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Abstract: This paper presents a dynamic efficiency study of the solid waste management in the
municipalities of the Apulia region (Southern Italy). The study employs the non-parametric Global
Malmquist Index to measure the change in productivity of the municipal solid waste service from
2010 to 2017. Three different DEA-based models are implemented to measure productivity. The first
model computes the service productivity solely from the economic perspective, while the second
and third models compute the service productivity from both the economic and environmental
perspectives. Adopting two distinct perspectives provides a more comprehensive insight into the
performance of the waste management service considering the productivity and the eco-productivity
of service provision. The results from the productivity analysis show that, between 2010 and 2017, the
municipal solid waste sector was still facing a transitional period characterized by low cost-efficiency
and productivity growth measurements. Vice versa, the efficiency and productivity indicators
improve when the analysis is performed accounting for the environmental impact. Indeed, both the
eco-efficiency and eco-productivity measures increase from 2010 to 2017. Findings demonstrate the
critical importance to include environmental indicators in the efficiency and productivity analysis.

Keywords: municipal solid waste; Global Malmquist Productivity Index; eco-efficiency;
eco-productivity; Apulia

1. Introduction

The management of municipal solid waste (MSW) has become an important problem
for many municipalities. The growing urbanization and the increasing number of people
living in cities, the expanding consumption trends and changing lifestyles, the extreme
variety of refuse generated in the urban context, and the complexity of the activities
related to the management of waste have made the delivery of the MSW service very
challenging [1,2].

In April 2010, Italy adopted the new EC Directive about Waste [3], which was intro-
duced de facto by Decree no. 205 of 3 December 2010 [4]. This new directive privileged the
concepts of material re-use and recycling. However, in a great number of municipalities,
the waste management policy remains focused on the main objective of increasing the
percentage of MSW that is selectively collected rather than increasing the amount of waste
materials that are finally recycled. Hence, collecting urban waste selectively is an impor-
tant step of MSW management, and a critical activity for achieving circularity. The MSW
collection and transportation tasks are managed under the responsibility of municipalities
in accordance with national and regional legislations, which set quantitative targets that
should be achieved. The collection of MSW is generally entrusted by the municipality
administration to private or in-house companies, and collection models and performance
differ widely [5]. The average rate of the selectively collected fractions of MSW has steadily
increased to 58.1% in 2018, for the most part thanks to the municipalities where curbside
schemes have been successfully adopted [6]. Nevertheless, this figure is still below the
target of 65% that should have been achieved by the end of 2012, as established by Decree
no. 152/2006.
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As for most public services, the search for increasing cost efficiency in the provision
of the MSW service has been a major goal of municipalities in the last few years because
of the scarcity of resources and budget constraints [7]. For this reason, municipality
administrators, policy makers, and scholars are increasingly interested in evaluating the
efficiency of the MSW service. Scholars have generally employed either parametric or
non-parametric methodologies to obtain measurements of the MSW service efficiency [8].

Nonetheless, the new growing concern about sustainability issues, not only in terms
of more efficient usage of economic resources, but also in terms of a reduced impact on
the environment, has convinced researchers to include environmental indicators into the
evaluation of the MSW service efficiency. Hence, a high level of eco-efficiency has become
a necessary condition to achieve sustainable development.

The concept of eco-efficiency dates back to the early 1990s, when the World Business
Council for Sustainability Development (WBCSD) proposed it as a new management
model that every business should adopt to become more sustainable. More recently,
the World Business Council for Sustainable Development (WBCSD) has extended the
eco-efficiency concept to the urban context [9]. Over time, this concept is increasingly
employed in the Public Sector to evaluate the effect of the combination of tools such as
the policies, regulations, and adopted innovations aimed at improving the economic and
environmental performance in the water management industry, energy production, and
waste management [10].

Eco-efficiency can be defined as the ratio of the environmental performance measure-
ment to the financial performance measurement. In this perspective, the goal is to obtain
the lowest negative environmental impact (or, correspondingly, the highest environmental
benefit) with the lowest consumption of economic resources. Following this view, scholars
have employed linear programming methods to generate eco-efficiency indicators in the
MSW sector [11,12].

This paper presents a study that employs the non-parametric Global Malmquist
Productivity Index (GMPI) to analyze dynamic changes in the MSW service efficiency and
eco-efficiency in the Apulian municipalities (southern Italy) between 2010 and 2017. As in
previous research, different model specifications are used to obtain separate measurements
for the efficiency and the eco-efficiency changes over time [13]. Adopting two different
perspectives, i.e., one focusing only on cost-efficiency and the other one focusing on the
environmental efficiency as well, allows to better assess the impact of the environmental
concern (and benefit) on efficiency and productivity. Differently from existing research,
a radial distance with a non-oriented approach was used to compute the efficiency, eco-
efficiency, and GMPI measurements, because reducing the cost of the MSW service and
increasing the environmental benefit are two goals that municipalities must achieve at the
same time. Recent research has showed that these goals are compatible [14]. Maximizing
the environmental benefit by increasing the quantity of sorted waste collected also allows
to increase the revenue streams from selling recyclable raw materials, which compensate
the costs borne by users who pay for the MSW service. Finally, as this paper adopts a
dynamic perspective to analyze efficiency changes over time, the eco-productivity concept
is introduced in addition to that of eco-efficiency [15]. The eco-productivity change is
further decomposed into the eco-efficiency change and eco-technology change components.
The relationship between the municipality size and the eco-efficiency and eco-productivity
measures is also explored. Scholars who evaluated the performance of the MSW service
in a non-parametric methodology framework generally privileged a static perspective to
estimate eco-efficiency.

Henceforth, this study makes the following major contributions. Firstly, it employs
the non-parametric eco-productivity concept to measure the productivity changes in the
provision of the MSW service in the Apulian municipalities accounting for the environmen-
tal benefit owing to separate waste collection and recycling. Secondly, a non-oriented DEA
modeling approach is applied to measure productivity and eco-productivity assuming that
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improving both the cost-efficiency and environmental benefit are compatible and important
goals to achieve.

This paper is organized as follows. Section 2 presents the literature regarding efficiency
and eco-efficiency measurement in the MSW sector. Section 3 describes the methodology
employed in the study, illustrates sample, variables, and data sources. The results of the
study are reported in Section 4, while Section 5 offers concluding remarks.

2. Literature Review
2.1. The Measurement of Efficiency in the MSW Sector

Simões and Marques [8] conducted an extensive literature review of studies on eco-
nomic performance research in the municipal solid waste management industry. Their
review includes 107 papers, covering the period from 1965 to the end of 2010. Scholars iden-
tified major quantitative methods and techniques used to measure economic performance
in municipal solid waste management. These include parametric and non-parametric
methods. Measuring the municipal solid waste management efficiency and identifying
its major determinants was the main goal of these studies. Parametric methods employ
either cost and/or production functions. Generally, scholars privilege these methods
when the aim is to investigate the various types of service economies that might affect
the average cost. The first econometric study that focused on cost saving in the waste
collection sector dated back to the early 1960s. Hirsch [16] estimated the production cost
function of the urban waste collection service in the St. Louis County (MI, USA). The
author used a sample including 24 municipalities and collected data relative to fiscal year
1960. Hall and Jones [17] investigated the relationship among the per capita cost, waste
quality characteristics, and community population for small-size rural communities in
Texas. Kitchen [18] performed statistical analysis to determine variables that influence
the average cost of the waste collection service and to what extent it is affected by scale
economies. Antonioli and Filippini [19] estimated a translog cost function to examine the
cost structure (total cost and variable cost functions) of a sample containing 30 utilities in
the MSW industry in Italy between 1991 and 1995. The total volume of urban waste is one
of the independent variables introduced in the regression model. The results showed a
positive relationship between the waste quantity and the total and variable costs of service.
Scholars who conducted these studies did not differentiate among the various fractions of
waste. Thus, they were unable to account for the environmental concern and evaluate its
effect on the cost and efficiency of the urban waste management service.

2.2. Linking Efficiency and Environment

Since the early 2000s, researchers, also as a result of an increasing environmental
concern, have given greater attention to the different fractions of waste produced in the
municipality context, linking cost-efficiency and environmental concerns. Callan and
Thomas [20] implemented a simultaneous system of two cost functions, one for waste
disposal and the other for recycling services. This joint system of both functions allowed
them accounting for complementarities between these two services, investigating whether
there are scope economies apart from scale economies. Dijkgraaf and Gradus [21] employed
regression analysis to estimate the total cost function of the MSW service using data
collected from 120 Dutch municipalities. They considered the paper, glass, and organic
fractions of urban waste as independent variables affecting the cost of service. Bel and
Fageda [22] used parametric analysis to estimate the cost structure of the MSW service
of a sample including 65 municipalities in the region of Galicia (Spain) for the year 2005.
The total cost of service delivery was included in the regression equation as the dependent
variable, whereas the total quantity of waste and the percentage of waste designated
for recycling were included in the group of independent variables. They found that the
service cost depends on the total volume of collected waste, but they were unable to find
a significative relationship between cost and recycling percentage. Bae [23] estimated
the cost function of the MSW service for a sample of municipalities in North Carolina
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(USA). A hybrid translog cost function and data collected from 1997 to 2003 were used for
empirical estimation. In this equation, the solid waste collection cost per site is a function
of a set of exogenously determined input prices, waste volume, and some fixed factors
related to MSW management (the implementation of recycling and reuse programs, landfill
utilization, institutional setting, and so on). No significant differences in terms of cost
saving emerged across municipalities with respect to the adoption of recycling and reuse
programs. Bohm et al. [24] estimated two cost functions, one for the municipal solid waste
collection and disposal services, and one for the curbside recycling service considering
major drivers of cost and characteristics of recycling programs. They used a sample
containing 428 municipalities. Factors describing the service characteristics were included
in the cost equation as independent variables. Particularly, they hypothesized the existence
of a non-linear relationship between the quantity of collected waste and the marginal and
average costs of services. They found that several program-specific characteristics may
affect recycling costs. Additionally, the results indicate that there are scale economies in
the MSW collection and disposal sector, while the average costs increase when recycling
amounts expand. Carvalho et al. [25] measured the cost-efficiency of the MSW service for
184 municipalities in New South Wales (NSW) and investigated the economies of size and
density. The data used in the empirical analysis covered a period of six years, between
2000 and 2005. The scholars employed a stochastic frontier analysis method to estimate the
cost functions of household recycling services under the assumptions of ‘true’ fixed-effects
and ‘true’ random-effects. The total costs to provide the MSW service were included in
the regression equation as the dependent variable, whereas the amounts of the collected
unsorted household waste and recycling waste were included in the group of independent
variables. They found that the NSW municipal waste services are not cost-efficient, and
smaller utilities are more efficient than larger ones. Their study also revealed that there
are significant economies of output density for the unsorted and the recycled fractions of
municipal waste collection. Greco et al. [26] examined the drivers of cost in waste collection
in Italy utilizing data gathered from both technical literature and field analysis. They
estimated the full costs for different typologies of waste, i.e., paper and paperboard, heavy
multi-material, organic, and unsorted waste, by implementing regression analysis. The
full costs per capita for each waste type were introduced as the dependent variables in the
regression equations. The percentage of separate waste on total waste collected and the
total waste collected per capita were included in the equation as drivers of cost service.
The findings showed that the collection of unsorted waste has the lowest cost when the
amount of collected waste increases, while the collection of sorted waste generally has the
highest cost.

2.3. Non-Parametric Efficiency and Eco-Efficiency Analysis

Recently, Campitelli and Schebek [27] reviewed 366 research articles that evaluated
the performance of the municipal waste management service. Although the largest number
of studies they examined were focused on a single city, in many studies, researchers
performed benchmarking analyses to compare countries, regions, or cities. Their review
highlighted that, over time, various non-parametric DEA-based models are frequently used
in these studies to construct performance indicators to carry out benchmarking analyses.
DEA has become increasingly popular in the measurement of productive efficiency, and
the number of empirical applications in the MSW sector is now very large. Indeed, DEA
has several strengths in comparison with parametric methods. The adoption of DEA does
not require the knowledge of the production function, i.e., how the outputs depend on
the inputs. Furthermore, more than one output can be used in the efficiency analysis.
The first non-parametric DEA-based study dated back to the end of the 1980s. Vilardell
i Riera [28] applied DEA to estimate the waste collection efficiency of 46 municipalities
in Catalonia (Spain). Worthington and Dollery [29] employed an input-oriented DEA
model to measure the technical and scale efficiencies of 103 municipalities in New South
Wales (Australia) in the provision of the MSW service. Although they include the total
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amount of waste and the recyclable waste as discretionary outputs at the same time, their
model specification considers only the cost-efficiency performance dimension and not the
environmental one. García-Sánchez [30] employed DEA to estimate the efficiency of the
street cleaning and waste collection services in 38 Spanish municipalities with more than
50,000 inhabitants. The DEA model specification includes three inputs measuring resource
usage to provide services, i.e., staff, vehicles, and containers. However, the model does
not include any financial data measuring the cost of service. Four variables (tonnage of
waste, number of collection points, collection point density, and surface of the washed
area) are used to measure the output of the services. The study is aimed at measuring
the operational efficiency of the service and there is no differentiation between sorted
and unsorted waste. Other researchers also privileged the measurement of the technical
efficiency of the MSW service. Marques and Simões [31] applied DEA to calculate the
efficiency of 29 Portuguese MSW operators in the secondary market. Data for fiscal year
2005 were used in the empirical analysis. Their basic model utilizes data relative to the
operational expenses and capital costs as inputs, and the quantities of recycled waste
and solid waste sent to landfills or to composting and incineration plants as outputs.
Additionally, they assumed an input orientation. The basic DEA model was further
specified assuming either constant or variable returns to scale to characterize the production
technology. Benito-López et al. [32] applied bootstrapped DEA to calculate the efficiency of
1072 Spanish municipalities providing public street-cleaning and refuse collection services.
They evaluated the impact of exogenous factors to correct the efficiency scores (i.e., the per
capita income, the urban population density, and the comparative index of the importance
of tourism as well as that of economic activity as a whole). Their model specification
includes one input (the per capita cost of service) and two outputs (the annual production
of residues and an index measuring the suitability of the service). Data relative to the
year 2005 were used in the efficiency analysis. Simões et al. [33] estimated the efficiency
of 196 waste collection services in Portugal, employing robust m-order non-parametric
analysis. They used three inputs (staff, vehicles, and remaining operational expenditure)
and one output (the total amount of waste collected). An input orientation and both
constant and variable returns to scale were assumed. Guerrini et al. [34] implemented a
robust non-parametric conditional order-m based method to estimate the efficiency of the
waste collection service in 40 municipalities in the province of Verona (Italy). The total
cost of waste collection was used as the production function input, while the volume of
collected waste including the recyclable and residual fractions was the output. Exogenous
variables related to the customer, household, and operational features were introduced
into the analysis to measure efficiency while assuming input orientation to minimize the
cost of service.

In the last few years, scholars using non-parametric methods also started to take into
account the environmental performance in the evaluation of the MSW service efficiency.
As Sarra et al. ([11], p. 757) highlight, conducting benchmarking studies in the MSW
sector adopting only the economic perspective does not allow to usefully identify best
practices and support decision-making. The scholars suggest evaluating the MSW service
performance taking into account its cost efficiency and environmental impact. They es-
timated the efficiency of 289 municipalities in the Abruzzo region (Italy) between 2011
and 2013, applying a modified DEA model. Their model includes the unsorted waste as
an undesired output to minimize, the separate waste as a desirable output to maximize,
and the cost of service as an input to minimize. Díaz-Villavicencio et al. [35] proposed
a directional distance function (DDF)-based eco-efficiency indicator to evaluate the joint
economic and environmental performance of the MSW service in 143 municipalities in
Catalonia (Spain) between 2000 and 2003. They differentiate between two types of outputs,
desirable (recyclable waste, i.e., glass, paper and cardboard, and light packaging) and
undesirable (other waste). Yang et al. [36] measured the efficiency of a sample of 33 Chinese
cities collecting data relative to the year 2016. The scholars employed three-stage DEA to
eliminate bias due to exogeneous variables and random disturbance. Inputs include the
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number of vehicles and equipment used to provide the service, as well as the fixed asset
investment of treatment facilities. The quantity of MSW collected and transported and
the rate of MSW harmless treatment are the outputs. Exposito and Velasco [37] evaluated
the efficiency of the recycling market in the Spanish regions by adopting a DEA model
specification having two inputs (fixed capital and labor cost), two desirable outputs (op-
erational revenue and percentage of total recyclable waste), and one undesirable output
(mixed collected waste). Agovino et al. [38] applied three different output-oriented DEA
models to calculate the efficiency of MSW management in the Italian provinces from 2004
to 2011. The first and the second models estimate the waste service efficiency from the
municipality and citizen perspective, respectively. The third model estimate efficiency from
both perspectives. The model specification includes the volume of sorted and unsorted
waste produced by each province. Scholars considered the unsorted fraction of waste as a
bad output that should be minimized. Thus, they utilized a monotonic decreasing trans-
formation to convert this output into a desirable one. Romano and Molinos-Senante [12]
measured the eco-efficiency of 225 Tuscan municipalities performing meta-frontier DEA.
The type of ownership of the MSW operator was used to cluster municipalities with respect
to different production technologies. The study employed data for the year 2016. The
model specification included three cost variables as inputs (total cost of unsorted and
recyclables waste, and other costs), the unsorted waste as an undesirable output, and
the sorted waste as a desirable output. A DDF DEA approach maximizing the desirable
output generation and simultaneously minimizing the undesirable output was used to
compute efficiencies. Delgado-Antequera et al. [39] adopted a non-radial weighted Russell
directional distance model to estimate the eco-efficiency of 56 municipalities in Andalusia
(Spain) using data for the year 2017. The model specification includes the total cost of MSW
service as an input, three types of recyclable waste fractions as desirable outputs (paper,
glass, and plastic collected), and the unsorted fraction of waste as an undesirable output.
Exogeneous factors were used to group municipalities and investigate their influence on
the efficiency measure. Llanquileo-Melgarejo et al. [13] implemented DEA to calculate
the efficiency and eco-efficiency of the MSW service in 298 Chilean municipalities in the
year 2018. Particularly, they adopted two different DEA model specifications, the first
one for measuring the MSW operational efficiency and the second one for measuring the
MSW eco-efficiency. Both models include the total costs of MSW collection and disposal as
an input. The first model specification uses the quantity of MSW collected and disposed
as the only output. The second model utilizes the quantities of four types of recyclable
waste (paper and cardboard, glass, plastic, and organic waste) as desirable outputs and
the quantity of unsorted waste as an undesirable output. All models adopted an input
orientation and variable returns to scale. lo Storto [14] implemented a two-stage DEA
approach to investigate the effectiveness–efficiency nexus in the evaluation of the MSW
performance in the municipalities of the Apulia region (Southern Italy). In the first stage,
an output-oriented DEA model specification was employed to measure technical, scale,
and congestion efficiencies. In the second stage, panel Tobit analysis with random parame-
ters was applied to analyze the effectiveness–efficiency nexus, considering municipality
heterogeneities and context-specific variables.

2.4. Efficiency Changes over Time and Productivity Measurement

Few scholars conducted efficiency analyses adopting a dynamic perspective. Wor-
thington and Dollery [40] applied the Malmquist Productivity Index (MPI) to evaluate the
productivity of urban waste management, recycling services, planning, and regulatory ser-
vices in New South Wales municipalities from 1993 to 1996. They adopted different sets of
inputs and outputs for the specific services. In particular, they distinguished between the to-
tal domestic waste and the recyclable fraction of waste and considered the rate of recycling.
Marques et al. [41] carried out a benchmarking study with the aim to calculate the X factor
adopted in the waste sector regulation based on a tariff setting mechanism. They computed
the Törnqvist index to measure the dynamic efficiency of 278 Portuguese municipalities
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in the waste collection, evaluating the catch-up effect and production technology shift.
They used three different DEA models to estimate the efficiencies for the various waste
management activities regulated by the authority (treatment of unsorted waste, selective
collection, and treatment of pre-sorted waste). Each model employs the staff expenses and
the other operational expenses as inputs and the quantity of waste as an output. Tüzüner
and Alp [42] computed the non-parametric Malmquist Total Factor Productivity index to
evaluate changes in efficiency and productivity of the solid waste management in Turkey
and EU countries. Particularly, they adopted two model specifications using two distinct
sets of inputs and outputs, the first one privileging the environment and the second one the
economic perspective. In the first model, waste generation excluding the mineral fractions
and municipal waste generation were used as inputs, while the municipal waste recycle
ratio, the packaging wastes recycle ratio, and the packaging waste recovery ratios were
used as outputs. In the second model, the environmental investment in the public sector
and the environmental protection expenditure were employed as inputs, whereas the
municipal waste recycle ratio, the packaging waste recycle ratio, and the packaging waste
recovery ratio were employed as outputs. Data relative to the period 2006–2012 were used
in the study. Pérez-López et al. [43] developed a novel non-parametric conditional order-m
data panel methodology to generate a robust measure of average efficiency over a broad
time horizon accounting for the impact of environmental constraints on efficiency. The
methodology was implemented to analyze the waste collection service delivered in Spanish
municipalities from 2002 to 2014. The total cost of the waste collection service, including
capital and operational costs, was used in the model as an input, while the number of
containers available to citizens for each type of waste collection, the annual production of
waste, and the annual production of waste corrected by a factor measuring service quality
were used as outputs.

This literature review showed that the largest part of the empirical research on the
efficiency of the MSW service that employed a DEA methodological framework was con-
ducted adopting a static perspective. Furthermore, even scholars who adopted a dynamic
perspective did not measure both the productivity and the eco-productivity of the MSW
service, comparing these metrics to assess the importance of the environmental benefit on
productivity. Finally, scholars implemented either an input or an output orientation, priori-
tising the minimization of cost or the growth of the quantity of waste collected. However,
meeting both of these goals at the same time is essential to improve the overall performance
of the MSW service. Such a gap in the literature justifies the need for this study.

3. Materials and Methods
3.1. The Global Malmquist Productivity Index

DEA is a non-parametric method applied for the evaluation of a group of homoge-
neous units denominated decision making units (DMUs) that perform a production process
converting multiple inputs into a set of outputs. DMUs are compared with respect to a per-
formance indicator that measures the efficiency of the production process [44]. The method
does not need any assumption regarding the functional form of the production function as
it derives the distance functions by solving a linear program [45]. The efficiency scores are
estimated by calculating the distance of the individual DMU from a benchmarking frontier
generated by enveloping the efficient DMUs.

Scholars have suggested how to model dynamic efficiency changes calculating the
Malmquist productivity index in a DEA setting [46]. However, the conventional approach
adopted to measure the MPI suffers from problems determined by infeasibility and a lack
of circularity. To avoid these problems, Pastor and Lovell [47] have proposed the Global
Malmquist Productivity Index (GMPI), in which the index value is calculated measuring
the distance against a global benchmark. The GMPI for DMU k can be defined as follows:

MG
k

(
xt+1, yt+1, xt, yt

)
=

DG
k
(
xt+1, yt+1)

DG
k (xt, yt)

(1)
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The GMPI can be further decomposed into two components, the first one measuring
the efficiency change (EC) and the second one measuring the technology change (TC),
as shown:

MG
k
(
xt+1, yt+1, xt, yt) =

=
Dt+1

k (xt+1,yt+1)
Dt

k(xt ,yt)
×

[
DG

k (xt+1,yt+1)
Dt+1

k (xt+1,yt+1)
× Dt

k(xt ,yt)
DG

k (xt ,yt)

] (2)

where
EC =

Dt+1
k (xt+1,yt+1)

Dt
k(xt ,yt)

TC =
DG

k (xt+1,yt+1)
Dt+1

k (xt+1,yt+1)
× Dt

k(xt ,yt)
DG

k (xt ,yt)

(3)

Let us suppose there are n DMUs having the input and output matrices X = (xij) ∈ Rm × n

and Y = (yrj) ∈ Rp×n. The values s−∈ Rm and s+∈Rp indicate the input surplus and out-
put shortage, respectively. Under the assumptions of variable returns to scale (VRS), the
distance measurement Dt

k, Dt+1
k , DG

k for DMU k can be calculated by solving the following
generalized linear program [48]:

min 1−wI α
1+wO β

s.t.
n
∑

j=1
λjxij + s−i = (1− α)xik (if wI > 0)

n
∑

j=1
λjxij + s−i = xik (if wI = 0)

n
∑

j=1
λjxrj − s+r = (1 + β)yrk (if wO > 0)

n
∑

j=1
λjxrj − s+r = yrk (if wO = 0)

n
∑

j=1
λj = 1

λj ≥ 0; s−i ≥ 0; s+r ≥ 0

j = 1, 2, . . . , n; i = 1, 2, . . . , m; r = 1, 2, . . . , p

(4)

where wI and wO are user-defined non-negative numbers, with at least one of them being
positive. Under the assumption of non-orientation, wI = wO = 1.

3.2. Sample and Data Sources

This study considered all 258 municipalities of the Apulia region. Apulia is located
in the south-east part of Italy and has a total extension of 19,366 square kilometers and
population of 3,953,305 (as of the year 2019). Data utilized in the efficiency and productivity
analysis cover the interval time from 2010 to 2017 and were retrieved from several sources
(Istituto Superiore di Statistica-ISTAT; Catasto Rifiuti-Istituto Superiore per la Protezione e
la Ricerca Ambientale; OpenBilanci-Banca dati dei bilanci dei comuni italiani; Dipartimento
per gli Affari Interni e Territoriali-Ministero degli Interni). Specifically, data used in the
study are relative to the years 2010, 2013, and 2017. The productivity analysis calculated the
Malmquist index for two periods of time, the first from 2010 to 2013 and the second from
2013 to 2017. Two main reasons led to the adoption of the year 2013 to separate the two
periods. Firstly, the Apulia government approved the regional urban waste management
plan in 2013, establishing the targets for the sorted collection schemes of urban waste,
treatment plants capacity, and administrative and organizational settings. Secondly, the
year 2013 marks the end of the EU funds programming period of 2007–2013 and the
beginning of the next 2014–2020 programming period. In this latter period, a large amount



Sustainability 2021, 13, 12008 9 of 21

of public subsidies were granted to the Apulia municipalities to support innovation and
performance improvement in urban waste management.

3.3. Model Specification and Variables

Three DEA model specifications were used in the efficiency analysis. These models
share the same input, although they have different sets of outputs. Both input and output
variables were measured with reference to the municipality size in terms of the number of
inhabitants. Per capita indicators provide more granular information and allow a more
effective comparison of municipalities having various sizes. The per capita annual cost
to provide the MSW service was utilized as the unique input of the production process
employed by the municipality to deliver service. Several scholars used cost measurements
as inputs [11,29,31,34].

The output indicators employed to specify each model provide measurements of
the per capita quantity of waste collected in the municipality [12,30,31]. However, the
first model of this study (M1) considers the quantity of solid waste as a whole, without
differentiating between its various typologies. This model was applied to calculate the
MSW service efficiency and productivity. On the contrary, the second and third models
(M2 and M3) take into account the different nature of waste, as in previous studies [11,14].
These models were implemented to calculate the MSW service eco-efficiency and eco-
productivity following previous studies [12,13]. In the second model M2, the collected
waste quantity was split into the sorted and unsorted amounts, considering this latter as a
“bad” or “undesirable” output, consistent with the request of the European Union to reduce
the quantity of unsorted waste in accordance with the European waste strategy. In the
third model M3, the sorted quantity of waste was further broken down into six fractions to
have a more refined measurement of the eco-efficiency and eco-productivity scores (i.e.,
organic, plastic, metal, paper and cardboard, glass, and “other materials” that include
minor fractions of the selectively collected waste) [14]. Because, in the second and third
models, the unsorted quantity of solid waste is an undesirable output, the linear monotonic
decreasing transformation proposed by Seiford and Zhu [49] was applied to convert this
output into a desirable one. Thus, a greater measurement of the new variable indicates a
higher performance of the municipality with respect to the MSW service. Finally, in all
models, variable returns to scale and non-orientation assumptions were adopted while
running the linear program (4) to balance the need to increase the quantity of sorted waste,
reduce the quantity of unsorted waste, and reduce the cost of service. Table 1 presents
the model specifications for the three DEA models. Table 2 presents major statistics for
variables. For the sake of brevity, statistics are reported only for the year 2017.
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Table 1. Input and output variables used in DEA models’ specification.

Variable Description Type DEA Models

M1 M2 M3

Per capita cost of service annual cost of the MSW service per inhabitant input 3 3 3

Per capita total waste total annual waste per inhabitant output (good) 3

Per capita total sorted waste total annual sorted waste per inhabitant output (good) 3

Per capita unsorted waste annual amount of unsorted fraction of waste
per inhabitant output (bad) 3 3

Sorted waste fraction amounts per capita:

Organic annual amount of organic fraction of sorted
waste per inhabitant output (good) 3

Plastic annual amount of plastic fraction of sorted
waste per inhabitant output (good) 3

Metal annual amount of metal fraction of sorted
waste per inhabitant output (good) 3

Paper and cardboard annual amount of paper fraction of sorted
waste per inhabitant output (good) 3

Glass annual amount of grass fraction of sorted
waste per inhabitant output (good) 3

Other materials annual amount of sorted waste not included in
the preceding categories output (good) 3

Table 2. Main statistics of input and output variables for the year 2017.

Variable Measurement
Unit Mean Max Min Source of Data

Per capita cost of service €/inhab. 164.02 512.68 83.54 OpenBilanci; Ministero degli Interni
Per capita total waste kg/inhab. 439.94 1628.90 143.53 Catasto Rifiuti-ISPRA

Per capita total sorted waste kg/inhab. 166.48 514.59 2.12 Catasto Rifiuti-ISPRA
Per capita unsorted waste kg/inhab. 273.46 1356.62 58.54 Catasto Rifiuti-ISPRA

Sorted waste fraction amounts per
capita:

Organic kg/inhab. 53.73 202.38 0 Catasto Rifiuti-ISPRA
Plastic kg/inhab. 18.69 62.59 0 Catasto Rifiuti-ISPRA
Metal kg/inhab. 2.23 22.45 0 Catasto Rifiuti-ISPRA

Paper and cardboard kg/inhab. 34.68 127.59 0 Catasto Rifiuti-ISPRA
Glass kg/inhab. 25.09 78.42 0 Catasto Rifiuti-ISPRA

Other materials kg/inhab. 27.34 272.27 0.05 Catasto Rifiuti-ISPRA

Note: for the year 2017, the sample includes 245 municipalities after the removal of outliers.

4. Results

As efficiency measurements are greatly sensitive to extreme values, data were pre-
liminarily examined to identify outliers by implementing the procedure suggested by
lo Storto [14]. Moreover, to generate more robust efficiency estimates, the bootstrap proce-
dure suggested by Simar and Wilson was performed [50,51]. As common, 2000 replicates
were used to bootstrap efficiency scores.

4.1. Efficiency and Productivity Trends

Figure 1 shows the average scores of the MSW service efficiency calculated for the three
years covered by the study. Over the entire period, the measurement of the operational
efficiency computed by model M1 is lower than the measurements of the eco-efficiencies
calculated when performing the remaining two models (M2 and M3). Such a difference
between efficiency scores estimated using different models greatly increases in 2013 and
in 2017, close to about 45% and 34%, respectively. This difference between the efficiency
and the eco-efficiency metrics also emerged from previous studies [13]. However, the
different orientation employed in the specification of the DEA models in this study makes
the comparison of relatively scarce significance. Furthermore, the findings also highlight



Sustainability 2021, 13, 12008 11 of 21

that the eco-efficiencies estimated by models M2 and M3 have almost the same values.
While efficiency firstly diminished from 0.58 (in the year 2010) to 0.49 (in the year 2013)
and then increased to 0.59 (in the year 2017), during the period covered by the study, the
eco-efficiency has progressively risen, from 0.63 to 0.70 according to model M2, and from
0.71 to 0.81 with respect to model M3. These figures suggest that both the regional waste
management plan adopted since 2013 and the public policies supporting investment in
the MSW sector had a positive impact, improving efficiency and eco-efficiency scores.
Particularly, the implementation of the regional waste management plan contributed
to boost the sorted waste collection rate by establishing targets and a more effective
management of the waste materials’ flow. Additionally, the public policies supported
by the EU and the national funds allowed to increase the capacity of the regional waste
pre-treatment facilities and the municipal equipment used for the collection of waste,
and implement campaigns aimed at raising the citizens’ awareness and commitment
to environmental concerns. Indeed, the quantity of waste processed by mechanical and
biological treatment plants to further refine the pre-sorted fraction of waste has significantly
increased from 2007 to 2015, as shown by recent research [52].

Figure 1. MSW service efficiency and eco-efficiency scores in 2010, 2013 and 2017.

Figure 2 exhibits the quantification of the Global Malmquist Productivity Index for
the periods 2010–2013 and 2013–2017. A GMPI value greater than the unity indicates that
productivity is growing, while a value smaller than the unity indicates that productivity is
decreasing. The same is true for the eco-productivity measurement in models M2 and M3.
In both periods, the MSW service productivity index is lower than 1, emphasizing that, since
2010, there has been diminishing productivity measured from the economic perspective
only. On the contrary, in both periods 2010–2013 and 2013–2017, there was an increase
in the MSW service eco-productivity. This increase was slightly higher in the second
period. The GMPI calculated for models M2 and M3 was 1.15 in the period 2010–2013
and ranged between 1.15 and 1.17 in the period 2013–2017. These findings are in line
with what emerged from the static efficiency analysis, emphasizing that accounting for the
environmental benefit linked to the sorted waste collection and recycling produces higher
productivity measurements in comparison with those produced by restricting the analysis
to economic concerns. Likewise, the figures highlight that the GMPI scores remained
almost stable for all three models. However, the examination of the two productivity
components, TC and EC, indicates that the influence of the latter on productivity differed
across models and time periods. The higher measure of the eco-productivity index was
determined to a large extent more by the positive change in the eco-efficiency EC than
by the change in the eco-technology TC (Figures 3 and 4). The EC values for models M2
and M3 were between 1.12 and 1.20 during the period from 2010 to 2013 and between 1.13
and 1.14 in the period 2013–2017. Conversely, the TC component adversely affected the
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productivity index between 2013 and 2017 in model M1, which did not account for the
environmental benefit of the selectively collected waste. The productivity decrease was
a consequence of the diminishing TC value (equal to 0.71), caused by an inward shift of
the production frontier. The low TC score was partly compensated by an increase in the
efficiency change value (EC = 1.26). However, between 2010 and 2013, in this model, the
decrease in the MSW service economic productivity has been largely driven by a reduction
in the economic efficiency change EC (equal to 0.86), as the TC score was very close to
the unity (0.98). As the TC values indicate, there was almost no change in the production
technology in the MSW sector from 2010 to 2013. Indeed, the TC measure was between
0.98 and 1.03 for the three DEA models, and the production technology frontier remained
essentially stable in each model. From 2013 to 2017, the technology frontier for models
M2 and M3 continued to remain stable despite the investment made by the operators to
adopt innovative waste collection schemes and by the regional Government to increase
the waste treatment plants’ capacity, as well as the changes in the institutional setting and
governance of the MSW sector. However, such an innovation effort allowed the MSW
service operators to utilize resources more efficiently, despite the increase in the cost for
service provision. In this period, the transfer of financial contributions from the regional
Government to renew the fleet of vehicles used to collect urban waste and enhance the
infrastructure capacity allowed several municipalities to improve the rate of the selectively
collected waste, approaching the targets stated in the waste management plan, at the same
time increasing the general level of efficiency (EC = 1.26) and eco-efficiency (EC = 1.13 for
model M2 and EC = 1.14 for model M3, respectively).

Figure 2. MSW service productivity and eco-productivity in the periods 2010–2013 and 2013–2017:
GMPI measurements.
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Figure 3. MSW service productivity and eco-productivity in the periods 2010–2013 and 2013–2017:
TC measurements.

Figure 4. MSW service productivity and eco-productivity in the periods 2010–2013 and 2013–2017:
EC measurements.

4.2. Municipality Size and Productivity

The sample was split into four equal-sized groups to explore the relationship between
municipality size and productivity change using the quartiles of the municipality popula-
tion to separate the single groups. Table 3 shows the groups obtained from the quartile
analysis, with the population lower and upper bounds. Population data for this analysis
were generated by averaging the population data relative to the three years considered in
the study.

Table 3. Groups of municipalities by population size.

Group
Population Number of

MunicipalitiesLower Bound Upper Bound

G1 458 3705 62
G2 3706 7804 61
G3 7805 16,079 61
G4 16,080 319,231 61

The measurements relative to the rate of waste selectively collected, the efficiency and
eco-efficiency scores, and the productivity and eco-productivity were compared across
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the four groups. The non-parametric Kruskal–Wallis test was used for testing whether
groups originate from the same distribution. For the sake of brevity, the DEA model
M2 was excluded from this analysis because both eco-efficiency and eco-productivity
scores obtained from the previous analysis do not substantially differ from those estimated
through model M3.

Table 4 displays the average value of the rate of the sorted waste collection for each of
the four groups in the three years. The rate of sorted waste was calculated as the ratio of
the quantity of the selectively collected waste to the total quantity of waste collected in the
municipality. In this table, changes in the rate of selectively collected waste between two
consecutive years are included, too. Figures in this table indicate that, in 2010, on average,
the small municipalities belonging to group G1 achieved the highest level of sorted waste
collection, whereas the large municipality of group G4 had the worst performance with
respect to the sorted waste collection rate. Nevertheless, differences between groups are not
statistically significant. The rather high measurement of the standard deviation highlights
that there was a not homogeneous situation across municipalities in group G1.

Table 4. Main statistics relative to the sorted waste rate for the four groups.

Variable
G1 G2 G3 G4

K–W Test
Statistics

Asymptotic
Significance
(Two-Tailed)

p-Value a

Pairwise
Comparison

between
Groups b

Mean
(St.Dev)

Mean
(St.Dev)

Mean
(St.Dev)

Mean
(St.Dev)

%SW (2010)
19.21% 16.60% 16.95% 13.91%

5382 0.146(14.13%) (8.97%) (11.46%) (6.20%)

%SW (2013)
23.79% 20.37% 24.89% 23.74%

4361 0.225(14.07%) (14.63%) (15.99%) (18.04%)

%SW (2017)
36.08% 33.86% 40.99% 47.89%

13,820 0.003 (2–4) ***; (1–4) **(21.10%) (20.00%) (21.19%) (20.83%)
∆%SW

(2010–2013)
4.58% 3.77% 7.94% 9.83%

4669 0.198(14.39%) (11.98%) (13.80%) (18.14%)
∆%SW

(2013–2017)
12.28% 13.49% 16.10% 24.15%

15,473 0.001 (1–4) ***; (2–4) **(21.59%) (21.28%) (19.93%) (21.92%)
a Pairwise comparisons were not performed when the global K–W test showed no significant differences between groups. b The Bonferroni
correction was used for multiple comparisons [53,54]. *** and ** significance at the 1% and 5% level respectively.

However, over time, the situation gradually evolved in 2013 with a generalized
increase in the average rate of the sorted waste. Indeed, in the year 2013, the average rate
of the sorted waste collection was almost the same in all groups, although there was a
great dispersion of values as marked by the relatively high standard deviation measure. In
2017, the measurement of the percentage of the sorted waste collected in the municipalities
further increased. This increase was especially pronounced for the municipalities of group
G4. Even in 2017, the picture was quite not homogeneous within the individual groups,
confirming the transient state of the urban solid waste sector in Apulia at that time. The
non-parametric Kruskal–Wallis test attests to the statistical significance of differences
between the average collection rates of the sorted waste fraction of the larger and smaller
municipalities in groups G1 and G2. The examination of the average values of changes
in the sorted waste collection rates confirms the better performance trend of the larger
municipalities. These results diverge from what emerged in previous research, which
showed that the waste recycling rate is negatively correlated with the population size [55].
Nevertheless, the rate of separately collected waste is influenced by a great number of
interacting factors that should be accounted for in addition to municipality size [14].
Particularly, local policies, the level of citizens’ participation, and socio-demographic
characteristics are critical factors that positively affect the sorted waste collection rate [56,57].
Hence, the results should be interpreted with caution. At the same time, however, the
results indicate that, from 2010 to 2017, the MSW sector was a highly dynamic sector,
still evolving in search of a steady configuration, and actors were constantly adapting to
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changing conditions set by new requirements, regulatory frameworks, consumer behaviors,
availability of advanced technologies for the waste materials’ treatment, and financial
resources [14,58,59].

Table 5 displays the average efficiencies and eco-efficiencies estimated by implement-
ing models M1 and M3. The results indicate that, in 2010, the smaller municipalities of
group G1 were on average less cost-efficient (slightly more than 53%), but more eco-efficient
(about 74%), consistent with the highest rates of the separately collected waste highlighted
in Table 4. The larger municipalities of group G4 were a little more efficient (about 57%).
However, they achieved a lower eco-efficiency (67.10%). As shown in Figure 1, the average
efficiency level diminishes by about 10% in comparison with the efficiency level in the
year 2010. The smaller municipalities in group G1 were the worst performers. On the
contrary, the average measurement of the eco-efficiency grew by about 3% across groups.
The year 2017 witnessed a generalized growth in the MSW service efficiency common to
all groups, bringing again the efficiency score to the level of the year 2010. At the same
time, there was an increase in the average eco-efficiency level in all groups. In 2017, the
average eco-efficiency measurements achieved by groups were between 80% and 82.22%.
The findings indicate that, during the overall period considered in this study, the smaller
municipalities in group G1 achieved the lowest efficiency scores, whereas efficiency was
the highest in municipalities belonging to group G3. This suggests that economies of scale
may be important to achieve efficiency in the provision of the MSW service, but there might
be an optimal threshold, as emerged in earlier research [25]. However, the relationship
between efficiency and municipality size needs further investigation. Indeed, the results
emerging from earlier empirical research were either inconclusive or conflicting [33,60].
Contrarily, municipality size seems to have affected differently the eco-efficiency metrics
in 2010 and 2013, as smaller municipalities were more eco-efficient when, on average, the
percentage of the sorted waste collection was still low. With the general increase in the
sorted waste collection rate from 2010 to 2017, the scale diseconomies of the first period left
room for the emergence of constant returns to scale with a plausible negligible impact of
size on the eco-efficiency measurement.

Table 5. Main statistics relative to model M1 and M3 efficiencies for the four groups.

Variable
G1 G2 G3 G4

K–W Test
Statistics

Asymptotic
Significance
(Two-Tailed)

p-Value a

Pairwise Comparison
between Groups bMean

(St.Dev)
Mean

(St.Dev)
Mean

(St.Dev)
Mean

(St.Dev)

Eff_M1 (2010)
53.88% 58.99% 60.89% 57.47%

9033 0.029 (1–3) **(13.83%) (15.25%) (13.81%) (12.25%)

Eff_M3 (2010)
74.03% 70.69% 71.15% 67.10%

13,702 0.003 (4–2) **; (4–1) ***(12.28%) (17.29%) (13.58%) (12.15%)

Eff_M1 (2013)
43.72% 49.88% 51.80% 48.85%

19,762 0.000 (1–2) *; (1–4) **; (1–3) ***(11.51%) (15.08%) (11.44%) (10.16%)

Eff_M3 (2013)
77.13% 71.24% 74.58% 71.10%

12,602 0.006 (4–1) ***; (2–1) *(11.04%) (13.97%) (10.45%) (11.19%)

Eff_M1 (2017)
54.74% 60.23% 62.14% 58.40%

11,788 0.008 (1–2) **; (1–3) ***(11.61%) (11.12%) (13.48%) (9.95%)

Eff_M3 (2017)
80.92% 80.02% 81.88% 82.22%

4397 0.222(12.56%) (9.31%) (11.98%) (12.83%)
a Pairwise comparisons were not performed when the global K-W test showed no significant differences between groups. b The Bonferroni
correction was used for multiple comparisons [53,54]. ***, **, and * significance at the 1%, 5%, and 10% level.

The results of the productivity and eco-productivity analysis across groups are pre-
sented in Table 6. The productivity measurement (GMPI_M1) was always below the unity
level for the four groups in both the periods 2010–2013 and 2013–2017, even though there
was a small productivity increase in the latter period. Conversely, the eco-productivity
value (GMPI_M3) was always above the unity for all groups in both periods. The most
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significant improvement in the eco-productivity score was found in groups G1 (the period
2010–2013) and G2 (the period 2013–2017), achieving a score of 1.259 and 1.288, respectively.
As in the previous section, the analysis of the TC and EC indicators provides important
insights into the determinants influencing both productivity and eco-productivity changes.
In the interval 2010–2013, the technological change associated with productivity (TC_M1)
is always lower than the unity, except for group G1. Hence, the smaller municipalities
experienced an outward shift in the MSW service production frontier, slightly increasing
their waste management capacity and showing a better capability to adapt to the chang-
ing landscape. However, in the following period, with the increase in the percentage of
separate waste collection and the growing cost to provide the MSW service, there was an
inward shift of the technology frontier for all groups, independently of the municipality
size. The TC_M1 measure further diminished from 2013 to 2017, having values between
0.703 and 0.723. The low measurements of the TC indicator suggest that, over time, there
has been a technological change in the production process underlying the delivery of the
MSW service that negatively affected the municipality productivity. In the DEA modeling
framework, this regression of the production technology that manifests itself as an inward
shift of the production boundary indicates that there were constraints to the municipalities’
capability to exploit better opportunities. The scores of the technological change linked
to the measurement of the municipality eco-productivity (TC_M3) were always greater
than the unity. In both time intervals and for all groups, there was a shift forward in
the MSW service production technology, unlike what has emerged from the analysis of
the productivity measured from the economic perspective alone. However, the Kruskal–
Wallis test reveals that there were significant differences between groups only in the period
2010–2013. Specifically, there were statistically significant differences between group G4
and the remaining three groups. The largest sized municipalities of group G4 experienced
the highest improvement in the production technology evaluated from the joint economic
and environmental perspectives. There were no significant differences between groups
from 2013 to 2017. These differences between the measurements of the TC scores calculated
for models M1 and M3 in the last period suggest that the adoption of innovative waste
collection schemes, selection, and disposal gradually modified the production function of
the MSW service as the quantity of the separately collected waste has acquired relevance.
Hence, measuring the MSW service productivity changes without discriminating between
the different kinds of output (i.e., the unsorted and sorted fractions of waste) provides a
biased performance measure.

Figures relative to the EC indicator measured from the economic perspective alone
(EC_M1) bring to light important differences between the two time-intervals considered in
the productivity analysis. In the first period (2010–2013), we observe a negative efficiency
change (EC), with no important differences across groups. This efficiency reduction also
emerged in Figure 1. However, after 2013, the results indicate a quantum leap ahead of
the efficiency, as emphasized by the EC measurements varying from 1.228 to 1.300. In this
case as well, there is no significant difference between groups. This significant efficiency
improvement was mostly linked to the inward movement of the efficiency frontier caused
by the change of the production function. The analysis of the EC values computed from
the eco-efficiency perspective (EC_M3) shows a different picture. Indeed, EC was always
greater than the unity. This indicates that, since 2010, on average, all municipalities
improved the efficiency level in the provision of the MSW service, regardless of their
population size. However, no relevant differences emerged from the comparison between
EC scores in the two periods. This growing trend of the MSW efficiency measure also
emerged in other empirical studies adopting different DEA modeling frameworks [14,61].



Sustainability 2021, 13, 12008 17 of 21

Table 6. Main statistics relative to model M1 and M3 MPI, TC, and EC for the four groups.

Variable
G1 G2 G3 G4

K–W Test
Statistics

Asymptotic
Significance
(Two-Tailed)

p-Value a

Pairwise Comparison
between Groups b

Mean
(St.Dev)

Mean
(St.Dev)

Mean
(St.Dev)

Mean
(St.Dev)

GMPI_M1 (2010–2013)
0.841 0.851 0.834 0.819

1862 0.601(0.192) (0.189) (0.161) (0.168)

GMPI_M3 (2010–2013)
1.259 1.031 1.146 1.162

17,464 0.001 (2–4) ***; (1–4) ***(1.794) (0.181) (0.540) (0.271)

GMPI_M1 (2013–2017)
0.908 0.904 0.886 0.876

0.419 0.936(0.220) (0.226) (0.205) (0.174)

GMPI_M3 (2013–2017)
1.094 1.288 1.114 1.197

10,115 0.018 (1–4) **; (2–4) *(0.296) (0.757) (0.237) (0.234)

TC_M1 (2010–2013)
1.012 0.991 0.964 0.942

12,297 0.006 (4–2) *; (4–1) ***(0.127) (0.102) (0.084) (0.052)

TC_M3 (2010–2013)
1.031 1.002 1.032 1.068

26,914 0.000 (1–4) ***; (2–4) ***; (3–4) *(0.324) (0.136 (0.132) (0.083)

TC_M1 (2013–2017)
0.703 0.714 0.723 0.715

2992 0.393(0.084) (0.095) (0.085) (0.056)

TC_M3 (2013–2017)
1.016 1.043 1.008 1.020

1813 0.612(0.080) (0.182) (0.071) (0.051)

EC_M1 (2010–2013)
0.840 0.865 0.866 0.872

0.373 0.946(0.209) (0.201) (0.154) (0.186)

EC_M3 (2010–2013)
1.250 1.037 1.116 1.088

4741 0.192(1.709) (0.196) (0.513) (0.220)

EC_M1 (2013–2017)
1.300 1.285 1.228 1.229

3067 0.381(0.307) (0.353) (0.260) (0.246)

EC_M3 (2013–2017)
1.070 1.205 1.115 1.172

8809 0.032 (1–4) **(0.223) (0.497) (0.215) (0.206)
a Pairwise comparisons were not performed when the global K–W test showed no significant differences between groups. b The Bonferroni
correction was used for multiple comparisons [53,54]. ***, **, and * significance at the 1%, 5%, and 10% level.

5. Conclusions

This paper has presented a dynamic efficiency study of the urban solid waste manage-
ment service in the municipalities of the Apulia region in the south of Italy. Particularly,
the study employed the non-parametric Global Malmquist Productivity Index (GMPI) to
evaluate the productivity change in the MSW service from 2010 to 2017. Three different
DEA-based model specifications were implemented to calculate the GMPI, having different
grades of refinement. The first model calculated the MSW service productivity from the
economic (cost-efficiency) perspective alone, whereas the second and third models calcu-
lated the MSW service productivity from the economic and environmental (environmental
impact) perspectives at the same time. The adoption of these two distinct perspectives
allowed having a more comprehensive insight into the performance of the MSW sector in
Apulia considering the productivity and the eco-productivity of service provision.

Figures relative to the rate of the separate collection of urban waste indicate that, on
average, the large as well as small municipalities in 2017 were far from achieving the target
of 65% set by national and regional laws. These data, together with findings emerging from
the efficiency and productivity analysis, suggest that, from 2010 to 2017, the MSW sector
was still facing a transitional period. Even in 2017, the picture of the sector remained rather
not homogeneous within the groups of municipalities of a similar size.

During the period covered by the study, the governance of the waste management
system at the regional level has undergone several changes. The Legislative Decree no.
22/1997 (the so called “Ronchi Decree”) and Legislative Decree no. 152/2006 provided for
the introduction of optimal management areas (ATOs) to organise the municipal waste
collection and management to exploit scale and scope economies linked to the construction
and management of facilities, waste collection, and transport to treatment plants and
landfill. However, following the continuous evolution of the national and Apulia regional
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legislations, the original fifteen ATOs were firstly merged into six ATOs, one for every
province, and finally merged into one single regional ATO. At the same time, in accordance
with regional legislation, the Apulia territory was further divided into 38 waste collection
macro-areas (AROs) in order to improve the efficiency of waste collection, optimise the
flows of collected waste transported to the treatment facilities, and raise the quality of
materials destined for recycling. However, these AROs were very heterogeneous in terms
of their size, partly to respond to the demographic and territorial characteristics, and
partly under the influence of localistic pressures that often led to identifying sub-optimal
boundaries for them. Additionally, the low cost of waste disposal in landfills (about €50 per
ton of waste, lower than in the other Italian regions), as well as the postponement of the
entry into force from 2011 to 2014 of the “ecological tax” introduced by the Regional Law
no. 38/2011, discouraged municipalities to increase the rate of separate collection and
recycling and reduce the amount of unsorted waste sent to landfills. Consequently, until
2014, MSW management in Apulia was still largely dependent on the utilization of landfills,
exposing the region to EU penalties and, at the same time, generating considerable negative
environmental externalities and increasingly unacceptable socio-sanitary risk conditions.

Hence, the framework for the adoption of the municipality waste management plans,
public measures, and actions aimed at supporting the implementation of more effective
waste management policies and, particularly, at increasing the amount of waste fractions
separately collected and subsequently recycled, was characterized by a high level of uncer-
tainty and complexity. Contrary to expectations from the adoption of the Legislative Decree
no. 152/2006, the MSW sector has remained very fragmented, preventing municipalities
from making the most of scale economies and increasing their cost efficiency. The effects of
such complexity and uncertainty have been a low percentage of sorted waste collection and
recycling and an inefficient waste management service, as marked by the reduced score of
the average economic efficiency between 2010 and 2017, and particularly in 2013, resulting
from the study. The productivity analysis performed from the economic perspective has
showed that the efficiency values achieved in 2017 within the single municipality groups do
not substantially differ from those obtained in 2010. However, the efficiency measurements
improve when the productivity analysis is performed accounting for the environmental
impact, too. The eco-efficiency increased steadily from 2010 to 2017 in all municipality
groups, although at different rates. Similarly, the productivity analysis performed from the
economic and environmental perspectives produces better results than the productivity
analysis that disregards the environmental benefit of the sorted waste collection. Indeed,
eco-productivity has been constantly growing from 2010 to 2017, unlike the economic pro-
ductivity alone. Both the technology and the efficiency change components contributed to
the increase in the eco-productivity measurement. These findings may help policy makers
and municipality administrators to identify best practices and implement improvement
plans for the mid and long term, aimed at increasing the percentage of the sorted waste
collection without increasing, or even reducing, the MSW service costs.

The results suggest that, between 2010 and 2017, the MSW sector in the Apulia region
was still evolving in search of a stable and efficient configuration. The changes brought
upon by the regulatory framework, consumer trends, innovation in the waste materials
treatment technology, and scarcity of financial resources forced the actors to constantly
adapt to modifying conditions. Therefore, not taking into account such variability may
bias the efficiency analysis when a short-term or a static viewpoint is assumed. Moreover,
the results of this study demonstrate the critical importance of including environmental
indicators in the efficiency analysis, because estimating the MSW productivity while
adopting the economic perspective alone may be reductive and provide incomplete or even
incorrect insights.
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