Long-term effect of HCV eradication in patients with mixed cryoglobulinemia: a prospective, controlled, open-label, cohort study.

Laura Gragnani^{1*}, Elisa Fognani^{1*}, Alessia Piluso¹, Barbara Boldrini¹, Teresa Urraro¹, Alessio Fabbrizzi¹, Cristina Stasi¹, Jessica Ranieri¹, Monica Monti¹, Umberto Arena¹, Claudio Iannacone², Giacomo Laffi¹ and Anna Linda Zignego¹, for the MaSVE study group.

¹Center for Systemic Manifestations of Hepatitis Viruses (MaSVE), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; ²SPARC Consulting Srl, Milan, Italy.

* contributed equally to this work.

The multi-departmental MaSVE study group includes the following investigators:

Umberto Arena, Boldrini Barbara, Patrizio Caini, Alessio Fabbrizzi, Elisa Fognani, Laura Gragnani, Giacomo Laffi, Giorgio La Villa, Monica Monti, Stefania Moscarella, Alessia Piluso, Jessica Ranieri, Roberto Giulio Romanelli, Cristina Stasi, Cristina Tosti Guerra, Teresa Urraro and Anna Linda Zignego: Section of Internal Medicine, Department of Experimental and Clinical Medicine (DMSC), University of Florence, Florence, Italy; Rosanna Abbate, Maria Boddi, Alberto Bosi, Luigi Rigacci: Section of Critical Medicine and Specialistic Medicine, DMSC, University of Florence, Florence, Italy; Nicola Pimpinelli: Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Martina Moneglia, Benedetta Nacmias, Stefano Pallanti, Sandro Sorbi: Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.

Corresponding author:

Prof Anna Linda Zignego Department of Experimental and Clinical Medicine University of Florence Largo Brambilla, 3 50134 - Firenze - ITALY Tel: +39 055 4271077 Fax: +39 055 4271050

E-mail: a.zignego@dmi.unifi.it

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/hep.27623 This article is protected by copyright. All rights reserved.

Hepatology

Abbreviations: ALT: alanine aminotransferase; ITT: intention to treat; HCV-RNA: hepatitis C virus-RNA; ETR: end of treatment response; OR: odds-ratio; RVR: rapid virological response; SoC: standard of care; SVR: sustained virological response; ULN: upper limit of normal.

Financial support

This work was supported by grants from the "Associazione Italiana per la Ricerca sul Cancro" (AIRC) Investigator Grant #1461, "Istituto Toscano Tumori" (ITT), "Fondazione Istituto di Ricerche Virologiche Oretta Bartolomei Corsi", "Ente Cassa di Risparmio di Firenze" and "Fondazione Cassa di Risparmio di Pistoia e Pescia"; LG is supported by 2014 fellowship "Fondazione Umberto Veronesi"; EF is supported by 2014 fellowship "Mario Coppo, Associazione Italiana per lo Studio del Fegato (A.I.S.F)".

Accepte

Abstract

Limited data are available about the efficacy of antiviral treatment in hepatitis C virus (HCV)-associated mixed cryoglobulinemia (MC), especially concerning the long-term effects of HCV eradication. The aim of this study was to evaluate the influence of MC on the virological response and the long-term effects of viral eradication on MC.

We prospectively enrolled 424 HCV+ patients belonging to the following groups: MCS-HCV (121 patients with symptomatic MC); MC-HCV (132 patients with asymptomatic MC); HCV group (158 patients without MC). Peg-IFN+RBV treatment was administered according to standard protocols. Post-treatment follow-up ranged from 35 to 124 months (mean: 92.5 months).

A significant difference was observed in the rate of sustained virological response (SVR) between HCV and both MC-HCV (p=0.009) and MC-HCV+MCS-HCV (p=0.014) groups. Multivariate logistic regression analysis identified cryoglobulinemia as an independent prognostic factor of non-response.

The clinical-immunological response in MCS-HCV correlated with the virological one. All patients with SVR also experienced a sustained clinical response, either complete or partial. In the majority of SVR patients all MCS symptoms persistently disappeared (36 patients, 57%); in only 2 (3%) did definite MCS persist. All virological non-responders were also clinical non-responders, in spite of a transient improvement in some cases. No evolution to lymphoma was observed.

For the first time we have evaluated both the effects of IFN-based therapy on HCV patients with or without MC, and with or without symptoms, and the long-term effects of viral eradication on MC. MC was shown to be a negative prognostic factor of virological response. HCV clearance led to persistent resolution or improvement of MC syndrome, strongly suggesting the need for a next generation of highly effective antiviral drugs.

strongly st

INTRODUCTION

Mixed cryoglobulinemia (MC) is an autoimmune/lymphoproliferative disorder (LPD) characterized by circulating immune complexes named cryoglobulins (CGs) that reversibly precipitate at low temperatures. CGs are comprised of polyclonal IgGs (including anti-HCV Ig) and mono- or polyclonal IgM with rheumatoid factor (RF) activity, sustained by the clonal expansion of RF B cells (1-5). The clinical manifestations characterizing symptomatic MC (mixed cryoglobulinemia syndrome (MCS)) are secondary to systemic vasculitis of the small/medium vessels (5, 6).

HCV infection is present in 80-90% of patients with MC (4, 7-9). HCV-positive patients varies in different geographical regions with a gradient from North to South. In most studies, 40 to 60% of HCV patients show circulating cryoglobulins. The prevalence of MCS in the non selected HCV population was reported to be less than 1% in North America and 2-5% in some Southern Europe countries. Interestingly, in some Centers, including the MaSVE Center, the percentage of MC-HCV patients with symptomatic MC vasculitis was up to 30% (4, 10, 11). Although clinically benign, MC is a lymphoproliferative disorder that predisposes to B-cell non-Hodgkin's lymphoma (NHL) in about 5–10% of cases (4, 5). In fact, the overall risk of NHL in patients with MC is about 35 times higher than in the general population (12). Since HCV infects about 170 million individuals worldwide, the number of patients at risk for MC and its complications is substantial.

The close association between MC and HCV dramatically modifies the therapeutic approach with the introduction of an etiological perspective (13). The improvement or resolution of MCS in some patients after HCV eradication suggests such a therapeutic approach as the first option in the treatment of HCV-related mild to moderate MCS (14-18). Since MC is an elusive condition, there is a chance that retrospective studies may actually include MC patients in the negative control group, meaning that prospective studies would be useful. Those performed so far are frequently characterized by their retrospective nature, limited size of populations, absence of appropriate controls, variability in therapeutic protocols and limited post-treatment follow-up (14). This hampers a correct evaluation of the influence of MC (symptomatic or not) on the virological response to anti-HCV treatments.

Therefore, the aim of this study was to prospectively analyze a large cohort of HCV patients with or without MC, symptomatic or not, treated with pegylated IFN (PEG-IFN) and ribavirin (RBV) according to standard criteria, in order to evaluate 1) whether the presence of MC influences the virological response, 2) the long-term effects of sustained virological response (SVR) on MCS.

PATIENTS AND METHODS

Study design: prospectic, open-label, controlled cohort study.

Patients

Patients were referred to the outpatient clinic of the Center for the Systemic Manifestations of Hepatitis Viruses (MaSVE), University of Florence, Italy and prospectively entered the study according to the following inclusion criteria: detectable levels of serum HCV-RNA and eligibility for antiviral treatment with PEG-IFN and RBV according to the international standard of care (19, 20). Demographic information, treatment history, HCV genotype data and laboratory evaluations were obtained from the records of the MaSVE outpatient clinic.

Patients were included into three different cohorts: (a) MCS-HCV group: patients with active cryoglobulinemic vasculitis ('definite' MC syndrome) (21); (b) MC-HCV group: patients with circulating CGs but without MCS; (c) HCV group (control group): patients without MC or any other autoimmune/lymphoproliferative disorder. Subjects with uncertain classification were excluded from the study. Exclusion criteria also included severe cryoglobulinemic vasculitis (i.e., progressive renal involvement, mononeuritis multiplex, skin ulcer or distal necrosis, rapidly progressive nephritis, motor neuropathy, digestive and/or pulmonary involvement and other life-threatening complications), according to current italian guidelines (14).

The study was conducted in accordance with the Declaration of Helsinki. The protocol was approved by the local Ethics Committee. Patients gave written informed consent.

HCV infection was proven by detecting circulating anti-HCV antibodies (EIA-2 and RIBA-2, Ortho Diagnostic Systems, Raritan, NJ) and HCV RNA (AMPLICOR® HCV Test, v2.0. Roche Diagnostics, Alameda, CA). HCV genotype was determined by a diagnostic test (VERSANT HCV Genotype 2.0, Siemens Healthcare Diagnostics, Deerfield, IL).

MC was assessed by circulating CGs found in at least 3 metachronous samples. All patients with MC syndrome satisfied available classification criteria (22, 23). Both clinical and laboratory parameters (including CG levels and characterization, complement fraction levels, rheumatoid factor and autoantibodies) were evaluated according to standard methodologies as previously described (24, 25).

Treatment

PEG-IFN alpha-2a (180 μ g) or alpha-2b (1.5 μ g/kg) was administered in combination with RBV (800-1200 mg, weight-based dose) (19, 20). In no case did patients receive corticosteroids or other drugs usually administered for MCS (14). Antiviral therapy was considered complete when patients observed the 80/80/80 rule (continued prescription of at least 80% of IFN doses and 80% of RBV doses for at least 80% of the planned treatment duration) referred to as the gold standard of HCV treatment adherence (26).

Efficacy assessments

All patients were evaluated for the main hepato-virological and clinical-immunological parameters at least every 3 months during the treatment and every 6 months during the post-treatment follow-up. Analysis of clinical and virological efficacy included all patients who received ≥ 1 dose of study medication (intent-to-treat [ITT]). Patients with missing values were considered non-responders. For ethical reasons, symptomatic MC patients resulting non responders were treated with different therapeutic options, including the use of Rituximab (alone or in combination with AT), plasma exchange, corticosteroids, as well as, more recently, new AT (DAA) and, consequently, were no longer part of the follow-up study.

Hepato-virological efficacy

To assess the hepato-virological efficacy, serum HCV-RNA was determined at regular intervals during the study. The primary endpoint was the evaluation of SVR, defined as undetectable serum HCV-RNA levels 24 weeks after treatment cessation. Determination of HCV viremia at weeks 4 and 12 allowed evaluation of RVR (Rapid Virological Response) and EVR (Early Virological Response) (19).

Liver disease severity was evaluated at least twice by transient elastography (TE), according to several studies (27). Briefly, liver stiffness values were measured using FibroScan® (Echo-sens, Paris, France) and reflected the METAVIR fibrosis stage, according to published cut-offs for absent, significant, severe fibrosis, and cirrhosis (28).

IL28B genotyping was performed as previously described (29); all genotyping results were consistent with the Hardy-Weinberg equilibrium.

Clinical-immunological efficacy

The main MC-related parameters were evaluated as previously described to assess the clinical-immunological efficacy in MCS patients (21, 30, 31). A complete clinical response was defined as improvement in all baseline clinical manifestations and a partial clinical response as improvement in at least half of the baseline symptoms. All other patients were classified clinical non-responders. Arthralgia and neuropathy, as including paresthesia/pain and clinically evident motor deficit, were measured through a patientscored Visual Analog Scale (VAS) (range, 0-100). Renal function was evaluated according to serum creatinine and proteinuria/24 hours. A complete response was defined as the combination of normalization of renal function when abnormal (serum creatinine) and proteinuria of 0.5 g/d or less. A partial response was defined as a stable or improved renal function and/or a reduction of at least 50% of proteinuria. No response was defined as worsening of renal function not attributable to other causes and/or proteinuria increase or a reduction insufficient for the definition of complete or partial response.

Statistical methods

Continuous variables were summarized by descriptive statistics and categorical variables were summarized using patient counts and percentages. Comparisons between groups were carried out using the Chi-Square test or, where appropriate, Fisher's Exact test for

Hepatology

qualitative variables and analysis of variance for quantitative variables. Logistic regression analysis was used to assess the factors associated with SVR; odds-ratio with 95% confidence intervals were derived from the model using Wald's method.

Patients with a missing HCV-RNA value for any reason at the end of follow-up were considered to be non-responders.

Data analyses were performed on the ITT population. Virological response analysis was also repeated in the Per Protocol population – defined as all patients who completed the treatment - as confirmative of ITT population results.

All statistical tests were performed at the $p \le 0.05$ level (two-sided). Statistical analyses were carried out using the SAS System version 9.2.

RESULTS

Baseline characteristics of patients

424 HCV-infected Caucasian patients (226 males, mean age 51.3±12.6 yrs) referred to the MaSVE Center outpatient clinic, were prospectively recruited from July 2003 to July 2010 according to the inclusion criteria. Patients were enrolled in the different cohorts as follows: (a) 121 patients (45 [37.2%] males, mean age 55.0±10.4 yrs) in the MCS-HCV group; (b) 132 patients (64 [48.4%] males, mean age 51.1±12.8 yrs) in the MC-HCV group; (c) 158 patients (112 [70.9%] males, mean age 49.3±13.3 yrs) in the HCV group. Thirteen patients were excluded for uncertain classification.

The mean duration of HCV infection was approximately 169 months (range, 75-366 months).

Post-treatment follow-up ranged from 35 to 124 months (mean: 92.5 months).

67 (16.3%) out of 411 patients experienced at least one previous antiviral treatment and were relapsed (Rel), non-responders (NR) or break-through (BT) (treatment-experienced patients, Table 1).

Baseline characteristics of the 411 enrolled patients are summarized in Table 1. The most relevant clinical MCS manifestations were purpura, arthralgia and weakness (Meltzer and Franklin triad). According to the exclusion criteria, no patients had severe or life-threatening MC vasculitis (inclusion of only mild/moderate MCS) (14). The amount of

MCS patients that during the study period were excluded due to a severe MC vasculitis was comparable to the amount of included patients and was represented by subjects requiring also treatment with Rituximab and/or plasma exchange and/or other immunomodulating therapies (data not shown).

The study groups were comparable as to viremia titers, viral genotype or IL28B SNP (rs12979860) allele distribution, whereas, as expected, female sex was significantly more represented in MCS-HCV and MC-HCV groups (p<0.001). MCS patients were older and had more severe liver disease (Table 1). The mean duration of MCS was 85 months (range, 24-170 months). There was a higher number of treatment-experienced patients in MCS and MC groups than in controls (p= 0.014 and p=0.018, respectively).

Virological response

The rates of virological response in the ITT analysis are outlined in Figure 1. Univariate analysis indicated that SVR rates were lower in patients with cryoglobulinemia than in those without. There was a significant difference in SVR rates between HCV and MC-HCV patients and also between HCV and MC-HCV+MCS-HCV patients (Figure 1). Differences in rates of RVR and EVR (both complete and partial EVR) in the three groups did not reach statistical significance.

None of the patients who had not achieved EVR reached SVR. As expected, a significant association in each group was found between the RVR and EVR rates and HCV genotype (genotype 1 or 4 vs. genotype 2 or 3, p<0.0001).

Other factors previously shown to have predictive value for SVR were evaluated, including sex, age (<50 yrs vs. \geq 50 yrs), HCV genotype (genotype 1 and 4 vs. genotype 2 or

3), liver disease severity (chronic hepatitis vs. cirrhosis), IL28B genotype (C/C vs C/T+T/T), HCV RNA level (<500,000 IU/mL vs. \geq 500,000 IU/mL), previous antiviral treatment (naïve vs. experienced). Significantly lower SVR rates were observed in patients infected with HCV genotype 1 or 4, with severe liver disease, unfavorable genotype of IL28B (C/T or T/T) and with previous antiviral treatments (*p*<0.0001). Furthermore, patients over 50 years old or with an HCV RNA level >500,000 IU/mL showed lower rates of SVR (*p*=0.010 and *p*=0.0002, respectively) (Table 2). The mean duration or total

Hepatology

cumulative dose of IFN or ribavirin did not differ significantly according to response (data not shown).

Multivariate logistic regression analysis identified the presence of cryoglobulinemia as an independent prognostic factor of non-response to antiviral therapy. This was obtained when considering MCS patients only and MC+MCS patients. The predictive value of previously identified factors of response was confirmed and it included viral genotype, severity of liver disease, IL28B genotype, viral load and previous anti-HCV treatment, (Table 3).

We also performed a Per Protocol (PP) analysis, in which we included only patients who completed the therapy, were SVR or experienced a breakthrough (BT), non-response (NR) or relapse (Rel). We therefore excluded from the study 19 HCV, 23 MC-HCV and 10 MCS-HCV patients, who did not complete the therapy because of drop-out or adverse events. The rates of virological response according to PP analysis are presented in the supplementary material as figure S1.

No statistically significant differences were observed among the groups for RVR or EVR rates, but a significantly higher rate of SVR was observed in HCV patients (69.8%) when compared to MC-HCV (55%, p=0.017) and MCS-HCV patients (56.8%, p=0.033).

Clinical-immunological response in MCS patients

The clinical-immunological response in MCS patients was strictly related to the virological one. The main clinical and laboratory features of 63 SVR MCS patients, before treatment and at the end of a 6-month follow-up, are summarized in Table 4. All MCS patients who experienced SVR also experienced a complete clinical response except for two. This response was maintained during the entire follow-up period. 36 SVR patients (57%) showed a complete and persistent disappearance of all initial MCS signs/symptoms; 25 patients (40%) had milder and usually isolated symptoms or signs, but a progressive worsening did not occur in any of them. A "definite" MC syndrome persisted in the remaining 2 (3%) patients though it was milder than before the treatment. Both these patients were characterized by a long lasting vasculitis, previously treated for more than two decades with various combinations of non ethiological therapies without consistent results. All MCS patients who did not achieve SVR were clinical non-responders.

Transient improvement in MCS was observed together with a viremia decrease in some of these patients.

Patients with MCS were characterized by more frequent adverse events (AEs) than controls. In fact, at least one AE was observed in 35 (28.9%) of MCS-HCV patients and in 17 (10.7%) HCV patients (p=0.009). These AEs were mostly hematological, especially anemia [24 (19.8%) MCS-HCV vs 14 (8.9%) HCV), p=0.06] and neutropenia [16 (13.2%) in MCS-HCV vs 11 (6.9%) in HCV, p=0.2]. Other AEs were more frequent in HCV-MCS than controls but did not reach statistical significance, including pruritus [8 (6.6%) MCS vs 5 (3.2%) HCV], depression [7 (5.8%) MCS-HCV vs 4 (2.5%) HCV] and weight loss [7 (5.8%) MCS-HCV vs 4 (2.5%) HCV] and weight loss [7 (5.8%) MCS-HCV vs 4 (2.5%) HCV]. No patients died as a result of therapy and no significant differences were observed between MCS-HCV and HCV groups regarding drop-out rates due to intolerance (data not shown). No SVR patients evolved to NHL during the long-term follow-up after therapy.

DISCUSSION

Since the early 1990s, several studies have shown the close correlation between virological and clinical response in HCV-related MC. However, these studies frequently used modified antiviral protocols and did not include adequate numbers of patients and/or controls. Furthermore, follow-up was often short. To the best of our knowledge, the response of patients with definite MCS has never been compared to that of patients with MC and without MC/MCS. These limitations were justified by the rarity of MCS, suggesting the need for long-term, prospective studies.

In the present study, for the first time, a very large population of MC patients with or without symptoms was consecutively enrolled over a decade and the effects of antiviral treatment compared with those observed in a control population of HCV patients without MC or other autoimmune/lymphoproliferative disorders; all patients were treated with the same protocol. The unique design of the study provides a prospective evaluation of both the virological and clinical/immunological response. The prospective approach and long-term follow-up made the inclusion in each cohort very reliable as needed for a correctly controlled analysis.

Hepatology

The usefulness of anti-HCV therapy in MC has been widely discussed. Early studies using IFN monotherapy have shown that, in spite of a clinical-immunological response during treatment, both infection and vasculitis generally relapsed after treatment (32-35). The MC response improved with the increased efficacy of antiviral therapy, passing from recombinant IFN (32) to PEG-IFN plus RBV. This latter combination, in some studies, was able to lead to a clinical response ranging from 62.5% to 78% of patients (17, 36), suggesting it should be the first therapeutic option for patients with HCV-MCS (14).

In our study, the majority of patients with MCS who reached a SVR also experienced a complete and persistent clinical-immunological response according to the study criteria. All symptoms and laboratory alterations (i.e., cryocrit, RF, C4 consumption) disappeared in most of the MCS-SVR patients; the remaining MCS patients had only isolated symptoms (i.e. sicca syndrome, peripheral paresthesia, arthralgia) and/or laboratory data altered, although improved compared to baseline. Only 2 MCS-SVR patients (3%) maintained a definite syndrome according to the established criteria (23), although all the clinical manifestations improved compared to initial symptoms.

On the contrary, none of the patients who did not achieve SVR experienced persistent improvement in the syndrome during follow-up, despite transient improvement seen in some subjects at the end of therapy, probably due to the antiproliferative effect of IFN.

None of the SVR patients developed a frank lymphoma during the long follow-up. This observation is meaningful, considering that it was previously demonstrated that MC patients have a 35-fold increased risk of developing NHL compared to the general population (12). A Japanese study (37) reports a 2.6% rate of NHL development after a 15-year follow-up in a cohort of chronically HCV-infected patients who underwent IFN-based treatment and did not achieve viral eradication; this rate dropped to 0% in SVR patients treated with the same protocol. Even if not designed for this kind of evaluation, our study confirms the observation of the Japanese study. In our study, we could not compare the evolution to malignancy between SVR and non-SVR MCS patients since non-SVR MCS patients underwent other treatments.

Our data also indicate that the probability of viral eradication in patients with MC varies when compared with controls without MC. The multivariate logistic analysis considering the main factors already identified as influencing the virological response in HCV patients, indicated the presence of cryoglobulinemia as an independent prognostic factor of non-

response to antiviral therapy. Interestingly, this was obtained both considering only MCS patients and MC+MCS patients. Finally the PP analysis also showed a significantly higher rate of SVR in HCV patients when compared to both MC-HCV and MCS-HCV ones. This shows that the difference in SVR rates cannot be completely attributed to lower tolerance of MC patients to IFN-based therapy. A possible explanation is that these subjects' resistance to IFN could be attributed to a higher involvement of the lymphatic compartment by the viral infection itself. This has been shown in several studies, ranging from the initial demonstration of higher rates of PBMC infection (38) and of bone marrow mononuclear cells in MC (39). In addition, although HCV can be completely eradicated with antiviral therapy, a longer persistence in PBMCs has previously been demonstrated in numerous studies (4, 40, 41). Furthermore, a major involvement of B-cells by viral infection was shown, and several studies suggested the compartmentalization of viral quasispecies in PBMCs (42), with consequent higher diversification of viral sequences, which is inversely correlated with the sensitivity to IFN-mediated eradication (43, 44). The hypothesis of the key role played by a longer persistence of HCV in lymphatic reservoirs also agrees with the lack of different serum HCV RNA early kinetics in the different groups, in spite of significantly different SVR rates. Other factors that possibly play a role include high levels in HCV MC patients of some chemokines (45) previously shown to be correlated with a reduced ability to respond to IFN-based therapy, such as CXCL10 (46, 47), whose levels have been shown to be higher in these patients compared to healthy controls, mostly in presence of active vasculitis (48).

MC patients also experienced adverse events more frequently than controls, and especially hematological ones, thus confirming previous observations (49). However, in our population, these adverse events were never very severe or fatal and their occurrence did not significantly affect the drop-out rate, when compared to controls. The differences with previous reports were probably related to the exclusion from treatment of patients with severe vasculitis.

Interestingly, none of our patients who did not experience SVR and maintained HCV infection had a long-lasting remission of symptoms, showing that complete viral eradication is required for permanent improvement or disappearance of the disease. This was an additional confirmation of the strict correlation between viral eradication and clinical response in MCS. A previous study showed a higher percentage of clinical-

Hepatology

immunological than virological responses (49), but in this case the follow-up was only 6 months and it is conceivable that the antiproliferative effect of IFN *per se* as well as the transient inhibition of viral replication explains this transient improvement. The use of the new potent direct acting antivirals (DAAs) in such patients appears to be very promising, as also suggested by pioneer studies (15, 50).

In conclusion, this wide, prospective and controlled study, for the first time provides an evaluation of the long-term effects of viral eradication on HCV MC patients, as well as a comparison of the effects of PEG-IFN+RBV therapy on HCV patients with MCS, MC and without MC (clinical and/or laboratory symptoms). Our observations confirm that: 1) the great majority of patients with MCS achieving SVR also experience sustained clinical and immunological response and the persistence of MCS in SVR patients is a rare event. Most of these patients persistently lost all previous signs and symptoms. No patients evolved to lymphoma; 2) MC patients were less likely to respond virologically to anti-HCV therapy than patients without MC; 3) MC patients experienced hematological side effects more frequently than MC-negative controls; 4) persistent remission of MCS was never observed in MC patients who had not achieved SVR.

On the whole, this study definitively confirms the key importance of viral eradication in allowing persistent resolution or consistent improvement of HCV MCS, strongly suggesting the need for a next generation of highly effective antiviral drugs.

suggesting

REFERENCES

1. Ferri C, La Civita L, Longombardo G, Zignego AL. Hepatitis C virus and mixed cryoglobulinaemia [letter; comment]. Br J Rheumatol 1994;33:301.

2. Zignego AL, Ferri C, Monti M, LaCivita L, Giannini C, Careccia G, Giannelli F, et al. Hepatitis C virus as a lymphotropic agent: evidence and pathogenetic implications. Clin Exp Rheumatol 1995;13 S33-37.

3. Sansonno D, De Vita S, Iacobelli AR, Cornacchiulo V, Boiocchi M, Dammacco F. Clonal analysis of intrahepatic B cells from HCV-infected patients with and without mixed cryoglobulinemia. J Immunol 1998;160:3594-3601.

4. Zignego AL, Giannini C, Gragnani L. HCV and lymphoproliferation. Clin Dev Immunol 2012;2012:980942.

5. Zignego AL, Gragnani L, Giannini C, Laffi G. The hepatitis C virus infection as a systemic disease. Intern Emerg Med 2012;7 Suppl 3:S201-208.

6. Craxi A, Laffi G, Zignego AL. Hepatitis C virus (HCV) infection: a systemic disease. Mol Aspects Med 2008;29:85-95.

7. Ferri C, Greco F, Longombardo G, Palla P, Moretti A, Marzo E, Mazzoni A, et al. Association between hepatitis C virus and mixed cryoglobulinemia [see comment]. Clin Exp Rheumatol 1991;9:621-624.

8. Agnello V, Chung RT, Kaplan LM. A role for hepatitis C virus infection in type II cryoglobulinemia N Engl J Med 1992;327:1490-1495.

9. Casato M, Agnello V, Pucillo LP, Knight GB, Leoni M, Del Vecchio S, Mazzilli C, et al. Predictors of long-term response to high-dose interferon therapy in type II cryoglobulinemia associated with hepatitis C virus infection. Blood 1997;90:3865-3873.

Frangeul L, Musset L, Cresta P, Cacoub P, Huraux JM, Lunel F. Hepatitis C virus genotypes and subtypes in patients with hepatitis C, with and without cryoglobulinemia. J Hepatol 1996;25:427-432.
Donada C, Crucitti A, Donadon V, Tommasi L, Zanette G, Crovatto M, Santini GF, et al. Systemic

manifestations and liver disease in patients with chronic hepatitis C and type II or III mixed cryoglobulinaemia. J Viral Hepat 1998;5:179-185.

12. Monti G, Pioltelli P, Saccardo F, Campanini M, Candela M, Cavallero G, De Vita S, et al. Incidence and characteristics of non-Hodgkin lymphomas in a multicenter case file of patients with hepatitis C virus-related symptomatic mixed cryoglobulinemias. Arch Intern Med 2005;165:101-105.

13. Zignego AL, Craxi A. Extrahepatic manifestations of hepatitis C virus infection. Clin Liver Dis 2008;12:611-636, ix.

14. Pietrogrande M, De Vita S, Zignego AL, Pioltelli P, Sansonno D, Sollima S, Atzeni F, et al. Recommendations for the management of mixed cryoglobulinemia syndrome in hepatitis C virus-infected patients. Autoimmun Rev 2011;10:444-454.

15. Gragnani L, Fabbrizzi A, Triboli E, Urraro T, Boldrini B, Fognani E, Piluso A, et al. Triple antiviral therapy in hepatitis C virus infection with or without mixed cryoglobulinaemia: A prospective, controlled pilot study. Dig Liver Dis 2014.

16. Zuckerman E, Keren D, Slobodin G, Rosner I, Rozenbaum M, Toubi E, Sabo E, et al. Treatment of refractory, symptomatic, hepatitis C virus related mixed cryoglobulinemia with ribavirin and interferonalpha. J Rheumatol 2000;27:2172-2178.

17. Saadoun D, Resche-Rigon M, Thibault V, Piette JC, Cacoub P. Antiviral therapy for hepatitis C virus-associated mixed cryoglobulinemia vasculitis: a long-term followup study. Arthritis Rheum 2006;54:3696-3706.

18. Sene D, Ghillani-Dalbin P, Thibault V, Guis L, Musset L, Duhaut P, Poynard T, et al. Longterm course of mixed cryoglobulinemia in patients infected with hepatitis C virus. J Rheumatol 2004;31:2199-2206.

19. Ghany MG, Strader DB, Thomas DL, Seeff LB. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 2009;49:1335-1374.

20. Strader DB, Wright T, Thomas DL, Seeff LB. Diagnosis, management, and treatment of hepatitis C. Hepatology 2004;39:1147-1171.

1	
2	
3 4	21. Petrarca A, Rigacci L, Caini P, Colagrande S, Romagnoli P, Vizzutti F, Arena U, et al. Safety and efficacy of rituximab in patients with hepatitis C virus-related mixed cryoglobulinemia and severe liver
4 5	disease. Blood 2010;116:335-342.
6	22. Monti G, Saccardo F, Pioltelli P, Rinaldi G. The natural history of cryoglobulinemia: symptoms at
7	onset and during follow-up. A report by the Italian Group for the Study of Cryoglobulinemias (GISC). Clin
8 9	Exp Rheumatol 1995;13 Suppl 13:S129-133.
9 10	23. De Vita S, Soldano F, Isola M, Monti G, Gabrielli A, Tzioufas A, Ferri C, et al. Preliminary classification
11	criteria for the cryoglobulinaemic vasculitis. Ann Rheum Dis 2011;70:1183-1190.
12	24. Zignego AL, Giannelli F, Marrocchi ME, Mazzocca A, Ferri C, Giannini C, Monti M, et al. T(14;18) translocation in chronic hepatitis C virus infection. Hepatology 2000;31:474-479.
13	25. Zignego AL, Ferri C, Giannini C, Monti M, La Civita L, Careccia G, Longombardo G, et al. Hepatitis C
14 15	virus genotype analysis in patients with type II mixed cryoglobulinemia. Ann Intern Med 1996;124:31-34.
16	26. McHutchison JG, Manns M, Patel K, Poynard T, Lindsay KL, Trepo C, Dienstag J, et al. Adherence to
17	combination therapy enhances sustained response in genotype-1-infected patients with chronic hepatitis C.
18	Gastroenterology 2002;123:1061-1069.
19 20	27. Stasi C, Triboli E, Arena U, Urraro T, Petrarca A, Gragnani L, Laffi G, et al. Assessment of liver
20	stiffness in patients with HCV and mixed cryoglobulinemia undergoing rituximab treatment. J Transl Med 2014;12:21.
22	2014,12.21. 28. Arena U, Vizzutti F, Abraldes JG, Corti G, Stasi C, Moscarella S, Milani S, et al. Transient elastography
23	(TE) is more effective for the identification of HCV patients with advanced (F3-F4) rather than significant
24 25	(F2-F4) liver fibrosis. Journal of Hepatology 2008;48:S284-S285.
26	29. Piluso A, Giannini C, Fognani E, Gragnani L, Caini P, Monti M, Petrarca A, et al. Value of IL28B
27	genotyping in patients with HCV-related mixed cryoglobulinemia: results of a large, prospective study. J
28	Viral Hepat 2013;20:e107-114. 30. Zaja F, De Vita S, Mazzaro C, Sacco S, Damiani D, De Marchi G, Michelutti A, et al. Efficacy and safety
29 30	of rituximab in type II mixed cryoglobulinemia. Blood 2003;101:3827-3834.
31	31. Zignego AL, Ferri C, Giannelli F, Giannini C, Caini P, Monti M, Marrocchi EM, et al. Prevalence of bcl-
32	2 rearrangement in patients with hepatitis C virus-related mixed cryoglobulinemia with or without B-cell
33	lymphomas. Ann Intern Med 2002;137:571-580.
34 35	32. Ferri C, Marzo E, Longombardo G, Lombardini F, La Civita L, Vanacore R, Liberati AM, et al.
36	Interferon-alpha in mixed cryoglobulinemia patients: a randomized, crossover-controlled trial. Blood 1993;81:1132-1136.
37	1993;81:1132-1136. 33. Misiani R, Bellavita P, Fenili D, Vicari O, Marchesi D, Sironi PL, Zilio P, et al. Interferon alfa-2a
38	therapy in cryoglobulinemia associated with hepatitis C virus [see comments]. N Engl J Med 1994;330:751-
39 40	756.
40	34. Dammacco F, Sansonno D, Han JH, Shyamala V, Cornacchiulo V, Iacobelli AR, Lauletta G, et al.
42	Natural interferon-alpha versus its combination with 6-methyl- prednisolone in the therapy of type II mixed
43	cryoglobulinemia: a long- term, randomized, controlled study. Blood 1994;84:3336-3343.
44 45	35. Mazzaro C, Pozzato G, Moretti M, Crovatto M, Modolo ML, Mazzi G, Santini G. Long-term effects of alpha-interferon therapy for type II mixed cryoglobulinemia [published erratum appears in Haematologica
46	1994 Sep- Oct;79(5):486]. Haematologica 1994;79:342-349.
47	36. Cacoub P, Saadoun D, Limal N, Sene D, Lidove O, Piette JC. PEGylated interferon alfa-2b and
48	ribavirin treatment in patients with hepatitis C virus-related systemic vasculitis. Arthritis Rheum
49 50	2005;52:911-915.
51	37. Kawamura Y, Ikeda K, Arase Y, Yatsuji H, Sezaki H, Hosaka T, Akuta N, et al. Viral elimination reduces
52	incidence of malignant lymphoma in patients with hepatitis C. Am J Med 2007;120:1034-1041. 38. Ferri C, Monti M, La Civita L, Longombardo G, Greco F, Pasero G, Gentilini P, et al. Infection of
53 54	peripheral blood mononuclear cells by hepatitis C virus in mixed cryoglobulinemia. Blood 1993;82:3701-
54 55	3704.
56	39. Galli M, Zehender G, Monti G, Ballare M, Saccardo F, Piconi S, De Maddalena C, et al. Hepatitis C
57	virus RNA in the bone marrow of patients with mixed cryoglobulinemia and in subjects with
58 59	noncryoglobulinemic chronic hepatitis type C. J Infect Dis 1995;171:672-675.
60	16
	Hepatology
	· · · · · · · · · · · · · · · · · · ·

40. Giannini C, Petrarca A, Monti M, Arena U, Caini P, Solazzo V, Gragnani L, et al. Association between persistent lymphatic infection by hepatitis C virus after antiviral treatment and mixed cryoglobulinemia. Blood 2008;111:2943-2945.

41. Laskus T, Radkowski M, Piasek A, Nowicki M, Horban A, Cianciara J, Rakela J. Hepatitis C virus in lymphoid cells of patients coinfected with human immunodeficiency virus type 1: evidence of active replication in monocytes/macrophages and lymphocytes. J Infect Dis 2000;181:442-448.

42. Ducoulombier D, Roque-Afonso AM, Di Liberto G, Penin F, Kara R, Richard Y, Dussaix E, et al. Frequent compartmentalization of hepatitis C virus variants in circulating B cells and monocytes. Hepatology 2004;39:817-825.

43. Abbate I, Lo Iacono O, Di Stefano R, Cappiello G, Girardi E, Longo R, Ferraro D, et al. HVR-1 quasispecies modifications occur early and are correlated to initial but not sustained response in HCVinfected patients treated with pegylated- or standard-interferon and ribavirin. J Hepatol 2004;40:831-836.

44. Farci P, Strazzera R, Alter HJ, Farci S, Degioannis D, Coiana A, Peddis G, et al. Early changes in hepatitis C viral quasispecies during interferon therapy predict the therapeutic outcome. Proc Natl Acad Sci U S A 2002;99:3081-3086.

45. Antonelli A, Fallahi P, Ferrari SM, Corrado A, Sebastiani M, Giuggioli D, Miccoli M, et al. Parallel increase of circulating CXCL11 and CXCL10 in mixed cryoglobulinemia, while the proinflammatory cytokine IL-6 is associated with high serum Th2 chemokine CCL2. Clin Rheumatol 2013;32:1147-1154.

46. Butera D, Marukian S, Iwamaye AE, Hembrador E, Chambers TJ, Di Bisceglie AM, Charles ED, et al. Plasma chemokine levels correlate with the outcome of antiviral therapy in patients with hepatitis C. Blood 2005;106:1175-1182.

47. Fattovich G, Covolo L, Bibert S, Askarieh G, Lagging M, Clement S, Malerba G, et al. IL28B polymorphisms, IP-10 and viral load predict virological response to therapy in chronic hepatitis C. Aliment Pharmacol Ther 2011;33:1162-1172.

48. Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev 2014;13:272-280.

49. Saadoun D, Resche Rigon M, Sene D, Terrier B, Karras A, Perard L, Schoindre Y, et al. Rituximab plus Peg-interferon-alpha/ribavirin compared with Peg-interferon-alpha/ribavirin in hepatitis C-related mixed cryoglobulinemia. Blood 2010;116:326-334; quiz 504-325.

50. Saadoun D, Resche Rigon M, Thibault V, Longuet M, Pol S, Blanc F, Pialoux G, et al. Peg-IFNalpha/ribavirin/protease inhibitor combination in hepatitis C virus associated mixed cryoglobulinemia vasculitis: results at week 24. Ann Rheum Dis 2013.

Hepatology

	HCV (n=158)	MC-HCV (n=132)	MCS-HCV (n=121)	p
	40.2+42.2	F1 1 12 0	FF 0140 4	0.0002 HCV vs. MCS-HCV
Mean Age (years)	49.3±13.3	51.1±12.9	55.0±10.4	0.0131 MC-HCV vs. MCS-HCV
Sex (male/female)	112/46	64/68	45/76	<0.0001 HCV vs. MC/MCS-HC
Histology				
Chronic Hepatitis (%)	128 (81)	102 (78)	83 (68.6)	0.02 HCV vs. MCS-HCV
Cirrhosis (%)	28 (17.7)	28 (21.2)	35 (28.9)	0.02 HCV VS. MICS-HCV
nd (%)	2 (1.3)	2 (0.8)	3 (2.5)	
Number of treatments (SoC)				
1 (%)	142 (89.9)	106 (80.3)	96 (79.3)	0.014 HCV vs. MCS-HCV
> 1 (%)	16 (10.1)	26 (19.7)	25 (20.7)	0.018 HCV vs. MC-HCV
ALT (ULN)	3.85±2.4	3.62±3.8	3.43±2.2	ns
Viral titer (IU/mL x 106)	2.4±4.9	2.5±4.7	2.5±5.01	ns
HCV genotype				
1 (%)	78 (49.4)	73 (55.3)	55 (45.5)	
2 (%)	49 (31.0)	30 (22.7)	43 (35.5)	
3 (%)	23 (14.5)	21 (15.9)	17 (14.0)	ns
4 (%)	8 (5.1)	6 (4.5)	3 (2.5)	
5 (%)	-	1 (0.8)	-	
nd (%)	-	1 (0.8)	3 (2.5)	
Mean cryocrit (%)	0	3.5±5.4	8.2±7.2	<0.0005 HCV vs. MC/MCS-HC
Mean C3 [#] (mg/dL)	115.3±63.2	109.5±58.9	104.5±61.5	ns
Mean C4 [‡] (mg/dL)	91.6±45.7	13.7±27.5	10.5±11.3	<0.0005 HCV vs. MC/MCS-HC
Mean RF [†] (IU/mL)	16.7±8.0	226.3±155.3	380.5±292.4	<0.0005 HCV vs. MC/MCS-H0

Hepatology

This article is protected by copyright. All rights reserved.

Values are expressed as mean ± standard deviation; SoC, Standard of Care; ALT, alanine aminotransferase; ULN, upper limit of normal; ns, not significant; IU, international units; nd, not determined; HCV, hepatitis C virus; MC, mixed cryoglobulinemia; MCS, mixed cryoglobulinemia syndrome

[#]Complement C3, normal values: 83 to 177 mg/dL; [†]Complement C4, normal values: 20 to 150 mg/dL; [†] Rheumatoid Factor RF, normal values: < 25 IU/mL.

Hepatology

Table 2. Results of univariate analyses examining effects of negative prognostic factors on sustained virologic response, according to intention-to-treat analysis.

C	Factors	p
	Presence of Cryoglobulinemia	0.014
	Male sex	0.469
	Age ≥50 yr	0.010
	HCV genotype 1 and 4	<0.0001
	Cirrhosis	<0.0001
	C/T or T/T IL28B genotype	<0.0001
	HCV RNA level >500,000 IU	0.0002
	Previous anti-HCV treatment	<0.0001

Acce

Hepatology

This article is protected by copyright. All rights reserved.

Table 3. Multivariate logistic regression analysis of negative predictive factors of response to anti-HCV therapy.

	HCV vs. MCS-HCV			HCV vs	. MC-HCV+N	1CS-HCV
Factors	Odds Ratio	95% CI	p	Odds Ratio	95% CI	p
Age ≥50 yr	1.33	0.65-2.72	0.4376	1.62	0.91-2.89	0.0995
Male sex	1.02	0.48-2.17	0.9613	1.22	0.68-2.20	0.5064
HCV genotype 1 and 4	7.23	3.59-14.56	<0.0001	8.63	4.82-15.48	<0.0001
Cirrhosis	2.61	1.19-5.72	0.0167	3.41	1.74-6.67	0.0003
C/T or T/T IL28B genotype	4.10	2.04-9.12	<0.0001	4.17	2.34-7.41	<0.0001
HCV RNA level >500,000 IU	3.86	1.76-8.45	0.0007	3.64	1.94-6.84	<0.0001
Previous anti-HCV treatment	3.41	1.28-9.12	0.0143	2.50	1.14-5.47	0.0217
Presence of Cryoglobulinemia	2.25	1.07-4.73	0.0139	2.03	1.12-3.68	0.0204

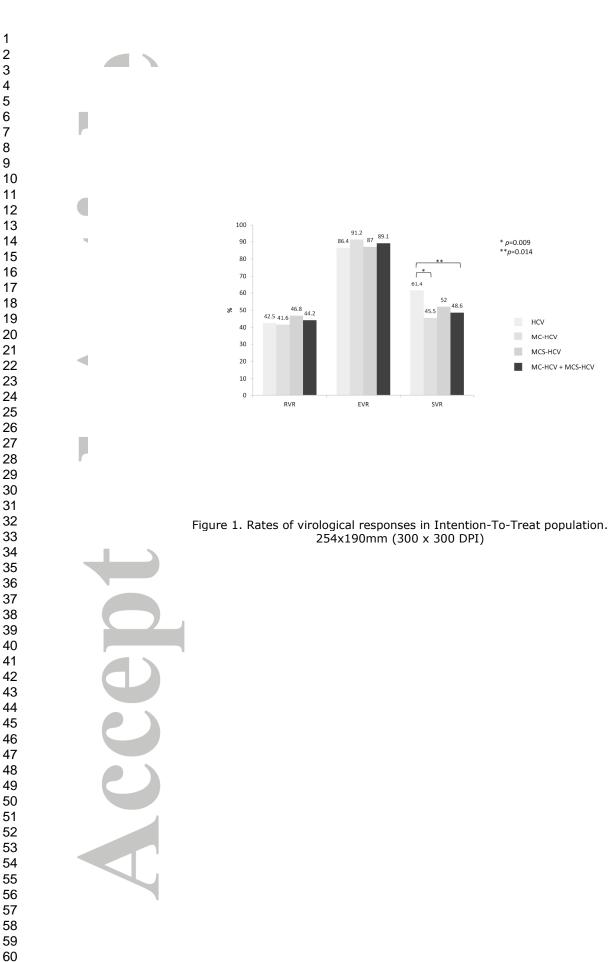
Hepatology

This article is protected by copyright. All rights reserved.

Ce

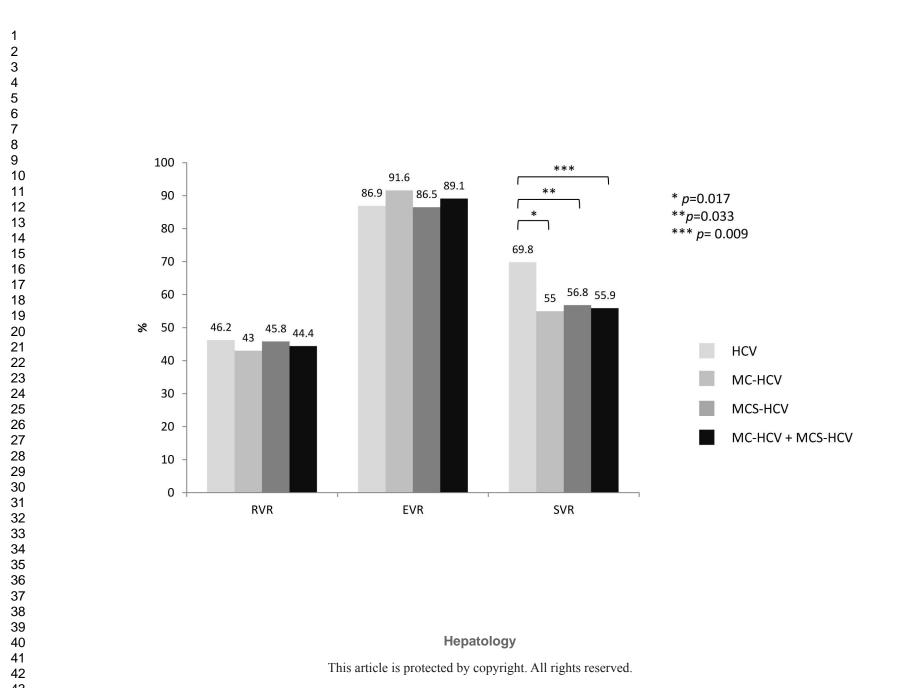
Hepatology

Table 4. Main mixed cryoglobulinemia syndrome manifestations (clinical and laboratory) diagnosed before treatment and at the end of a 6-month follow-up in the 63 MCS-HCV patients who achieved a sustained virological response.


	MCS manifestations	Pre-treatment (%)	End of F-Up (%)
<u>Clini</u>	<u>cal</u>		
	Purpura	48 (78.6)	2 (3.3)
	Arthralgias	51 (83.6)	7 (11.4)
	Weakness	55 (90.1)	13 (21.1)
	Neuropathic symptoms	46 (75.5)	8 (13.1)
	Renal Involvement	9 (14.7)	0
Y	Skin Ulcers	8 (13.1)	0
	Sicca Syndrome	28 (45.9)	11 (18.0)
Labo	pratory		
	Cryoglobulins	61 (100)	2 (3.3)
(\mathbf{D})	Rheumatoid factor [†]	59 (96.7)	19 (31.1)
	Reduced C4 [‡]	53 (86.8)	6 (9.8)

[†] Rheumatoid Factor: elevated rheumatoid factor levels upper the normal values (<25 IU/mL)
[‡] Reduced C4: Complement C4 levels below the normal values (20 to 150 mg/dL)

Acce


Hepatology

This article is protected by copyright. All rights reserved.

Hepatology

This article is protected by copyright. All rights reserved.

