. 1(a)). The first two
experiments (Exp1 and Exp2) are centered on physical stressful tasks,
i.e. submaximal hand-grip and forced maximal exhalation tasks. Exp3
and Exp4 are based on two stress-inducing tasks: mental computation
task and the Stroop Color and Word test, respectively. The selection
of the specific stressful tasks used in this study is based on the results
obtained in previous scientific literature on the analysis of sympathetic
response evoked by physical or mental stimuli [24,40–42]. The ex-
perimental protocols, the criteria adopted for subject recruitment and
processing of personal data were approved by the ‘‘Bioethics Committee
of the University of Pisa’’ (protocol n. 3/2019). According to the
self-report questionnaires filled before the four experiments, none of
the participants suffered from any cardiovascular, mental or sweat-
related diseases (e.g. hyperhidrosis). The details of all the experimental
protocols follow below.

Submaximal hand-grip protocol (Exp1)
In this experiment (Exp1), 27 healthy subjects (aged 22–41, mean

age: 28.64, 13 males) provided their written informed consent to
participate. During the experiment, participants were asked to stay
seated with their eyes open. The experimental protocol consisted in
one resting-state session of one-minute and one-minute of isometric
hand-grip performed at 33% of maximal voluntary contraction (task
ℎ𝑔). The hand-grip was executed by using a hand dynamometer, and

the maximal hand-grip force was calculated as the highest value among
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Fig. 1. Overall experimental design of the study. (a) EDA signals were acquired during four different experimental protocols (see details in Section 2.2.1): two based on stress
induced by physical efforts (Exp1 and Exp2) and two based on stress induced by mental/cognitive tasks (Exp3 and Exp4). (b) Signal pre-processing block shows the application
of cvxEDA algorithm (see Section 2.2.2). After applying cvxEDA, three time series can be derived from each EDA signal: noise-free EDA signal and its two embodied components
(tonic and phasic). The plots represent the three time series derived from one EDA signal by using cvxEDA. (c) The novel ComEDA algorithm was applied to each of the three
time series resulting from cvxEDA-based pre-processing, in order to assess changes in the complexity level of physiological dynamics, according to the stressful tasks of the four
experimental protocol. The angular distance between two points of the trajectory in a representative phase space is shown with the related formula, together with an example of
a probability density function used to study the distance distribution in the ComEDA algorithm (see Section 2.3.1).
three trials of a 3-s maximal effort performed before starting the
experiment. The BIOPAC MP150 system was used to acquire the EDA
signals from the fingers of non-dominant hand of each participant, with
sampling rate of 500 Hz.

Forced maximal exhalation protocol (Exp2)
In this experiment (Exp2), 16 healthy subjects (aged 18–35) were

recruited. Before taking part in the study, each subject gave a written
informed consent. Participants were asked to perform a forced max-
imal exhalation task, breathing out with the utmost intensity [24].
The protocol started with a 3-min session where the subjects began
breathing normally and resting in front of a gray monitor. Thereafter,
the participants were asked to perform a deep exhalation each time
the background color of the screen changed to black (𝑟𝑒𝑠𝑝 task). There
were three stimulation sessions in which participants had to perform a
deep exhalation each time the background color of the screen changed
to black (𝑟𝑒𝑠𝑝 task). Three sessions were planned and in each one the
participants should deeply exhale six times with a variable interstimu-
lus interval, randomly selected among 4, 8, and 12 s. A 30-s recovery
interval was used to separate consecutive experimental sessions. During
the whole duration of the experiment, EDA signals and the respiration
efforts were acquired by using a Biosemi Active II system.

This experimental paradigm is intended to induce a sympathetic
activation through an objective and reliable procedure, unaffected
by emotional components. According to the literature, EDA signals
acquired during such tasks, exhibit more stable waveform patterns
and less habituation than other means of elicitation, e.g. electrical
stimulation [24].

Mental computation protocol (Exp3)
The third experiment (Exp3) recruited 24 participants (aged 22–

26) who gave their informed consent to take part in the study. After a
closed-eyes resting state session of two minutes at the beginning of the
experimental protocol, the volunteers were asked to perform a mental
computation task (𝑚𝑐 task). Specifically, they were asked to subtract
alternately 12 and 17 starting from 277, down to a 2-digit number,
then multiply the obtained number by two and finally start over the
series of subtractions. In case of error, the participant had to start the
calculation over. During the whole duration of the experiment, the
BIOPAC MP150 system was used to acquire the EDA signals from the
fingers of non-dominant hand.

Stroop Color and Word Test (Exp4)
3

The fourth experiment (Exp4) involved 31 healthy subjects (aged
21–50). Participants underwent the Stroop Color and Word Test, a
well-known neuropsychological test used to assess the ability to inhibit
cognitive interference generated when the processing of a specific
stimulus feature curbs the simultaneous processing of a second stim-
ulus attribute [43,44]. Subjects gave their informed consent and the
experiment started with five minutes of open-eyes resting state session.
In the Stroop Color and Word Test color-words were printed in an
inconsistent color ink (for instance the word ‘yellow’ was printed in red
ink) and displayed on a black computer screen every 2 s. A palette of
four colors was used: yellow, red, blue, and green. In this stressful task,
lasting overall three minutes, the participants were asked to click on the
right color (and not on the meaning) of the presented words, choosing
among the four colors written in white on the bottom of the screen. At
the top of the screen a counter showed the number of correct answers
and it was reset to zero on each error. EDA signals were recorded from
non-dominant hand of each participant by using the Shimmer 3 GSR+
device.

2.2.2. EDA signal pre-processing: cvxEDA
The cvxEDA algorithm was applied as pre-processing step to remove

artifacts from each EDA signal and at the same time to extract its main
components: the tonic and the phasic components. In fact, cvxEDA
models the skin conductance as the sum of the tonic and phasic
signals plus an additive noise term representing modeling and measure-
ment errors [17]. The tonic component presents slow and spontaneous
fluctuations of the baseline level. On the other hand, the phasic com-
ponent represents fast-varying superimposed skin conductance changes
directly evoked by the stimulus. After the application of cvxEDA, we
obtained from each EDA time series its phasic and tonic components
(see the example plots in Fig. 1(b)). As already mentioned, for a full
characterization of complex dynamics underlying skin conductance, we
applied the ComEDA algorithm not only to the cleaned EDA time series
(given by the sum of the tonic and phasic signals), but also to the
two related components, i.e., the tonic and phasic components, which
have different time-scale and relationship to the triggering stimuli [3].
Before applying ComEDA, each time series was rescaled using a min–
max normalization, shifting the minimum and maximum amplitude
values to 0 and 1. Since the EDA signal bandwidth remains below
2 Hz [45], a frequency rate of 4 Hz was used for all the time series
in this study. This sampling rate is also the one used by many wearable
devices on the market for continuous monitoring of skin conductance.
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2.3. Complexity analysis

As mentioned above, for each acquisition, three signals were con-
sidered: the tonic and phasic components obtained after the application
of cvxEDA algorithm, and their sum, which represents the EDA signal
without noise components (hereinafter EDA).

We applied the here proposed algorithm for the complexity as-
sessment of skin conductance dynamics, i.e., ComEDA, together with
the gold standard of the entropy measures introduced for the study
of physiological time series, i.e., SampEn [19,46]. The details on the
computation of ComEDA algorithm are reported in Section 2.3.1 and
the SampEn method is described in Section 2.3.2.

2.3.1. ComEDA algorithm
The here proposed ComEDA approach aims at characterizing the

spatial complexity of nonlinear EDA dynamics in the phase space. The
following steps are designed to achieve that objective:

1. Phase space reconstruction;
2. Calculation of the angular distances between all the pairs of

points in the phase space;
3. Computation of the probability density function (PDF) of the

distances;
4. Quadratic Rényi entropy of the PDF.

(1) Phase space reconstruction: The first step of the ComEDA algorithm is
the reconstruction of the attractor related to each time series (EDA sig-
nal, tonic and phasic components) in its own phase space, by using the
Takens’ time-delay embedding method [47]. For each time series, the
embedding dimension 𝑚 (the number of the phase space coordinates) is
computed by using the False Nearest Neighbors (FNN) procedure [48].
The embedding vectors in the new space consist in vectors of delayed
values of the time series considered, where the optimal time delay
𝜏 is calculated as the first minimum of the auto-mutual information
function [49]. Once the values of 𝑚 and 𝜏 are calculated for a given
time series [𝑥(1), 𝑥(2),… , 𝑥(𝑁)] (that can be either EDA, phasic or tonic
time series) of length 𝑁 , a total number of 𝑛 = 𝑁 −(𝑚−1)𝜏 embedding
ectors are defined as follows:

(𝑘) = [𝑥(𝑘), 𝑥(𝑘 − 𝜏), 𝑥(𝑘 − 2𝜏),… , 𝑥(𝑘 − (𝑚 − 1)𝜏)] (1)

(2) Calculation of the angular distances: The distance 𝑑𝑖𝑗 between two
hase space vectors 𝑋(𝑖) and 𝑋(𝑗), for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 = 𝑁 − (𝑚− 1)𝜏, is
efined observing the angle between them [35], as follows:

𝑖𝑗 = 𝑐𝑜𝑠(𝜃(𝑋(𝑖), 𝑋(𝑗))) =
𝑋(𝑖) ⋅𝑋(𝑗)

‖𝑋(𝑖)‖2 ‖𝑋(𝑗)‖2
(2)

where ⋅ represents the inner product and ‖‖2 is the Euclidean norm. The
total number of 𝑑𝑖𝑗 values is 𝑛(𝑛−1)∕2, without considering self-matches
(𝑑𝑖𝑖) and given that 𝑑𝑗𝑖 = 𝑑𝑖𝑗 .

(3) Computation of the probability density function (PDF): To limit the
parameter dependence, we did not use a threshold value to compare the
distances. We globally quantify the spatial distribution of the trajectory
points in the phase space, using an approach inspired to distribution
entropy algorithm, where the histogram of the distance values was
analyzed [50,51]. In ComEDA, the PDF related to the values of angular
distances 𝑑𝑖𝑗 is computed by using a kernel density estimator based on
linear diffusion processes [52], with a Gaussian kernel. The number of
bins 𝐵 of the PDF is chosen applying the Sturges method [53].

(4) Quadratic Rényi entropy of the PDF: After computing the probabil-
ity of each bin (𝑝𝑖), the quadratic Rényi entropy formula is applied [54]:

𝐻2 = −𝑙𝑜𝑔2(
𝐵
∑

𝑖=1
𝑝2𝑖 ) (3)

The value obtained is then normalized to the range [0,1], as follows:

𝐶𝑜𝑚𝐸𝐷𝐴 = − 1 𝐻2 (4)
4

𝑙𝑜𝑔2𝐵
As it can be noticed, ComEDA algorithm does not need to set any
a priori parameters, unlike the other algorithms in the literature. All
the parameters used in the ComEDA algorithm are selected in order
to be the optimal metrics for each specific time series used as input.
The normalization procedure allows simpler comparisons between the
results obtained under different experimental conditions.

2.3.2. SampEn algorithm
Concerning the computation of SampEn approach, we considered

the same phase space reconstruction we described in Section 2.3.1.
Regarding the choice of the parameters 𝑚 and 𝜏, we considered the
same values used for ComEDA, obtained applying the FNN procedure
and the auto-mutual information function for each time series.

Then, we applied the procedure described in [19,46].
Considering each pair of vectors 𝑋(𝑖) and 𝑋(𝑗) in the phase space,

heir Chebyshev distance 𝑑𝑖𝑗 = 𝑚𝑎𝑥𝑐 |𝑥(𝑖 + 𝑐𝜏) − 𝑥(𝑗 + 𝑐𝜏)| (with 0 ≤ 𝑐 ≤
−1) was computed excluding self-matches (𝑖 = 𝑗). Then we estimated

he value of 𝐶𝑚(𝑟), i.e. the probability that two vectors 𝑋(𝑖) and 𝑋(𝑗)
of 𝑚 coordinates will match, as follows:

𝐶𝑚(𝑟) = 1
𝑁 − 𝑚

𝑁−𝑚
∑

𝑖=1
( 1
𝑁 − 𝑚 − 1

𝑁−𝑚
∑

𝑖=1,𝑖≠𝑗
(𝑟 − 𝑑𝑖,𝑗 )) (5)

where  is the Heaviside function. The parameter 𝑟 is the threshold
used to compare the distance values between the vectors, and is usually
chosen between 10%–25% of the time series standard deviation [55].
In this study, we set 𝑟 equal to the 25% of the standard deviation of the
studied series, i.e. EDA, tonic or phasic components [20]. The embed-
ding dimension was then increased from 𝑚 to 𝑚 + 1, and 𝐶𝑚+1(𝑟) was
calculated. Finally, the SampEn value was found as the negative natural
logarithm of the conditional probability that two sequences similar for
𝑚 points remain similar for 𝑚+ 1 points (without self-comparisons), as
follows:

SampEn(m,r,N) = − ln 𝐶𝑚+1

𝐶𝑚 (6)

2.3.3. Comparison between ComEDA and previous entropy algorithms
The ComEDA approach aims to overcome some critical limitations

of existing entropy algorithms [18,19,56] used to quantitatively de-
scribe the evolution of a dynamical system through the characterization
of the distances of the points constituting the attractor within the
reconstructed phase space. The way of quantifying the dispersion of
trajectory points is made radically different in ComEDA, compared to
previous methods. The first main difference is the computation of the
distance between each pair of points along the trajectory in the phase
space.

Traditional entropy metrics investigate the similarity of each pair of
phase space vectors, e.g. 𝑋(𝑖) and 𝑋(𝑗), by computing the Chebyshev
distance. Such a distance is usually compared with a threshold value,
depending on the standard deviation of the time-series (usually the
15%–20% of the standard deviation [46]). However, this standard
approach cannot be easily applied to the EDA and phasic signals due to
their spiky nature. To overcome this limitation, ComEDA algorithm is
based on a modified computation of distance metrics, based on angular
distance (see Eq. (2)).

In ComEDA, also the way to compare the values of the distances
between the vectors is different, since it is based on the kernel density
estimation of the PDF of the distance values. The analysis of the PDF
makes the ComEDA algorithm free from the choice of the threshold
value and is based on the whole information coming from all the pairs
of points and not only from those with a distance below the threshold,
such as in SampEn for example.

Finally, the calculation of the Rényi entropy allows to characterize
the entropy from the PDF, giving a global measure of the spatial
distribution of the points in the phase space, without the need to study

their behavior as the embedding distance varies.
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2.4. Statistical analysis

Concerning the results of the application of ComEDA approach on
synthetic series, we compared the median values of the complexity
levels by applying the Mann–Whitney non-parametric test for unpaired
samples [57]. We used non-parametric tests given the non-gaussian
distribution of samples, as demonstrated by the application of Shapiro–
Wilk test, which is considered the most powerful normality test for all
types of distribution and sample sizes [58]. We obtained a 𝑝-value for
each comparison between 200 WGN series and 200 1/f series varying
the number of samples from 50 to 5000 (considering an interval of 300
samples each time). The false discovery rate (FDR) adjustment through
the Benjamini–Yekutieli correction [59] was applied on the 17 𝑝-values
obtained.

Considering each experimental protocol separately, we extracted
one value of ComEDA (or SampEn) for each session, obtaining two
vectors of length equal to the number of subjects to be compared, one
related to the stressful task and the other related to the resting state.
Before testing the statistical differences between the ComEDA (or Sam-
pEn) values extracted from the EDA, tonic, and phasic signals during
the stressful and rest sessions of the four protocols, we verified the
non-gaussianity of the sample distributions using the Shapiro–Wilk test.
Once the non-gaussianity of the distributions of ComEDA values was
verified (𝑝-value < 0.05 after Shapiro–Wilk test), we used a two-tailed
Wilcoxon signed-rank test to compare resting state sessions and stress-
ful tasks, which is a non-parametric statistical test for matched-pair
data [60]. The same statistical tests were applied to SampEn values,
in order to compare the performance of the two different algorithms.
Also in the case of real data, we used the FDR approach as post-hoc
statistical analysis, considering all the twelve 𝑝-values obtained after
the Wilcoxon tests for both ComEDA and SampEn (all the comparisons
reported in Tables 1 and 2 respectively).

3. Results

3.1. Synthetic series

Applying ComEDA approach to discriminate WGN and 1/f series, we
were able to identify pink noise series as the most complex. After the
Mann–Whitney non-parametric tests and the FDR adjustment through
the Benjamini–Yekutieli correction, we obtained a significant 𝑝-value
(𝑝 < 0.05) for all the 17 comparisons, considering different window
sizes. Specifically, the 𝑝-values were in the range [4.35 × 10−6, 0.03],
and for each duration the ComEDA median value related to 1/f noise
was higher than the median value obtained for WGN series.

In Figs. 2 and 3 we reported the boxplots of the ComEDA values
for WGN and 1/f noise for series with a duration lower and higher
than 1200 samples, respectively. Considering that we used physiolog-
ical series sampled at 4 Hz, the window dimension of 1200 samples
corresponds to series of 5 min in the real case, which is the threshold
below which time series are considered ultra-short [13]. Observing
each couple of boxplots (WGN and 1/f series) related to each value
of length considered, it can easily be noticed that the median value of
comEDA indexes referred to 1/f noise is higher than the median value
referred to WGN noise.

3.2. Physiological data

In this section, we report the results of the statistical analysis
applied to the ComEDA and SampEn estimates related to the four
datasets.

Table 1 shows the 𝑝-values obtained after the application Wilcoxon
statistical test to the paired ComEDA values computed from EDA sig-
nals both during the stressful tasks and the previous resting state,
and then corrected through the FDR multiple-comparisons procedure.
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Specifically, ComEDA has been evaluated from all of the three types of
Fig. 2. Boxplots of ComEDA values obtained from 200 realizations of WGN and 1/f
series, considering ultra-short windows with increasing number of samples from 50 to
950. In correspondence with each value on the horizontal axis concerning the length
of the synthetic series considered, two boxplots have been reported that provide a
visualization of summary statistics for the ComEDA values extracted from white noise
(WGN) and 1/f noise, respectively. The distance between the bottom and top of each
colored box represents the interquartile range. The middle line in each box is the
median value.

Table 1
Results of statistical tests applied to ComEDA values extracted from EDA, tonic and
phasic time series in the four experimental protocols used in this study (Exp1, Exp2,
Exp3, Exp4), in terms of 𝑝-values obtained from the application of Wilcoxon non-
parametric test, and corrected through FDR procedure. For each test, the corresponding
trend of ComEDA median value is shown by using the symbols ↓ and ↑, which indicate
a decrease and an increase of ComEDA median values during the stressful task with
respect to the preceding rest, respectively. 𝑛.𝑠. stands for not-significant 𝑝-value (𝑝-value
> 0.05).

ComEDA
EDA Tonic Phasic

𝑝-value Trend 𝑝-value Trend 𝑝-value Trend

Exp1
(rest vs. hg)

0.0088 ↓ 0.0411 ↓ n. s.

Exp2
(rest vs. resp)

0.0032 ↓ 0.0052 ↓ 0.0299 ↓

Exp3
(rest vs. mc)

0.0043 ↑ n.s. 0.0011 ↓

Exp4
(rest vs. stroop)

0.0003 ↑ 0.0242 ↑ n.s.

signal: EDA, tonic and phasic time series. For each signal and for each
experimental protocol we reported the 𝑝-value of the Wilcoxon test and
the trend of the median values of complexity estimates going from the
resting state to the stressful tasks.

It can be easily noticed that ComEDA algorithm applied to EDA
signals gave significantly different values when resting and stressful
sessions were compared, in all the experiments. Fig. 4 shows the results
obtained applying ComEDA algorithm to EDA signals acquired during
all the four experimental protocols in terms of violin plots [61], that
combine the data density traces and the box plots. Two specular trends
of median ComEDA values were identified comparing the results of the
first two protocols based on carrying out stressful physical tasks and
the last two experiments which aimed at increasing mental workload.
We found a significant decrease of complexity in EDA signals during
the first two experimental protocols: hand-grip (ℎ𝑔 in Exp1) and forced
maximal exhalation (𝑟𝑒𝑠𝑝 in Exp2) tasks. In other words, EDA showed
lower complexity during the physical stressors than during the previous
resting state (𝑝-value < 0.01). On the other hand, ComEDA values
increased when subjects performed mental computation task (𝑚𝑐 in
Exp3, 𝑝-value < 0.01) and the Stroop test in Exp4 (𝑝-value < 0.001).

For the sake of completeness, in the Table 1 we also report the
ComEDA figures calculated on the tonic and phasic components, al-
though some values resulted to be not statistically significant (see n.s.
notation in the Table). In summary, the ComEDA estimates from tonic
components decreased during the physical effort tasks in Exp1 (𝑝-value
< 0.05), Exp2 (𝑝-value < 0.01) and increased during the cognitive effort
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Fig. 3. Boxplots of ComEDA values obtained from 200 realizations of WGN and 1/f series, considering windows with increasing number of samples from 1250 to 4850. In
orrespondence with each value on the horizontal axis concerning the length of the synthetic series considered, two boxplots have been reported that provide a visualization of
ummary statistics for the ComEDA values extracted from white noise (WGN) and 1/f noise, respectively. The distance between the bottom and top of each colored box represents
he interquartile range. The middle line in each box is the median value.
.

Fig. 4. Violin plots of ComEDA vales obtained from EDA signals related to arousal tasks
f Exp1, Exp2, Exp3, and Exp4, compared to the corresponding previous resting state
ession. Each Violin plot combines the box plot with the density traces of the related
ata plotted symmetrically ro the left anf the right of the box plot. The points shown
etween the two density curves of each violin plot illustrate the individual ComEDA
alues according to each experimental condition. The black straight line highlights the
rend of ComEDA median values.

n Exp4 (𝑝-value < 0.05). Consistently with the EDA signals, an increase
in the median values of ComEDA was found also during the 𝑚𝑐 task in
Exp3, even if the result of statistical test was not significant (𝑝-value
> 0.05).

Looking at the results of ComEDA from phasic components the only
statistically significant results have been achieved for the tasks 𝑟𝑒𝑠𝑝 in
Exp2 and 𝑚𝑐 in Exp3. In both cases, we found a decrease of complexity
in the dynamics of phasic signals.

Table 2 reports on the results of Wilcoxon test with FDR post-hoc
correction applied to SampEn values related to the four experimental
protocols. SampEn estimates of resting sessions and stressful tasks were
not statistically different for Exp1, Exp2, and Exp3. When we compared
the Stroop Color and Word Test with the resting state (Exp4), we found
significant 𝑝-values using the EDA signals (𝑝-value < 0.001) and the
tonic component (𝑝-value <0.05). In both cases, entropy median values
increased during the stressful task, as in ComEDA (see Table 1).

4. Discussion

We presented ComEDA, a dedicated novel methodological approach
for the investigation of complex dynamics of EDA signals. The aim of
ComEDA is to effectively estimate the complexity of the EDA signal
to unveil changes in EDA response induced by different sources of
sympathetic activation: physical effort and cognitive stress.
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Table 2
Results of statistical tests applied to SampEn values extracted from EDA, tonic and
phasic time series in the four experimental protocols used in this study (Exp1, Exp2,
Exp3, Exp4), in terms of 𝑝-values obtained from the application of Wilcoxon non-
parametric test, and corrected through FDR procedure. For each test, the corresponding
trend of SampEn median value is shown by using the symbols ↓ and ↑, which indicate a
decrease and an increase of SampEn median values during the stressful task with respect
to the preceding rest, respectively. 𝑛.𝑠. stands for not-significant 𝑝-value (𝑝-value > 0.05)

SampEn
EDA Tonic Phasic

𝑝-value Trend 𝑝-value Trend 𝑝-value Trend

Exp1
(rest vs. hg)

n.s. n.s. n.s.

Exp2
(rest vs. resp)

n.s. n.s. n.s.

Exp3
(rest vs. mc)

n.s. n.s. n.s.

Exp4
(rest vs. stroop)

0.0024 ↑ 0.0014 ↑ n.s.

Previous studies in the literature endeavored to define the regions
of the brain and body involved in different sympathetic arousal phe-
nomena, hypothesizing descending patterns (from the brain to the skin)
and ascending ways (from viscera to brain) according to different neu-
robehavioural processes [62]. The main difference was hypothesized
between the regulatory mechanisms underlying physical and psycho-
logical stressors [63]. A predominant bottom-up hierarchical scheme
was highlighted in response to physical efforts, when the information
was supposed to move from peripheral organs to brainstem and hy-
pothalamus, mainly mediated by the activity of subcortical regions.
On the other hand, during cognitive tasks, i.e. mental stressors, higher
cortical levels, e.g. prefrontal cortex, were demonstrated to be involved
in a top-down regulation pattern [64]. Carter et al. suggested that such
complex autonomic dynamics during mental stress can be related to a
disassociation between muscle sympathetic nerve activity (MSNA) and
vascular response [26].

In this study, we propose the first comprehensive analysis of the
complexity of EDA signals dynamics during the two main categories
of stress, i.e. mental and physical, that are likely to be associated to
different neural pathways. To this aim, we explored the complexity of
dynamics of EDA signals, as well as of its two principal constituents,
i.e. the phasic and tonic components, extracted through the cvxEDA
method [17]. We purposely designed the ComEDA algorithm, which
accepts as input an ultra-short segment of EDA signals and reconstructs
the trajectory of the related attractor in the phase-space by using its
optimal values of embedding dimension and time-delay. In this study
we applied the ComEDA algorithm on the EDA as a whole and on the
two components of which it is made up, i.e. tonic and phasic. ComEDA
is able to provide a quantifier of the spatial complexity of the attractor
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in the range [0,1], computing the normalized quadratic Rényi entropy
of the PDF of the angular distances between the attractor points.

We first tested the proposed algorithm using a synthetic dataset
consisting of 200 realizations of WGN noise and 200 realizations of 1/f
series. Results point out that ComEDA is able to discriminate the com-
plexity degree of two different processes, also in the case of ultra-short
series and even using windows of only 50 samples. The performance
of our algorithm indicates an increasing relevance if compared with
different entropy algorithms in the literature which need a multiscale
approach and, consequently, a much higher number of samples to be
able to give appropriate information on the level of complexity [37].

Four experimental protocols were investigated: in experiments Exp1
and Exp2, we compared the resting sessions with two different physical
efforts (submaximal hand-grip ℎ𝑔, and forced maximal exhalation 𝑟𝑒𝑠𝑝,
respectively), in Exp3 and Exp4 we compared the resting states with
two mental efforts, i.e., mental computation, 𝑚𝑐, and Stroop Color and
Word Test, respectively.

Table 1 shows all the statistical results obtained through ComEDA
algorithm. Some values of complexity of tonic and phasic components
compared to the resting state in some stressful tasks are not statis-
tically significant. On the other hand, we obtained significant and
sound results about the complexity calculated from the EDA signals.
Specifically, as it can be noticed from Table 1, the complexity of EDA
decreases during a sympathetic activation induced by physical stress,
i.e., ℎ𝑔 and 𝑟𝑒𝑠𝑝 in Exp1 and Exp2, respectively, while it increases
during mental efforts, i.e., 𝑚𝑐 and 𝑠𝑡𝑟𝑜𝑜𝑝 in Exp3 and Exp4, respec-
tively. This relevant result might be in support of the hypothesis of
the main difference between the physiological patterns that regulate
the sympathetic activation during physical and mental efforts [63].
Indeed, two main opposite different patterns of complexity changes
have been found in EDA signals during physical compared to mental
effort. Accordingly, we could hypothesize that a decrease of complex-
ity of EDA dynamics can be associated to a predominant bottom-up
hierarchical scheme, while an increase of it could be referred to a top-
down regulation pattern. It is worthwhile noting that this difference
of complexity is evident and consistent when the ComEDA algorithm
is applied to the EDA signals, pointing out two clear opposite trends.
Also investigating tonic complex dynamics it is possible to discern
similar trends, although in some cases, e.g., 𝑚𝑐 in Exp3, results are not
statistically significant.

We compared the performance of ComEDA with a previously de-
fined entropy algorithm, SampEn [19,46]. For each time series, we
computed SampEn starting from a phase space reconstructed in the
same way as ComEDA. The results obtained with SampEn did not
present statistically significant differences in most of the examined
conditions (see Table 2). In fact, for Exp1, Exp2, and Exp3 we were
not able to distinguish the experimental sessions with any of the time
series taken into account (EDA, and tonic and phasic components). We
showed a statistically significant difference only in the case of Exp4,
for EDA and tonic component, where we reported for SampEn median
values the same trends already found in ComEDA (see Table 2). Our
findings suggest that the ComEDA approach improves on the state of
the art on complexity assessment of EDA dynamics.

These promising results were obtained applying chaos theory to
ultra-short time segments (one or two minutes) of EDA, tonic, and pha-
sic signals, setting a sampling frequency of 4 Hz. These specifications
make our algorithm easier to be implemented on wearable acquisition
systems, which can allow a long-term monitoring of subjects during
daily activities. In this way, continuous monitoring of subjects could
be useful for the diagnosis of atypical sympathetic response to stressful
situations, which can easily lead to anxiety and phobias.

Future works will be addressed towards the use of our approach to
groups of healthy and pathological subjects monitored in a naturalistic
environment. An interesting application of our algorithm could be to
investigate complexity changes during emotional elicitation. Emotional
7

arousal is characterized by two ‘waves’ of autonomic response [65]:
the adrenomedullary activation (present also in response to other
stressors), and the adrenocortical response. During emotional arousal,
adrenomedullary and adrenocortical hormones interact with the amyg-
dala to modulate memory-storage processes in other brain regions [66,
67]. Memories indeed play a fundamental role in the processing of
emotional stimuli, which is not present during the reaction to purely
physical stimuli. Furthermore, future endeavors will be directed at
studying ComEDA performance according to the signal window size.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The research leading to these results has received partial funding
from European Union Horizon 2020 Programme under grant agree-
ment n 824153 of the project ‘‘POTION-Promoting Social Interaction
through Emotional Body Odours’’ and from the Italian Ministry of
Education and Research (MIUR) in the framework of the CrossLab
project (Departments of Excellence).

Appendix

The Matlab code for ComEDA index estimation is publicly available
online at https://github.com/NardelliM/ComEDA.
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