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Abstract— People and robots may need to cross each other
in narrow spaces when they are sharing environments. It is
expected that autonomous robots will behave in these contexts
safely but also show social behaviors. Thereby, developing
an acceptable behavior for autonomous robots in the area
mentioned above is a foreseeable problem for the Human-Robot
Interaction (HRI) field. Our current work focuses on integrating
legible non-verbal behaviors into the robot’s social navigation to
make nearby humans aware of its intended trajectory. Results
from a within-subjects study involving 33 participants show that
deictic gestures as navigational cues for humanoid robots result
in fewer navigation conflicts than the use of a simulated gaze.
Additionally, an increase in the perceived anthropomorphism
is found when the robot uses the deictic gesture as a cue. These
findings show the importance of social behaviors for people
avoidance and suggest a paradigm of such behaviors in future
humanoid robotic applications.

I. INTRODUCTION
Humanoid robots are steadily moving into human-centered

environments, including homes, offices, factories, or even
disaster scenarios, and it has been suggested that robots will
become more and more popular in non-industrial contexts
[1]. In these environments, robots should be designed to
interact with humans in situations where they have to cross
each other in corridors, hallways, and sidewalks daily. If
robots are not interactive and their behavior is not legible
by humans, they will be viewed as merely obstacles rather
than helpful assistants [2].

Most of the research on robots’ navigation in shared space
with humans focuses on human-aware motion planning ca-
pabilities, but these robots are not designed to communicate
their intention to pedestrians. May et al. [3] observed that
people are not comfortable when robots treat them as just
dynamic objects and strive to avoid them. Instead, humans
and robots must share a common understanding of the cir-
cumstance and each other’s intentions. The simplest solution
[4] for an acceptable behavior of robots is to adopt a strategy
such as stopping whenever there is a pedestrian in view,
with unfavorable results in terms of efficiency in reaching the
goal to avoid collisions. Another example is the delivery and
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logistics mobile robots designed to move safely using natural
language to inform the pedestrians [5]. However, people
may want to interact with robots in a manner that is easily
understandable and not constrained by the robot’s own design
[6]. Indeed, a robot must communicate its intended actions
in order to reduce pedestrian’s uncertainty. A way to solve
this issue is to make the robots adherent to a set of social
rules and show socially acceptable behaviors. Consequently,
forms of natural non-verbal communication are the key to
achieving this behavior. A first step, therefore, has been to
study human behaviors, because while humans can naturally
move in public spaces, they are also able to infer others’
movement by observing pedestrians’ subtle body language
cues [7].

The presented work designs, tests, and compares nat-
uralistic signaling mechanisms mimicking human commu-
nicative cues assuming that these behaviors do not require
a demonstration to be understood. In particular, the study
explores three navigational cues: two dissimilar simulated
gaze patterns of the robot and a deictic gesture while crossing
a human. We also explore the legibility of the cues and how
these cues affect robot’s social attribution. By increasing
robots’ behavior legibility, we can design more socially
acceptable humanoids robots for public spaces.

II. RELATED WORK

Despite the increasing deployment of humanoid robots
in our everyday life, the development of effective human-
robot avoidance behavior has not, at least until very recently,
received the attention it deserves. Consequently, humanoid
robots navigating and maneuvering safely among humans
while communicating their imminent actions are rarely found
in the related research literature.

Fernandez et al. [8] present a study in which a non-
humanoid robot navigates in a hallway and signals that it
intends to pass a human participant using a strip of LEDs
which acts as a turn signal within the field of view of the user.
The authors found that people do not readily interpret LED
turn signals when interacting with the non-humanoid robot
but that a brief, passive signal demonstration (preliminary
training) is sufficient to disambiguate its meaning.

Hart et al. [9] developed a mobile robot platform with
a virtual agent head to measure the importance of gaze
in coordinating people’s navigation. They compared the
performance of a robot with the virtual agent head and a
robot that used a LED to turn signal. They showed that
people are able to more easily interpret the gaze cue than
the LED turn signal. Despite the encouraging results to



impact people’s navigational choices, the authors mention
that interpreting gaze direction on a virtual agent’s head
turned out to be difficult and ineffective due to the so-called
Mona Lisa Effect.

Reinhardt et al. [10] developed a back-off (BO) move-
ment, that is a backward movement along the original robot
trajectory, as a solution for a non-humanoid robot to yield
priority to another party in spatial interaction. It allows the
communication of robot’s intention to yield priority to the
interacting human when a collision has to be avoided. The
BO was recognized as a yielding priority movement to the
humans by almost twice as many people in the sample as
a Stop and Wait movement. However, participants evaluated
solely the legibility of the movement in a video study.

Hetherington et al. [11] designed two types of non-verbal
robot motion legibility cues in a non-humanoid mobile robot:
projected arrows and flashing lights. Their results showed
that projected arrows were more socially acceptable and
comprehensible than flashing lights.

Senft et al. [12] presented a humanoid robot passing
humans in narrow corridors using the step-and-slide strategy.
Despite their relevant results, the authors’ implementation
did not include the movement of extending the robot’s arm
on the step-and-slide strategy, as explained in [13]. Some
participants felt pressured and observed and this could be
due to the lack of this additional movement.

In the studies mentioned above, these proposed approaches
generally need that people have some preliminary training to
be clearly understood. In addition, the reported experimen-
tations mainly concern non-humanoid robots. There is still a
need for clear, natural, and efficient cues implemented into
humanoid robots while they navigate in shared spaces with
humans.

III. THE PROPOSED APPROACH

People communicate in complex ways using gestures such
as pointing, showing, or drawing the attention of a social
partner to a specific entity in the environment. Referential
signals are used to share an interest in an object or to
achieve a more defined aim, such as retrieving the object.
Pointing is one of the most widely used human referential
gestures [14]. Another type of signal is the communicative
intent indicating behavior [15], in which the person looks at
the observer’s face and eyes, gesturing, or gazing, to show
the observer’s attentional status. Contrary to the referential
signal, the person attempts to influence the other’s behavior
directly by drawing the attention. The communicative-intent
indicators signal the sender’s attempt to get the attention and
to interact face-to-face.

The proposed study endows a robot with non-verbal mech-
anisms to convey navigational intention, inspired by human-
human interaction, to increase the legibility of the robot and
to diminish the need for preliminary training of the user. For
this purpose, we designed three non-verbal cues to be used
by a humanoid robot that can be understandable by people
with different cultural and ethnic background without any

(a) NC1. (b) NC2.

Fig. 1: Non-Verbal Behavior for Directionality Intention.

demonstration. In particular, the navigational cues considered
are:

• Navigation Cue 1 (NC1): Simulating Gaze by Head
pose as shown in Figure 1a, with an intention to move
toward the gazed direction.

• Navigation Cue 2 (NC2): Deictic Gesture where the
humanoid extends its arm pointing to the intended
direction and parallel to that it brings its hands toward
to its chest to indicate itself, as shown in Figure 1b. The
deictic gesture is a potent and pervasive tool used across
cultures and contexts to express movement toward a
target—someone, something, or somewhere.

• Navigation Cue 3 (NC3): Simulating Gaze by Head
pose with attention. The gaze will indicate the intention
to move toward the gazed direction but prior to that,
the robot performs a direct gaze towards the human
(communicative-intent indicator) as an attempt to in-
fluence the human’s behavior directly by getting the
attention.

In this work, we are interested in investigating the legibil-
ity of the described non-verbal signaling methods to convey
the robot’s intention to the human during a navigation task.
In particular, our research question is “Which social cue
(NC1, NC2, and NC3) is more legible (i.e., leading to fewer
conflicts) to humans during a navigation task?”. According
to current literature, we expect that simulating gaze by head
pose with attention (NC3) is a more legible navigational
cue by resulting in fewer conflicts than the simulating gaze
(NC1) (Hypothesis 1). Indeed, Senju et al. [16] showed
that the gaze toward an object, preceded by direct gaze,
leads to a more active, communicative role. Moreover, recent
findings showed also that people prefer to use deictic gestures
rather than gaze when responding to joint attention bids in
human social interaction [17]. Therefore, we also expect that
a deictic gesture (NC2) is a more legible navigational cue
leading to fewer conflicts than the simulating gaze (NC1)
(Hypothesis 2).

IV. METHODS

Detecting the environment is a requirement to effectively
navigate and utilize the non-verbal signalling mechanisms
properly.However, the environment detection requires heavy



Fig. 2: The robot-server communication.

computation that is not always possible to be performed
on the limited computational resources and memory of a
robot, such as the one used for our study. Therefore, we rely
on a cloud-based system consisting of a cloud server (Intel
Core i9-10920X, 3.50GHz x 24) and the robot Pepper Y20
V18A that communicate synchronously. The only compu-
tation performed locally by the robot consists in identifying
the distance between the walls and the human using Pepper’s
lasers.

A. Robot-Server Communication

The robot and server communicate through socket mes-
sages with a low overhead to avoid high-latency responses.
The communication procedure consists of two phases, as
shown in Figure 2.

The first phase allows the robot to acquire the knowledge
of the Cultural Attributes of pedestrians in order to effec-
tively interact [18]. In fact, the robot needs to comprehend
the social norms of different countries for pedestrians when
it navigates in a corridor or a hallway. For example, in most
Western countries, such as Italy, people are used to walk on
the right to avoid other pedestrians. In countries where people
drive on the left, they prefer to walk on the left [19]. The
server, therefore, transmits this country’s cultural attributes
to the robot at the beginning of each session. Depending on
the country, the robot navigates on the left or on the right
accordingly. In our pilot experiments, the robot’s latency to
get the above information was between 0.38 – 0.53 s.

The second phase allows the robot to obtain information
about the environment. The robot needs to identify the
presence, the location, and the direction of a person; we used
a YOLOv3 algorithm for real-time detection.The weights of
the neural network were initialized using a pre-trained model
trained on the COCO dataset [20]. When the robot needs
to update its knowledge of the environment, it transmits an
image through sockets to the server to be processed. After
that, the server recognizes the person’s position in relation to
the robot’s field of view. In our pilot experiments, the robot’s
latency for this elaboration was in the range of 0.5 – 0.65
seconds.

Fig. 3: A snapshot of the experiment during execution. The
participant already understood the behavior of the humanoid
and changed the direction.

B. Navigation

The robot’s navigation algorithm splits the environment
into two traffic lanes to navigate. Firstly, the robot moves to
a starting lane position by using its lasers located on the front
and the side of its body. Afterward, Pepper moves into the
corridor only if the system recognizes a person. When the
robot moves within the social space of the human (set out
at 2.5m accordingly to what was reported in [21]), the robot
signals that it is about to change its lane using the non-verbal
navigational cue according to the experimental condition.
The distance at which the humanoid will execute its turn
is two meters from the human. If the human understands
such behavior, the robot continues until the end of the
corridor; otherwise, the behavior is considered a failure, and
the robot stops in order not to collide with the human.
In a successful interaction, subsequently to the non-verbal
behavior, we expect that the human will change its lane on
the corridor. Conflicts are defined as the robot and the human
coming to a complete stop because they approached each
other too closely without making a decision, or the robot
and the human participant are still in the same lane causing
the human to make a swift correction. Pepper moves at a
speed of 0.7 m/s, and it increases its velocity at 0.85 m/s
when turning left or right, so that it is easier for the person
to recognize the swift correction of the movement.

V. EXPERIMENTS

A user study was conducted to test which navigational cue
was more legible for the participants and, therefore, produced
fewer conflicts in order to investigate our hypotheses.

We designed a within-subjects study in a designated
hallway environment at the University of Naples Federico
II, as shown in Figure 3. The aisle’s width and length were
in pair with the ADA standards for hallways (i.e., 152.4cm
minimum width) [22]. In particular, the width of this study’s
hallway was 190cm and the length was 800cm.

A. Procedure

Upon arrival, participants were asked to read and sign
an informed consent form about the experiment’s aims and
procedure. Then, the robot and the experimental environment



were introduced. Participants were told to walk along the
hallway until the end of it, opposite to the robot’s position,
and that they were crossing each other path. Participants
were left free to choose their starting position, walking
speed, position in the hallway, and consequently the distance
from the robot. To test and compare the effectiveness of the
three robotic behaviors in coordinating navigation through
the shared space, participants were tested with three exper-
imental sessions, one for each social cue (NC1, NC2, and
NC3), and a baseline session (NC4) in which the robot did
not use any navigational cue. These behaviors were executed
in random order.

For each condition, the robot was assigned a name to help
participants to differentiate the navigational cues. The robot’s
names were chosen between unfamiliar Hawaiian gender-
neutral names1 to reduce possible gender biases. The robot
displayed its name on the tablet located on its chest.

The experimental trial lasted 20-30 minutes. We video-
recorded each session to further evaluate participants’ be-
haviors during the trials.

B. Measurement

Participants were asked to complete a set of questionnaires
about their level of English, demographic questions (i.e., age,
gender, education), their previous experience with robots,
and their perception of robots. We also wanted to evaluate
possible negative bias of participants toward robots, and for
this reason, we asked them to answer the following question
"To what extent do you fear that machines will become out
of control?".

To understand the legibility of the cues and how these
cues affect the robot’s social attributes, we adopted two well-
established and validated questionnaires in the Human-Robot
Interaction literature applying them in different periods dur-
ing the experiment:

To measure people’s judgments of the social attributes
of the robot, participants were administered a brief post-
interaction survey, at the end of each experimental session,
comprising 7-point Likert and 18 cognitive-differences scale
questions based on the RoSAS scale. The RoSAS is a
psychometric instrument aimed towards measuring social
perception and judgments of robots across multiple contexts
and robotic platforms [23]. RoSAS considers the Warmth,
Competence, Discomfort, and the Organic attributes of the
robot.

To measure perceived robots’ agency and experience,
participants were asked to compare the four cues in one
questionnaire, at the end of all the experimental sessions,
comprising seven scale questions that are based on the well-
established Mind Attribution Scale [24]. It allows to evaluate
the personal judgments and the mental capacities of the
robot.

C. Participants

We recruited 37 participants from the university’s com-
munity; 3 participants were removed due to their insufficient

1https://kidadl.com/baby-names/hawaiian/gender-neutral

Fig. 4: Frequency of successful interactions and conflicts for
each navigation cue.

knowledge of English and 1 participant for failing to partic-
ipate in the study properly. The participant was zigzagging
in front of the robot because, as he stated, he wanted to
test the robot’s capabilities. Consequently, we analyzed the
responses of 33 participants, 22 males and 11 females, and
aged between 18 and 35 (M=24.5, SD=3.211), granting us
an effect size of d=0.25 with .90 power at an alpha level of
.05.

VI. RESULTS

A. Reliability Analysis

Prior to conducting any analysis, we performed a Cron-
bach’s α test to assess the internal reliability of the ques-
tionnaires. Cronbach’s α for the Warmth dimension of the
RoSAS questionnaires was αNC1 = 0.876, αNC2 = 0.826,
αNC3 = 0.914, αNC4 = 0.911. The Cronbach’s α for
the Competence dimension are respectively αNC1 = 0.857,
αNC2 = 0.873, αNC3 = 0.887, αNC4 = 0.890. For
the Discomfort dimension, we observed αNC1 = 0.841,
αNC2 = 0.902, αNC3 = 0.883, αNC4 = 0.891. Finally,
the Cronbach’s α related to the Mind Attribution Test was
α = 0.750. The majority of the participants (63.6%) stated
that they had never interacted with robots before, while
36.4% of the participants already had previous experience
with robots. We also observed that participants did not have
a strong preference for walking on a particular side of the
sidewalk. Indeed, 45.5% preferred to walk on the right side
of the sidewalk/hallway, 21.2% preferred the left side, and
the remaining did not express any preference.

B. Conflicts during interactions

A McNemar’s test with continuity correction was run to
compare the conflicts occurred in relation to the conditions.
As shown in Figure 4, NC2 was the behavior that generated
less conflicts (90.9%), followed by NC1 (81.8%), NC3
(78.8%), and NC4 (30.3%). We observed that the differences
between NC1, NC2, and NC3 with the NC4 were statistically
significant with p < .0005. Therefore, our hypothesis H1 was
not confirmed, as Simulating Gaze (NC1) had fewer conflicts
than the Simulating Gaze by Head pose with attention (NC3).

C. Mind Attribution Scale Ratings

We also investigated participants’ responses to the Mind
Attribution Scale. Of the 33 participants recruited to the



Fig. 5: Participants’ outcomes demonstrated an increase in
the robot’s anthropomorphism when the NC2 cue was used.

study, 19 reported that NC2 could convey thoughts or feelings
to others. A Chi-square goodness-of-fit test was conducted
to determine the preferable cue used by the robot. The Chi-
square test showed that the number of participants select-
ing NC2 was statistically significantly different (χ2(3) =
20.339, p < .0005), with just over half of the participants
selecting NC2. The condition NC2 was considered more
capable of having personality traits that make it unique from
others for 22 participants (χ2(3) = 32.091, p < .0005).
Furthermore, 16 participants reported that NC2 was more
capable of thinking (χ2(3) = 12.212, p = .007). Participants
(14 over 33) reported that they liked NC2 more (χ2(3) =
12.212, p = .040). Finally, 20 participants reported that NC2
was more likely to have a soul (χ2(3) = 24.333, p < .0005),
with just over half of the participants selecting NC2.

Figure 5 illustrates the above results. Therefore, findings
showed that the outcome of an interaction in which a
humanoid using the Deictic Gesture (NC2) influences indi-
viduals’ tendency to attribute minds to robots and therefore
affects the psychological anthropomorphism of it.

D. Robotic Social Attributes Scale Ratings

A Wilcoxon signed-rank test was used to examine differ-
ences in the navigational cues on the RoSAS scale. We found
statistically significant differences in the Warmth dimension
between NC2 with NC4 and NC3 with NC4, and in the
Discomfort scale between NC1 with NC2 as depicted in
Figure 6. More particularly, in the Warmth scale, we observe
a statistically significant difference between NC2 and NC4
(z = −1.989, p = .047), also between NC3 and NC4
(z = −2.090, p = .037). Furthermore, we distinguish in
the Discomfort scale, a statistically significant difference
between NC1 and NC2 (z = −2.090, p = .037). We did
not notice any statistically significant difference in the Com-
petence scale of the questionnaire with the most considerable
to be between NC2 and NC4 (z = −1.891, p = .059).
Interestingly, despite people perceiving the robot that uses
a deictic gesture as a navigational cue (NC2) as warm, they
rated NC2 as the most uncomfortable robot (increased ratings
of discomfort) among the four.

In secondary exploratory analyses, as [25], [26], we com-
pared ratings for each of the RoSAS subitems between
the cue conditions as shown in Figure 7. The test showed
a statistically significant difference in the feelings and re-
sponsiveness of the robot in NC2 compared to the NC4
(z = −2.462, p = .014 and z = −2.118, p = .034 re-
spectively). We observed a statistically significant difference
in the emotional aspect of the robot in NC2 compared to
the NC1 (z = −2.005, p = .045). Pairwise comparisons
were performed with a Bonferroni correction for multiple
comparisons. In the scale of interactivity, we observe a
statistically significant difference between NC2 and NC4
(p = .022). Comparisons on the other subitems between the
navigational cues were not statistically significant.

Our results go beyond our hypotheses, especially for what
concerns Hypothesis 2. Results indicate that a robot that uses
deictic gesture is more favorable and more effective than a
non-gesturing and a gazing robot, but this also increases the
overall anthropomorphism of the humanoid robot.

The deictic gesture was the most effective navigational
cue, albeit the participants considered it scarier and more
awkward than the other navigational cues. In particular, a
statistically significant difference in the awkwardness of the
robot in NC2 compared to the NC1, with z = −1.965, p =
.049 can be observed with the Wilcoxon signed-rank test.
We also noticed a statistically significant difference in the
scariness of the robot in NC2 compared to the NC3, with
z = −1.967, p = .049. We assume, however, that these rating
tendencies are due to the increasing human likeness and are
inlined with the uncanny valley effects [27].

VII. CONCLUSIONS

This study aimed at integrating non-verbal behaviors in
the robot’s social navigation to cue nearby humans of its in-
tended trajectory. Our results suggest that legible navigation
cues are crucial for social robots to manage pass-by situations
when crossing people in a corridor. Moreover, this paper
evaluates whether a deictic gesture cue can outperform the
so far proposed gaze cue, and a gaze cue with communicative
intent. Results from our study showed that deictic gesture is
more effective and increases the anthropomorphic perception
of the robot.

Considering the satisfying results in terms of the number
of resulting conflicts that this study produced, in future
works we would like to refine our model to take into
account other characteristics that may impact the interaction
and the decision-making process. In particular, an adaptive
selection of the navigational cues and a combination of the
presented cues will be investigated. Future research should
also address the generalizability of our findings regarding
anthropomorphic inferences with other robotic platforms,
such as non-humanoid robots or humanoid robots with eyes
suitable for human-like gaze communication. Finally, our
system should be deployed in real-world settings which are
less controlled environments than the laboratory where the
experiments were carried out.



Fig. 6: RoSAS items, * indicates p < 0.05.

Fig. 7: RoSAS subitems which occur significant differences between navigational cues, * indicates p < 0.05.
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