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Abstract: The tracking of magnetic field lines can be very expensive, in terms of computational
burden, when the field sources are numerous and have complex geometries, especially when accuracy
is a priority, because an evaluation of the field is required in many situations. In some important
applications, the computational cost can be significantly reduced by using a suitable approximation of
the field in the integrated regions. This paper shows how Chebyshev polynomials are well-suited for
field interpolation in magnetic field-line tracking, then discusses the conditions in which they are most
appropriate, and quantifies the effectiveness of parallel computing in the approximation procedures.

Keywords: magnetic field tracking; field approximation; Chebyshev polynomials

1. Introduction

The tracking of magnetic field lines (FL) is required in many scientific and industrial
applications. Line-tracking can be carried out by integrating an ordinary differential
equations (ODEs) system. A thorough survey of the methods for the numerical integration
of a differential equation that preserves geometric properties, such as the volume for
solenoidal fields, can be found in [1]. Such methods, including that of Runge-Kutta, can
be used for tracing the FLs of the magnetic field [2,3], and can find employment in several
scientific applications, including fusion devices based on magnetic confinement [3–6].

Unfortunately, the FL tracking procedures can be very computationally expensive
if the sources are complex since the continuous recalculation of the field along the line
trajectory is required. The computational cost also increases with accuracy, which implies
more detailed source modeling and a reduced integration step. The effectiveness of parallel
computation is rather limited in the tracking formulations since the points where the
field has to be evaluated cannot be known a priori because they depend on the particular
trajectory under construction.

In this class of applications, the use of interpolation techniques [7] based on the
projection of the field in a suitable finite-dimensional functional space can be very beneficial.
The best choice for the dimension of the space and for the class of interpolating functions
depends on the desired accuracy and on the size of the interpolation domain, which also
impacts on the number of direct computations of the “actual” field required to finalize the
interpolating functions.

In general, the approximation is convenient if, for a given accuracy, the interpolating
procedure is faster than the direct field calculation and, in addition, the number of the points
where the field is required is larger than the number of direct calculations required by the
interpolation. The aim of the paper is focused on the methodological aspects, but to assess
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the proposed approach, the paper also includes a number of demonstrative applications,
particularly in the field of fusion technology.

This paper aims to show, from the methodological point of view, how Chebyshev
polynomials [7] (CP) are well-suited for field interpolation in FL tracking processes, to
discuss the conditions under which they are convenient, and to show how effective parallel
computing can be in the approximation procedures.

The paper is organized as follows. Section 2 gives a brief description of the magnetic
system in a Tokamak device. Section 3 discusses the analytical and numerical aspects of
the approach. Finally, in Section 4, the accuracy of the approach and its performance in FL
tracking are evaluated, and some of its applications are examined.

2. The DTT Tokamak

The applications considered in this paper are related to the analysis of certain critical
aspects of the magnetic field inside a Tokamak device [8]. The Tokamak is the most
promising scheme for future commercial reactors devoted to the production of fusion
electricity. It includes a very complex magnetic-field system that is designed to confine and
stabilize the plasma in a doughnut-shaped container. Due to its toroidal shape, a cylindrical
coordinate system [R, ϕ, Z] is commonly used, with ϕ ∈ [0, 2π].

Here, the DTT (Divertor Tokamak test) facility [9] is considered. The DTT is a new
Tokamak device under construction on the ENEA site in Frascati, Italy, designed to study
power and particle exhaust and the possible divertor concepts. The main parameters are:
major radius 2.19 m, minor radius 0.70 m, pulse length 100 s, plasma current 5.5 MA,
toroidal field 6 T, and heating power 45 MW. Figure 1 shows a rendering of the DTT hall,
assembly, and testing area.
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Figure 1. Rendering of the DTT hall, assembly, and testing areas.

The magnetic system (Figure 2) includes the poloidal field system (PF), designed
to control the shape and the position of the plasma (Figure 3); the central solenoid (CS),
designed to induce the plasma current (Figure 3); the toroidal field system (TF) composed
of 18 D-shaped coils uniformly distributed in a toroidal direction, designed to produce the
toroidal magnetic field.
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Figure 3. DTT poloidal cross section.

In the DTT device, both the PF and CS systems are up–down symmetrical. Therefore,
Table 1 shows only the main parameters of the upper-side coils, including the coordinates
of the coil centers, the dimensions of the cross-sections, and the number of turns, in both
radial and vertical directions.

Table 1. Main parameters of the up–down symmetric PF and CS systems.

Coil Name Center R (m) Center Z (m) DR (m) DZ (m) nR nZ

PF1 1.4000 2.7600 0.5100 0.5904 18 20
PF2 3.0795 2.5340 0.2790 0.5168 10 16
PF3 4.3511 1.0150 0.3898 0.4522 14 14

CS3U-H 0.4896 2.1658 0.1213 0.7880 4 17
CS3U-M 0.5960 2.1658 0.0915 0.7880 4 20
CS3U-L 0.6935 2.1658 0.1035 0.7880 6 24
CS2U-H 0.4896 1.2994 0.1213 0.7880 4 17
CS2U-M 0.5960 1.2994 0.0915 0.7880 4 20
CS2U-L 0.6935 1.2994 0.1035 0.7880 6 24
CS1U-H 0.4896 0.4331 0.1213 0.7880 4 17
CS1U-M 0.5960 0.4331 0.0915 0.7880 4 20
CS1U-L 0.6935 0.4331 0.1035 0.7880 6 24

The finite number of TF coils breaks the axial symmetry of the device, introducing a
periodical deformation of the magnetic field (ripple) in the toroidal direction that can be
deleterious to the plasma. Different solutions to counteract this effect are proposed, such as
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ferromagnetic inserts [10]. More details about the model used to represent the field of the
TF coil system are given in Section 4.

3. Mathematical Formulation
3.1. FL Tracking

By definition, the FL is the line that is tangential to the magnetic field everywhere.
Therefore, line tracking can be carried out by integrating the following ODEs system:

dr
dt

= B(r(t)) (1)

where r is the field point and t is an FL abscissa.
Except for a few trivial cases, no analytical solutions are available; therefore, the

previous ODEs system must be solved numerically. Many approaches, based on explicit
or implicit schemes and characterized by different accuracy levels, computational costs,
and performance, are available in the scientific literature. Here, the Runge-Kutta-4 (RK4)
method is adopted, based on an explicit fixed-step scheme. For each step, the method
consists of four consecutive field calculations that are used to estimate the field component
derivatives and accumulates an error in the order of O

(
hRK

4), where hRK is the step
size [11].

It is worth noting that the direct integration of (1) is not enough to force the magnetic
flux density to be divergence-free. Alternative approaches are able to preserve the vol-
ume in a strong form [3,5,12,13], but, unfortunately, this entails an increasing number of
field computations.

3.2. The Field Approximation

The field approximation approaches can provide an effective contribution to this class
of problems, reducing the required computational effort while preserving the target accu-
racy. The general philosophy is to select, in a functional space, SI, a suitable interpolation
function FI(r) defined in an interpolation domain, VI, and then to calibrate FI(r) by super-
imposing the fitting with the actual function FA(r) in a suitable number Nsamp of sampling
points in VI.

Several methodologies have been suggested, each being characterized by the space SI
adopted for the approximation, the most suitable geometry of the domain VI, and, finally,
the number of points Nsamp needed to achieve the required accuracy in VI [7].

For the applications described herein, the space of CP with a brick-shaped interpolation
domain VI is recommended [7]. In a Cartesian coordinates system [x, y, z], a single
reference parallelepiped that is centered in the coordinate system’s origin, with edges that
are parallel to the coordinate axis, and bounded in [−1, 1]× [−1, 1]× [−1, 1], is introduced.
The general form of CP used to approximate a vectorial field function FA(x, y, z) in the
reference brick is:

FI(x, y, z) =
i=Npx

∑
i=0

j=Npy

∑
j=0

k=Npz

∑
k=0

Ti(x)Tj(y)Tk(z)
(

αijkx̂ + βijkŷ + γijkẑ
)

, (2)

where Npx, Npy, and Npz are the polynomials’ degrees in the x, y, and z directions, respec-
tively, x̂, ŷ, and ẑ are the unit vectors in the coordinate directions, αijk, βijk, and γijk are the
coefficients of each polynomial, and, finally, Ti(x), Tj(y), and Tk(z) are the first CPs of the
i-th, j-th, and k-th degrees, respectively, defined as:

Tn(ξ) = cos(narccosξ) with |ξ| < 1 and n > 0 (3)

where n is the degree of the n-th polynomial basis function and ξ is one of the coordinates
x, y, and z.
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In order to apply this approach to a general brick with any size and orientation, a
bijective map projecting the coordinates of an actual domain point (xb, yb, zb) into the
reference domain point (xr, yr, zr) can be introduced:

xr = f (xb, yb, zb), yr = g(xb, yb, zb), zr = h(xb, yb, zb) (4)

To be able to describe the rigid displacements as translations and rotations, as well
as homothetic deformations as compression and expansion, the map has to be an affine
transformation of R3 into R3.

Here, for sake of clarity, the CP-based approximation of the flux density is reported
only for a homothetic transformation of the reference domain:

B(xb, yb, zb) =
i=Npx

∑
i=0

j=Npy

∑
j=0

k=Npz

∑
k=0

[
cxz Ti(xr)Tj(yr)kUk−1(zr)− cxy Ti(xr)jUj−1(yr)Tk(zr)

]
αijk x̂

+
[
cyx iUi−1(xr)Tj(yr)Tk(zr)− cyz Ti(xr)Tj(yr)kUk−1(zr)

]
βijk ŷ

+
[
czy Ti(xr)jUj−1(yr)Tk(zr)− czx iUi−1(xr)Tj(yr)Tk(zr)

]
γijk ẑ

(5)

where the metric coefficients ckh are easily derived by (4), and Ui−1, Uj−1, and Uk−1; the
second-kind CPs of (i − 1)-th, (j − 1)-th and (k − 1)-th degrees, respectively, are defined as:

Un(ξ) =
sin ((n + 1) arccos ξ )

sin (arccos ξ )
with |ξ| < 1 and n > 0. (6)

It is worth recalling that each second-kind CP is related to the first-kind CP by a simple
derivative relationship: dTn (ξ)/dξ = nUn−1(ξ), with U−1(ξ) = 0.

In case the transformation also includes a rigid displacement, the generalized form of
(5) can be derived using (4), with simple mathematical operations.

Actually, to impose its flux-preserving property, instead of the flux density B, a
magnetic vector potential A (with a Coulomb gauge) is used for the approximation, while
the symbols in (2) are used for its formulation. Then, the flux density approximation can be
derived as B = rot A.

To calculate the coefficients αijk, βijk, γijk in (5), the Chebyshev approximation is
constrained, in a number Nsamp of sampling points, to fit the field calculated by a direct
procedure. Actually, together with (5), an additional constraint for the gauge on the vector
potential is also imposed. In such a way, at each sampling point, three linear equations are
imposed, one for each of the three components of the field, with a fourth equation for the
gauge on the magnetic vector potential. The number of overall unknown coefficients: αijk,
βijk, γijk is Nunk = 3× (Npx + 1)× (Npy + 1)× (Npz + 1), and their values can be found
by solving the system.

The degrees of the polynomials Npx, Npy, and Npz, and the number of points Nsamp
must be carefully chosen, balancing the need for accuracy and the computing burden,
and taking into account the regularity of the field map. To look for a stable solution
and, in addition, to counteract the impact of uncertainties, an overdetermined system is
recommended. Therefore, the number 4× Nsamp of equations should be suitably larger
then Nunk.

In the applications described herein, the sampling points are chosen to sample the
interpolation domain uniformly, and the linear overdetermined system is addressed with a
standard SVD technique.

4. Results

The main aim of this paper is to propose the use of the CP approximation for the
magnetic field computation. The analysis of specific applications is beyond the scope of
this paper.

However, in order to assess the performance of the approach, some realistic problems
related to the magnetic system of the DTT Tokamak are considered. The main aspects
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discussed in this section deal with the accuracy of the methodology (Section 4.1), the
performance in terms of computing burden (Section 4.2) and FL tracking (Section 4.3), and,
finally, the capability to take advantage of general periodicity (Section 4.4).

In this paragraph, depending on the specific application, both the cylindrical [R, ϕ, Z]
and Cartesian [x, y, z] coordinate systems are adopted. The two coordinate systems have
the same center, and, at the ϕ = 0 section, the correspondence R ≡ x and Z ≡ z stand.

Most of the numerical results discussed herein are carried out with the MISTIC
code [14–18], based on the discretization of the sources in interconnected elementary
sources, and are able to be run with parallel computing systems [19].

4.1. Accuracy Assessment: Magnetic Field Reconstruction Inside a Domain

The accuracy of the CP approximation can be very high. In order to assess the actual
level, the field produced by the DTT TF coil system has been considered. The system
includes 18 fully superconducting coils that are designed to guarantee 6 T at R = 2.11 m.
Each coil includes 80 series-connected filamentary currents, each carrying 44 kA.

In Figure 4, the filamentary current distribution in the cross-section of each coil is
sketched, as described by two local Cartesian coordinates, χ and η.
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The magnetic field can be evaluated using the MISTIC code, parallelized on a specific
GPU architecture and based on the modeling of each filamentary current in a set of con-
nected current segments. The number of segments used to discretize a single filamentary
current (3000) has been chosen in such a way as to guarantee an accuracy of within 1 µT.

In order to quantify the approximation error induced by the Chebyshev interpolation,
a simple cubic domain with a side length of 5 cm, centered in [x, y, z] = [1.80, 0, 0] m,
and with normal edges parallel to the respective coordinate’s axis, has been assumed as
the testbed.

Each cube-side is sampled in Nside, uniformly distributed, points to be used for CP
fitting, so that Nsamp = Nside

3. Consequently, the entire domain could be regarded as
consisting of (Nside − 1)3 elementary domains, mi, with i = 1, 2, . . . (Nside − 1)3. The same
CPs degree, defined in the three coordinate directions for all the CPs, has been chosen
(Npx = Npy = Npz = Npol).

Therefore, the system to be solved consists of 4 × Nside
3 linear equations with

3×
(

Npol + 1
)3

unknowns.
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To estimate the accuracy of the approximation, the relative error has been defined as

err = max
i

‖B(xb i, yb i, zb i)− Bref(xb i, yb i, zb i)‖2
‖Bref(xb i, yb i, zb i)‖2

(7)

where (xb i, yb i, zb i), i= 1, 2, . . . , (Nside − 1)3, are the barycenter’s coordinates of mi, B
is the approximated field, Bref is the field obtained by direct evaluation, and ‖‖2 is the
Euclidean norm.

A parametric analysis has been carried out in terms of the Nside and Npol parameters.
To guarantee the overdetermination of the system to be solved, Nside ≥ Npol + 1 must be
imposed. Table 2 shows that the accuracy strongly depends on Npol and slowly decreases
with Nside. Then, Nside = Npol + 1 can be recommended to save the computing burden
for any level of accuracy. The approximation error (see Table 2) strongly depends on the
sources, the brick’s shape, position, and orientation, but in any case, degree levels to the
order of a few units are able to provide high accuracy.

Table 2. Approximation error.

Npol
Nside

3 4 5 6

2 1.44 × 10−6 9.10 × 10−7 7.90 × 10−7 6.67 × 10−7

3 / 1.74 × 10−8 1.52 × 10−8 1.32 × 10−8

4 / / 6.42 × 10−11 5.74 × 10−11

5 / / / 2.21 × 10−12

It should be noticed that the CP approximation method does not depend on the tool
used to evaluate the “direct” field. Therefore, the CP interpolation can be applied for any
field-calculation procedure [20].

4.2. Performance of the CP Approach in Magnetic FL Tracking

The CP approximation can effectively be used for FL tracking, but the efficiency
depends on several elements, including the required accuracy and the characteristics of the
magnetic field.

The RK4 method, here adopted for the FL tracking, calls for 4 field evaluations for
each of the NPline integration steps.

If the CP approach is adopted, the number of direct field evaluations is limited to the
total number of sampling points. Therefore, assuming that Nbrick bricks are required to
track the line and that the same number Nsamp of samples is used in each brick, the total
number of direct calculations is Nbrick × Nsamp. As a consequence, a gain gCP provided
by the CP approach can be defined as the ratio between the direct field calculations, both
without and with the CP approximation:

gCP =
4× NPline

Nbrick × Nsamp
(8)

Here, an analysis has been made to evaluate the performance of the CP approach in
terms of the computational burden. The TF coil system source has also been considered.
Starting from the initial point, where x = 2.8 m and y = z = 0, the line is tracked for
20 degrees in a toroidal direction, covering about 1 m of length, and with an integration
step hRK = 1 mm, so that NPline is about 1000. For the CP approach, 11 cubic bricks of
10 cm side length are used, while the same number of sample points Nside for each brick
side is chosen as well.

Without the use of parallelization, the Nsamp = Nside
3 points are serially evaluated in

each brick, one brick at a time.
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Assuming a CP degree of Npol = 2 (then, Nside = 3) the gain is larger than 13 (see
Table 3). The CP gain strongly depends on Nside because of its impact on (8) in Table 3. It
is worth noting that the use of the CP approach may not be convenient for high values of
Nside (Nside > 7 in the case at hand).

Table 3 also reports the computing time (using a processor with 2 × AMD Epyc 32-
Core 7452 2.35 GHz architecture and 1 terabyte of RAM) required to track the FL with the
CP approximation. The ratio between the computing times without (values not reported in
Table 3) and with the CP approximation is very close to the CP gain, gCP. This demonstrates
that in the CP approach, the impact of the calculation of the polynomial coefficients (by
pseudo-inversion) and the calculation of the approximated field along the line path are
fairly negligible. As a consequence, with the reduction in the integration step size (useful
for increasing the tracking accuracy) or the tracking of multiple FLs in the same bricks,
there is a negligible impact on the computing burden. This further increases the appeal of
the CP approximation in terms of practical applications.

The CP approach is even more efficient for FL tracking when a parallel computing
system is available. As a matter of fact, in a tracking procedure, the field calculations need
to be carried out in strictly sequential order because each point where the field is required
is only revealed by the last integration step. Therefore, in a standard procedure, direct
field calculations can only be made sequentially. On the other hand, in the CP approach,
the direct field calculations are only required in the sampling points of the brick, all of
them being already known. Therefore, a procedure based on parallel computing is optimal
because it can treat all the sampling points together.

The last column of Table 3 also reports the times required to track the same FL by using
an HPC system based on a GPU with an architecture of 2 × NVIDIA Tesla V100S 32 GB
HBM2. The speeding-up due to the GPU, depending on the specific case, can achieve two
orders of magnitude. It is worth noticing that the flat-time demand required in a number
of different cases is due to the capability of taking advantage of the full performance of the
parallel system.

Table 3. Value of the gain and the tracking times, without and with parallelization.

Nside Nbrick × Nsamp gCP
Tracking Time (s)

without GPU
Tracking Time (s)

with GPU

3 297 13.2 0.1 × 103 7.1
4 704 5.6 0.3 × 103 7.2
5 1375 2.8 0.5 × 103 7.6
6 2376 1.6 0.9 × 103 8.8
7 3773 1.0 1.5 × 103 10.6
8 5632 0.7 2.2 × 103 22.6

4.3. Applicative Examples of Magnetic Field Lines Tracking

This section is devoted to assessing, by means of several examples, the accuracy of
the FL tracking in both 2D (Two-Dimensional) and 3D (Three-Dimensional) when a CP
approximation is applied. The same RK4 approach, with an integration step of hRK = 1 mm,
is adopted. Standard bricks with sides of 10 × 5 × 5 cm in length, with 8 × 5 × 5 sampling
points, are used for the CP approximation.

The first example analyses with the fully 3D CP approximation used a 2D axisymmetric
plasma single null equilibrium configuration [21]. The set of sources includes both the CS
and PF coils system, a suitable current able to generate an axisymmetric toroidal field of 6 T
at [R, Z] = [2.11,0], and the plasma, modeled as a set of filamentary currents. For the sake of
simplicity, the full set of plasma filaments is not reported, but only some synthetic plasma
data are here reported: poloidal βp = 0.65, internal inductance li = 0.8, plasma current
Ip = 5.5 MA. In Table 4, the total currents feeding the CS/PF coils system are also reported.

When a fully 2D source system is present, it is possible to define the poloidal flux
ψ(R, Z) [Wb] as the magnetic flux linked with the axisymmetric circumference, crossing
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any poloidal section at a point with the same [R, Z] coordinates [8]. The plasma boundary
is conventionally defined as the last closed magnetic surface (LCMS), characterized by a
well-defined poloidal flux ψb.

Table 4. CS and PF total currents.

Coil Name Coil Current (MAturns) Coil Name Coil Current (MAturns)

PF1 4.110 PF6 9.331
PF2 −1.910 PF5 −3.211
PF3 −2.047 PF4 −1.815

CS3U-H −0.071 CS3L-H 0.295
CS3U-M −0.083 CS3L-M 0.347
CS3U-L −0.150 CS3L-L 0.624
CS2U-H 0.398 CS2L-H −0.933
CS2U-M 0.468 CS2L-M −1.097
CS2U-L 0.842 CS2L-L −1.975
CS1U-H −1.596 CS1L-H −1.345
CS1U-M −1.878 CS1L-M −1.583
CS1U-L −3.380 CS1L-L −2.850

In Figure 5, the poloidal cross-section of the plasma boundary is reported (ψb = 2.35 Wb).
The LCMS cannot be crossed by any FL because it is a magnetic surface. As a consequence,
an FL starting from a point of the plasma core is fully included within it.

Energies 2022, 15, x FOR PEER REVIEW 9 of 14 
 

 

internal inductance 𝑙௜ = 0.8, plasma current 𝐼௣ = 5.5 MA. In Table 4, the total currents 
feeding the CS/PF coils system are also reported.  

When a fully 2D source system is present, it is possible to define the poloidal flux 𝜓(𝑅, 𝑍) [Wb] as the magnetic flux linked with the axisymmetric circumference, crossing 
any poloidal section at a point with the same ሾ𝑅, 𝑍ሿ coordinates [8]. The plasma boundary 
is conventionally defined as the last closed magnetic surface (LCMS), characterized by a 
well-defined poloidal flux 𝜓௕. 

Table 4. CS and PF total currents. 

Coil Name Coil Current (MAturns) Coil Name Coil Current (MAturns) 
PF1 4.110 PF6 9.331 
PF2 −1.910 PF5 −3.211 
PF3 −2.047 PF4 −1.815 

CS3U-H −0.071 CS3L-H 0.295 
CS3U-M −0.083 CS3L-M 0.347 
CS3U-L −0.150 CS3L-L 0.624 
CS2U-H 0.398 CS2L-H −0.933 
CS2U-M 0.468 CS2L-M −1.097 
CS2U-L 0.842 CS2L-L −1.975 
CS1U-H −1.596 CS1L-H −1.345 
CS1U-M −1.878 CS1L-M −1.583 
CS1U-L −3.380 CS1L-L −2.850 

In Figure 5, the poloidal cross-section of the plasma boundary is reported (𝜓௕ = 2.35 
Wb). The LCMS cannot be crossed by any FL because it is a magnetic surface. As a 
consequence, an FL starting from a point of the plasma core is fully included within it. 

 
Figure 5. Poloidal cross-section of the plasma boundary (red) and first wall (blue). Figure 5. Poloidal cross-section of the plasma boundary (red) and first wall (blue).

FL tracking with CP approximation has been applied to calculate the 3D capability.
Therefore, due to integration errors, the calculated FL can leave the plasma surface. Then,
its coordinates [R, ϕ̃, Z] (with ϕ̃ being the cumulative toroidal angle) can refer to points
with a poloidal flux value that is different from ψb. An effective metric by which to estimate
the integration accuracy could be the normalized flux discrepancy:
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∆ψ(ϕ̃) = 100× ψC(R(ϕ̃), Z(ϕ̃))− ψb
ψb

. (9)

Figure 6 shows that, in the examined case, ∆ψ is less than 0.1%, corresponding to a
displacement smaller than 1 mm, within a ϕ̃ FL path of ϕ̃ = 2000 degrees, corresponding
to five-and-a-half toroidal turns.
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The procedure is able to fully analyze 3D magnetic maps. To assess such capabilities,
the effect on the FL trajectory (described above), due to the rigid displacement of one PF
coil in the x direction, has been analyzed. This is a typical analysis that is required to
evaluate the impact of construction and assembly uncertainties on a field map [22–24].

Due to the 3D characteristics of the perturbation, the FL leaves the 2D plasma boundary.
The best way to appreciate the entity of the FL deformation is the Poincaré map, which
collects the crossing points of the FL with an assigned poloidal section. In Figure 7, the
footprints on the ϕ = 0 poloidal section of the FL passing through the point P0, are
reported for the different displacements of the PF6 coil. As expected, the greater the coil
displacement, the larger the distance of the FL from the plasma boundary.
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Due to its efficiency, this procedure can be used effectively to follow the FL path for
long distances. To assess such a capability, a number of FLs have been tracked at t = 0 s in
the pre-magnetization phase of a plasma scenario, when the plasma current is zero.

Only the upper side of the CS and PF coil currents are reported in Table 5 because of
the up–down symmetry, and a toroidal axisymmetric field able to provide a field of 6 T at
R = 2.11 m has been used.

Table 5. CS/PF system total currents (start-up analysis).

Coil Name Coil Current (MAturns)

PF1 2.484
PF2 0.816
PF3 0

CS3U-H 1.700
CS3U-M 2.000
CS3U-L 3.600
CS2U-H 2.135
CS2U-M 2.512
CS2U-L 4.522
CS1U-H 2.135
CS1U-M 2.512
CS1U-L 4.522

In Figure 8a, for each FL, the corresponding Poincaré diagram is reported, together
with the total number of toroidal turns performed before leaving the vessel. Moreover,
in Figure 8b, the 3D map is also shown. The computing burden, when using the above-
described parallel architecture, is in the order of a few tens of seconds for each toroidal turn.
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4.4. Treatment of Periodicity

The CP approach can take advantage of a possible geometrical periodicity. In fact,
the evaluation of the field in the sampling points of the interpolation bricks, which is the
most demanding part of the process in terms of computing time, can be limited to only one
period and the results can be exploited everywhere.

To assess such an opportunity, the TF coils system of the DTT has been analyzed by
only considering a toroidal 20◦ slice. A set of 100 FLs has been tracked for a full toroidal
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turn, in order to test the actual periodicity of the integrated FL. The RK4 integration step
considered is hRK = 1 mm, as in the previous examples.

It is not straightforward to provide a picture of the lines. Therefore, only the maximum
displacement of the FLs has been considered. The contour map reported in Figure 9 shows
how the maximum deformation affects only those lines closer to the outboard of the TF coils.
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5. Discussion

The accuracy provided by field approximation techniques depends on the regularity
of the field and the characteristics of the approximating functions. The cost of calculating
the approximate values depends on the size of the domain, the required accuracy, and the
number of field points necessary for numerical integration.

Chebyshev polynomials are well-suited for describing magnetic fields as they are
able to provide good accuracy when using limited-degree polynomials because of their
capabilities to fit the magnetic field features.

6. Conclusions

FL tracking is a typical application requiring a high level of field calculations. CP
interpolation is very effective in this class of applications, allowing for a strong reduction
of the computing burden while guaranteeing high accuracy standards. The effectiveness of
CP interpolation can be increased by using parallel architecture since the required direct
field calculations can be made together because the sampling points in the Chebyshev
domain are known on an a priori basis.
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