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Abstract
This paper studies Bertrand–Edgeworth competition 
among firms producing a homogeneous commodity 
under efficient rationing and constant (and identical 
across firms) marginal cost until full capacity utilization 
is reached. Our focus is on a subset of the no pure-strategy 
equilibrium region of the capacity space in which, in a 
well-defined sense, some firms are large and the others 
are small. We characterize equilibria for such subset. For 
each firm, the payoffs are the same at any equilibrium and, 
for each type of firm, they are proportional to capacity. 
While there is a single profile of equilibrium distributions 
for the large firms, there is a continuum of equilibrium 
distributions for the small firms: what is uniquely deter-
mined, for the latter, is the capacity-weighted sum of their 
equilibrium distributions and hence the union of the sup-
ports of their equilibrium strategies.
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1  |   INTRODUCTION

Bertrand–Edgeworth competition among capacity-constrained sellers of a homogeneous product 
has been an active field of research since Levitan and Shubik’s (1972) reappraisal of such theo-
retical framework. Assume a given number of firms producing on demand a homogeneous good 
at constant and identical unit variable cost up to some fixed capacity. Furthermore, assume that 
rationing takes place according to the surplus-maximizing rule and that demand is a continuous, 
non-increasing, and non-negative function defined on the set of non-negative prices and is positive, 
strictly decreasing, twice differentiable and such that the monopolist’s profit function is strictly con-
cave when positive. Then there are a few well-established facts about the equilibrium of this price 
game. First, at any pure strategy equilibrium, the firms earn competitive profit. However, a pure 
strategy equilibrium need not exist. In this case, existence of a mixed strategy equilibrium is guar-
anteed by the sufficient conditions of Theorem 5 of Dasgupta and Maskin (1986). Under similar 
assumptions on demand and cost, the set of mixed strategy equilibria was characterized by Kreps 
and Scheinkman (1983) for the duopoly within a two-stage capacity and price game. This model 
was subsequently extended to allow significant convexities in the demand function (by Osborne & 
Pitchik, 1986) or differences in unit cost among the duopolists (by Deneckere & Kovenock, 1996). 
This led to the discovery of new phenomena, such as the possibility of the supports of the equilib-
rium strategies being disconnected and non-identical for the duopolists.

The characterization of equilibria of the price game among capacity-constrained sellers of a 
homogeneous product under general oligopoly is far from complete in the literature. An import-
ant result is that the equilibrium payoff of the largest firm (or any of the largest firms, if more 
than one firm has the largest size) is equal to the payoff of the Stackelberg follower when the ri-
vals supply their entire capacity (Boccard & Wauthy, 2000; De Francesco 2003).1 Based on this 
property, Ubeda (2007) showed, among other things, that the maximum and minimum over all 
the supports of equilibrium strategies belong to the support of the equilibrium strategies of any 
firm with the largest capacity.2 Other results were provided by De Francesco and Salvadori (2010).

Progress on the characterization of equilibria of the price game under given capacities has 
been made along several directions. One direction was to restrict the number of competing firms. 
Hirata (2009) and De Francesco and Salvadori (2010, 2015, 2016) have analyzed the triopoly 
price game with a decreasing and concave demand function, establishing independently a num-
ber of features of equilibria. In a recent study on price strategic interaction among capacity-
unconstrained sellers facing “captive customers” and price-rigidity of market demand, Mark 
Armstrong and John Vickers (2018) have also compared the resulting equilibria with equilib-
ria in the more standard Bertrand–Edgeworth framework; such a task has been accomplished 
for the triopoly, providing a complete characterization of the equilibria arising in the Bertrand–
Edgeworth price game with rigid demand.

A second direction of research focused on portions of the whole region of an oligopoly 
capacity space where no pure strategy equilibria exist (hereafter, the no-pure strategy equilib-
rium region, for brevity). Vives (1986), among others, characterized the (symmetric) mixed 

 1The proof provided by Boccard and Wauthy (2000) is carried out along the lines followed by Kreps and Sheinkman 
(1983) for the analogous result under duopoly. After pointing out a mistake in the proof, De Francesco (2003) 
established the result correctly along the same lines.

 2In a still unpublished paper, Ubeda (2007) compares discriminatory and uniform auctions among capacity-constrained 
producers and obtains a number of novel results on discriminatory auctions: a discriminatory auction could be 
designed in such a way as to be equivalent to Bertrand–Edgeworth competition under the efficient rationing rule.
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strategy equilibrium of the price game for the subset in which all firms have the same capac-
ity. De Francesco and Salvadori (2011) generalized Vives’ result: they established uniqueness 
of equilibrium in Vives’ symmetric capacity case and, more generally, whenever the capac-
ities of the largest and smallest firm are, in a precise sense, sufficiently close to each other. 
Furthermore, they characterized the equilibrium in this “quasi-symmetric” oligopoly, show-
ing that the supports of the equilibrium strategies of all firms are intervals, each with the 
same minimum price whereas the higher a firm’s capacity, the higher the maximum price. 
Within an analysis concerning horizontal merging of firms, Davidson and Deneckere (1984) 
characterized, for the case of linear demand, equilibria for the subset in which all firms but 
one have an identical capacity and one firm, the largest, has a capacity that is a multiple of the 
other firms. Again, the attention was restricted to equilibria in which the strategies of equally-
sized firms are symmetrical.

There is one result in Hirata3 (2009) that extends straightforwardly to the oligopoly. Hirata 
(2009) showed, not only for the triopoly but also for the oligopoly, that a continuum of equilibria 
exists in the subset of the no-pure strategy equilibrium region in which the largest firm can meet 
the highest level of total demand possibly arising at an equilibrium. In fact, while there is one 
equilibrium strategy for the largest firm, there is a continuum of equilibrium strategies for 
smaller firms, in that there is a single equation determining the capacity-weighted sum of their 
cumulative distributions throughout the lowest price and the highest price. The present paper 
shows constructively that the subset of the no-pure strategy equilibrium region in which a con-
tinuum of equilibria exists is much wider.

We specifically analyze a subset of the no-pure strategy equilibrium region in which there are 
two groups of firms, firms that are “large” and firms that are “small” in the following technical 
sense: the total capacity of the large firms can meet the highest level of demand that can arise at 
an equilibrium of the price game, whereas the total capacity of the small firms is so small that 
total industry capacity minus the capacity of any of the large firms does not exceed the smallest 
level of total demand that can arise at an equilibrium.

Such a bipolarized industry structure has two interesting and intertwined implications. 
On the one hand, and similarly as in the mentioned case studied by Hirata (2009), there is 
no “direct” strategic interaction among the small firms: more specifically, regardless of the 
prices being charged by the other small firms, each small firm either sells its entire capacity, 
if at least one of the large firms is more expensive, or sells nothing, if all the large firms are 
cheaper. On the other hand, each large firm sells its entire capacity if, and only if, at least 
one of the other large firms is more expensive. In the event of all the other large firms selling 
cheaper, the expected value of its residual demand falls short of total demand by an amount 
equal to the total capacity of the other large firms (as it would be in De Francesco & Salvadori, 
2011) plus the capacity-weighted sum of the probabilities of all the small firms charging a 
lower price. We will characterize the equilibria for such a bipolarized industry structure. It 
will be shown that the above implications are ultimately responsible for the existence of a 
continuum of equilibrium distributions for the small firms. What is uniquely determined, 
instead, are the equilibrium payoffs of all firms, the equilibrium distributions of the large 
firms and hence the supports of their equilibrium strategies, the union of the supports of the 
equilibrium strategies of the small firms, and the capacity-weighted sum of the equilibrium 
distributions of the small firms. Most importantly, characterizing the continuum of equilibria 

 3The same result was independently reached by De Francesco and Salvadori (2008).
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for any such bipolarized industry structure involves determining the lowest and highest price 
that small firms can ever charge in equilibrium: the former is generally higher than (in a limit 
case, equal to) the (uniform) minimum price each large firm will ever charge in equilibrium 
and the latter is always less than the maximum price any large firm will ever charge. This 
property of the equilibrium is similar to a property arising in the triopoly under some indus-
try configurations which has been observed both by De Francesco and Salvadori (2008) and 
Hirata (2009): it implies that the smaller firms have a higher profit per unit of capacity than 
the larger firms have.

Although our interest here is purely theoretical, as mentioned above, the present study is 
potentially relevant to a wide array of empiricists. First, the parameter region it covers appears 
fairly natural: casual observation seems to provide some evidence of industries where a num-
ber of relatively few firms of a comparable size coexist with considerably smaller firms.4 
Second, the unique results in terms of each firm’s equilibrium payoff, the supports of the equi-
librium strategies of the large firms, and the minimum and maximum of the union of the 
supports of the small firms’ equilibrium strategies provide a set of empirically testable predic-
tions. Quite interestingly, carrying out such a test need not require detailed information on the 
individual capacities of each small firm, which might be more difficult to obtain than an ap-
proximate estimate of their total capacity, which is what actually matters for the equilibrium 
features, since a redistribution of total capacity among the small firms would not affect the 
total of their equilibrium payoffs. Third, the fraction of industry capacity pertaining to the 
small-firm segment of the industry is proven to be relevant for the equilibrium payoffs of the 
remaining firms and therefore the equilibria under such industry structures are worth exam-
ining: indeed, that fraction and even the capacity of each small firm need not be negligible 
compared to the industry size.5

The remainder of the paper is organized as follows. Section 2 presents basic properties of the 
equilibrium of the price game in the no-pure strategy equilibrium region of the capacity space. 
Section 3 defines an industry containing “large” firms as well as “small” firms and then charac-
terizes the continuum of equilibria arising under such circumstances. These are the main results 
of the paper. Other two sections concern the motivation of the paper and makes use of numerical 
examples. Section 4 shows that the role of small firms is not negligible: if there is a change in the 
sum of their sizes which does not change their role of small firms, the effect on the profits of the 
other firms may be relevant. Section 5 shows that the part of the region of no pure strategy equilibria 
investigated in this paper can be quite large indeed. Section 6 briefly concludes. All proofs are in the 
Mathematical Appendix, which includes also some further results.

2  |  PRELIMINARIES

Denote by  = {1,…, z} the set of firms.6 Each firm i produces to order a homogeneous commodity 
with the same constant marginal cost (with no loss of generality normalized to zero) up to its fixed 

 4For instance, the market share held by the first corporate group (the first two corporate groups, the first three 
corporate groups) for the residential-customer segment of the retail electricity (free) market in Italy was 45,7% (58,2%. 
63,3%) in 2020 and was 50,2% (62%, 72,8%) in 2014. Data provided by ARERA, the Italian Regulatory Authority for 
Energy, Networks and the Environment: https://www.arera.it/it/dati/mr/mre_conce​ntra.htm#domes​tici.

 5See the simulations in Section 4.

 6The assumptions and notation laid down in this section largely draw on De Francesco and Salvadori (2011).

https://www.arera.it/it/dati/mr/mre_concentra.htm#domestici
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capacity ki. Denote by K total capacity and, with no loss of generality, let k1 ⩾ k2 ⩾⋯ ⩾ kz. A con-
tinuous demand function D(p) which is strictly decreasing and such that pD(p) is strictly concave 
over the price range in which D(p) > 0 is assumed to exist. Firm i’s profit at strategy profile (pi, p−i) 
is Πi(pi, p−i) = pimin

{
di(pi, p−i), ki

}
, where di(pi, p−i) is the demand forthcoming to firm i at 

(pi, p−i), pi is the price charged by firm i and p−i is the vector of prices charged by all firms except firm 
i. Under efficient rationing and assuming that such demand is proportional to capacity for equally 
priced firms, we have that di(pi, p−i) = max {0,D(pi) −

∑
j:pj<pi

kj} ×
ki∑

r:pr=pi
kr

.

Denote by pc the competitive price: D(pc) = K if D(0) ⩾ K and pc = 0 if D(0) ⩽ K. As is well 
known (see, e.g., De Francesco & Salvadori, 2010), (p1,…, pz) = (pc,…, pc) is an equilibrium of 
the price game if, and only if, either

or

Holding (2), (pc,…, pc) is the unique equilibrium; holding (1), the competitive payoff is earned by 
each firm at any equilibrium. It is also known that there are no pure strategy equilibria if neither 
inequality (1) nor inequality (2) holds or, equivalently, if

where � is the price elasticity of demand.
In the remainder, inequality (3) is assumed to hold. It follows from the strict concavity of 

pD(p) that there is a single solution to maxpp(D(p) −
∑

j≠1kj), call it pM:

Furthermore, we call pm the lower solution of equation pmin{D(p), k1} = pM (D(pM ) −
∑

j≠1kj).
Denote by �i: (0,∞)→ [0, 1] a mixed strategy of firm i, where 𝜎i(p) = Pr𝜎i (pi < p) is the 

probability that firm i charges a price lower than p under strategy �i. Note that �i(p) is con-
tinuous except at any p◦ such that Pr𝜎i (pi = p◦) > 0. A mixed strategy equilibrium is denoted 
by � = (�1,…,�z): (0,∞)z → [0, 1]z, where 𝜙i(p) = Pr𝜙i (pi < p). We denote by Πi(�i,�−i) firm 
i’s expected profit when it follows strategy �i and the rivals are playing their equilibrium 
strategy profile �−i; in particular Πi(p,�−i) is firm i’s expected profit when it charges p with 
certainty and the rivals are playing their equilibrium strategy profile �−i. We denote by Π∗

i
 

firm i’s expected profit at equilibrium �, by Si the support of �i and by p(i)
M

 and p(i)m  the max-
imum and the minimum of Si, respectively. Note that p ∈ Si when there is 𝜆 > 0 such that 
𝜙i(p + h) > 𝜙i(p − h) for each h ∈ (0, �). Clearly, Π∗

i
⩾ Πi(�i,�−i) (each i). For any p ∈ Si, 

Π∗
i
= Πi(p,�−i) almost everywhere, namely, whenever Pr�j (pj = p) = 0 (any j ≠ i). In fact, 

Π∗
i
= limpi⟶p−Πi(pi,�−i) everywhere for p ∈ Si since, quite obviously, Π∗

i
≥ limpi⟶p−Πi(p,�−i) 

(any p) and, furthermore, Π∗
i
 cannot be greater than limpi⟶p−Πi(p,�−i) for some p ∈ Si: 

since limpi⟶p+Πi(p,�−i) ⩽ Πi(p,�−i) ⩽ limpi⟶p−Πi(p,�−i), that event would imply that 
Πi(p,𝜙−i) < Π∗

i
 on a neighborhood of p, contrary to the fact that p ∈ Si.

(1)K−k1⩾D(0) when D(0)⩽K ,

(2)k1⩽ −pc
[
D�(p)

]
p=pc

when D(0)>K .

(3)
k1
K

>max

{
1−

D(0)

K
, ∣𝜀 ∣p=pc

}
.

(4)pM : =argmaxpp(D(p)−
∑
j≠1

kj).
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We now present some basic properties of mixed strategy equilibria.
Proposition 1  Let inequality (3) hold. Then, in any equilibrium: 

(i)	� maxj{p
(j)
M
} = pM, minj{p

(j)
m } = pm, # > 1 and # > 1, where : =

{
i ∈ 

|||p
(i)
m = pm

}
 

and : =
{
i ∈ 

|||p
(i)
M

= pM

}
; there exists some i such that ki = k1, p(i)M = pM, 

p(i)m = pm, Π∗
i
= pM (D(pM ) −

∑
j≠1kj) and Pr�j (pj = pM ) = 0 for any j ≠ i.

(ii)	 D(pm) <
∑

i∈ki, Pr�i (pi = pm) = 0 for each i ∈ , and Π∗
i
= pmki for each i ∈  − {1}.

(iii)	 �If k2 = k1, then, for any i such that ki = k1, Pr�j (pj = pM ) = 0 for any j ≠ i, 
Π∗
i
= pM (D(pM ) −

∑
j≠1kj) = pmki, p

(i)
M

= pM, and p(i)m = pm.

(iv)	 Pr𝜙1 (p1 = pM ) > 0 if k1 > k2.

3  |  SOME FIRMS ARE LARGE AND THE OTHERS ARE SMALL

We will focus on the subset of the region of no pure strategy equilibria in which7

The sets  = {1,…,n} and  −  will be referred to as the set of “large” firms and the set 
of “small” firms, respectively. Let us look more deeply at these inequalities in order to grasp 
the rationale for this terminology. According to inequality (5), large firms as a whole can 
meet the highest demand that can arise at an equilibrium of the price game, D(pm). If n = 1, 	
inequality (5) coincides with the inequality that defines the subset of the no-pure strategy 
equilibrium region mentioned in the introduction as explored by Hirata (2009) (and De 
Francesco & Salvadori, 2008, 2010). According to inequality (6), total industry capacity minus 
the capacity of any of the large firms does not exceed the smallest level of demand possibly 
arising at an equilibrium of the price game, D(pM ). If n = 1, inequality (6) coincides with in-
equality D(pM ) ⩾ K − k1, which certainly holds as a strict inequality. Most importantly, since 
K > D(pm) > D(pM ), inequalities (5) and (6) imply that

consistent with the “small” labeling of firms from n + 1 to z and with the “large” labeling of 
firms from 1 to n. In the following, we will assume, without further mentioning, that inequal-
ities (5) and (6) hold with n > 1. However, footnotes will give some details concerning the case 
in which n = 1.

 7A simple example can easily show that such subset may be quite large with respect to the the region of no pure 
strategy equilibria: see Section 5.

(5)k1+⋯+kn⩾D(pm)

(6)D(pM )⩾K−kn.

(7)kn>kn+1+⋯+kz ,

(8)k1−kn⩽D(pM )−
∑
j≠1

kj
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Because of inequalities (5) and (6), almost everywhere in the range [pm, pM ] the payoff func-
tion of firm i ∈  in the face of rivals’ equilibrium strategies is equal to8

that is

whereas almost everywhere in the same range the payoff function of firm r ∈  −  in the face of 
rivals’ equilibrium strategies is equal to9

where

We can now determine the equilibrium payoff of each large firm (and each small firm in a special 
case) and prove properties concerning the supports of the strategies, the payoffs and the equilibrium 
distributions of the large firms.

Proposition 2  In any equilibrium 

(i)	� ⊇ , Π∗
i
= pmki (each i ∈) and �i(p)ki = �j(p)kj everywhere for p ∈ Si ∩ Sj 

(any i, j ∈); moreover, kjΠi(p,�−i) = kiΠj(p,�−j) almost everywhere for 
p ∈ Si ∩ Sj (any i, j ∈);10

(ii)	Π∗
r∕kr = Π∗

s ∕ks (each r, s ∈  − );
(iii)	 if k1 +⋯ + kn > D(pm), then  =  and Π∗

r > pmkr (each r ∈  − );
(iv)	 if k1 +⋯ + kn = D(pm), then  ⊃  and Π∗

i
= pmki (each i ∈ );

 8If n = 1, then 
∏

j∈−{i}�j(p) is the empty product and equality (9) becomes Π1(p,�−1) = p[D(p) −
∑

r∈−�r (p)kr ].

Πi(p,�−i)=p
�

j∈−{i}

�j(p)
⎡
⎢⎢⎣
D(p)−

�
j∈−{i}

kj−
�

r∈−

�r(p)kr

⎤
⎥⎥⎦
+

+

⎡⎢⎢⎣
1−

�
j∈−{i}

�j(p)
⎤⎥⎥⎦
pki,

(9)Πi(p,�−i)=pki−p
�

j∈−{i}

�j(p)
⎡⎢⎢⎣
�
j∈

kj+
�

r∈−

�r(p)kr −D(p)
⎤⎥⎥⎦
,

 9There are two reasons for the “almost everywhere” qualification. First, thus far we have not ruled out yet the event 
that, for some p◦ ∈ (pm, pM ), 𝜙j(p◦+) > 𝜙j(p

◦) (some j ∈  ): under that event, for instance, 
Πi(p

◦,𝜙−i) < limp→p◦−Πi(p,𝜙−i). Second, because of Proposition 1(iv), if k1 > k2 then limp→pM−Πi(p,𝜙−i) > Πi(pM ,𝜙−i) 
(any i ∈  − {1}).

(10)Πr(p,�−r)=F(p)kr

(11)F(p)=
⎡⎢⎢⎣
1−

�
j∈

�j(p)
⎤⎥⎥⎦
p.

 10Because of part (vi) kjΠi(p,�−i) = kiΠj(p,�−j)everywhere for p ∈ Si ∩ Sj − {pM} (any i, j ∈  ). But the proof of part 
(vi) requires that kjΠi(p,�−i) = kiΠj(p,�−j) almost everywhere for p ∈ Si ∩ Sj (any i, j ∈  ).
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      (v)	 �Si = [pm, p
(i)
M
] (each i ∈ ); S1 = S2 ⊇ S3 ⊇⋯ ⊇ Sn; moreover, Si ⊃ Si+1 (each 

i ∈ − {1,n}) if and only if ki > ki+1;
         (vi)	Pr�i (pi = p) = 0 (any p ∈ [pm, pM ) and any i ∈ );
  (vii)	max

⋃
r∈− Sr ⩽ p(n)

M
;

(viii)	 �if either any of inequalities (5) and (6) is satisfied as a strict inequality or k2 > kn, then 
max

⋃
r∈− Sr < p(n)

M
 and Πr(p

(n)
M
,𝜙−r) < Π∗

r.

Proposition 2 allows segment [pm, pM ] to be partitioned into three parts: [pm, p), [p, p] , (p, pM ], 
where p = min

⋃
r∈− Sr and p = max

⋃
r∈− Sr. The first part is empty only if 

k1 +⋯ + kn = D(pm);
11 the second part contains 

⋃
r∈− Sr. In the first and third parts the equi-

librium distributions are easily determined.

3.1  |  The equilibrium distributions in [pm, p)

In this subsection, we assume that k1 +⋯ + kn > D(pm). In the range [pm, p) the equilibrium 
distributions are: �r(p) = 0 for each r ∈  −  and 

for each l ∈ , because of Equation (9) and Proposition 2. It is easily recognized that the RHS of 
Equation (12) is quasi-concave throughout [pm, pM ].

12 Moreover, it is larger than 1 for p = pM and 
l = n since pM

�
D(pM ) −

∑
j∈−{1}kj

�
> pmk1. Hence there is p̃(n)

M
∈ (pm, pM ) such that in the range 

[pm, p̃
(n)
M
] the RHS of Equation (12) is increasing and no larger than 1 for each i ∈ . Hence the 

functions F(p) and Πr(p,�−r) = F(p)kr are well-defined in the range [pm, p] if and only if p ⩽ p̃(n)
M

 
and this inequality can easily be proved (by following the same procedure used to prove Proposition 
2(vii) & (viii)).

In order to determine p and the equilibrium payoff of each small firm, the functions �l(p) 
(each l ∈ ) and F(p), as calculated in the range [pm, p]—that is, by keeping �r(p) = 0 (each 
r ∈  − )—need to be extended somewhat beyond p. Let us call these extended functions �g

l
(p) 

and G(p), respectively. In the range [pm, p̃
(n)
M
], �g

l
(p) consists of the RHS of Equation (12) and 

G(p) =
�
1 −

∏
j∈�

g

l
(p)

�
p. The functions �g

l
(p) and G(p) are well-defined in the mentioned 

range. As we will see, p equals the argument of a maximum of G(p) in the range (pm, p̃
(n)
M
). We 

will show that such a maximum exists, but we were not able to prove that it is unique, even if all 
our simulations suggest that it is so. That said, we prove that p coincides with the largest argu-
ment in which such a maximum is obtained.

Proposition 3  Let k1 +⋯ + kn > D(pm). Then p = max argmax
p∈(pm,p̃

(n)
M
)
G(p) and

 11Obviously the first part is empty also in the case in which n = 1.

(12)�l(p)=
1

kl

⎛⎜⎜⎜⎝

p−pm
p

∏
j∈

kj

∑
j∈

kj−D(p)

⎞⎟⎟⎟⎠

1
n−1

 12The sign of its first derivative coincides with the sign of function pm
�∑

j∈ kj − D(p)
�
+
�
p − pm

�
pD�(p) which is 

decreasing in the mentioned range, is positive for p = pm and negative for p = pM.
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A simple intuition can be gained if we spell out the procedure whereby we have determined 	
p: p is the price that maximizes firm r’s payoff function when the strategy profile of the large firms is 
such as to yield them their equilibrium payoffs when the small firms charge a higher price.

3.2  |  The equilibrium distributions in (p, pM]

In this range, �r(p) = 1 for each r ∈  −  and Equation (9) can thus be written 

Taking into account Proposition 2(i) & (iv), these equations are enough to determine all the �i’s in 
the range (p, pM ]. This is done straightforwardly if k2 = kn. In this case [p, pM ] ⊂ (∩j∈ Sj): then it 
follows from Equation (14) that, for each i ∈ , 

throughout (p, pM ]. If, instead, k2 > kn, then (p, pM ] can be partitioned in a number of non-empty 
intervals (p(i+1)

M
, p(i)

M
], where each i < n is such that ki > ki+1 and, by definition, p(n+1)

M
= p. In each 

range (p(i+1)
M

, p(i)
M
], �l(p) = 1 for l = i + 1,…,n; then Equation (14) lead to 

for each l = 1,…, i. The RHS of Equation (16) (each l = 1,…, i) is in fact strictly increasing over the 
range (p(i+1)

M
, pM ], its derivative being strictly decreasing over that range and equal to zero at p = pM: 	

hence, p(i)
M

 is the unique solution of the equation 
�
p − pm

� ∏
j⩽ikj = p

�
K − D(p)

�
ki−1
i

 over the range 
(p(i+1)
M

, pM ]. Thus p(i)
M

= pM if ki = k2, since pmk1 = pM

�
D(pM ) −

∑
jkj≠1

�
; if ki < k2, then p(i)

M
< pM 

and 𝜙l(p
(i)
M
) =

ki
kl
< 1 for any l < i such that kl > ki.

Next we prove that any large firm l with kl < k2 would earn strictly less than Π∗
l
 by charging 

any price higher than p(l)
M

. In the next subsection, we prove that any small firm r would earn 
strictly less than Π∗

r by charging more than p. This will complete the analysis of the range (p, pM ] .

(13)Π∗
r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1−

⎛⎜⎜⎜⎜⎜⎜⎝

�
p−pm

�� ∏
j∈

kj

� 1
n

p

�
∑
j∈

kj−D(p)

�

⎞⎟⎟⎟⎟⎟⎟⎠

n
n−1 ⎤⎥⎥⎥⎥⎥⎥⎥⎦

pkr .

(14)Πi(p,�−i)=pki−
∏

j∈−{i}

�j(p)p
[
K−D(p)

]
.

(15)�i(p)=
1

ki

⎛⎜⎜⎜⎝

p−pm
p

∏
j∈

kj

K−D(p)

⎞⎟⎟⎟⎠

1
n−1

(16)�l(p)=
1

kl

⎛⎜⎜⎜⎝

p−pm
p

∏
j⩽i
kj

K−D(p)

⎞⎟⎟⎟⎠

1
i−1
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Proposition 4  For any l ∈ − {1, 2} such that kl < k2, Πl(p,𝜙−l) < Π∗
l
 over the range (p(l)

M
, pM ].

3.3  |  The equilibrium distributions in [p, p]

Let p ∈
⋃

r∈− Sr. Then we obtain from Equation (10) and Proposition 3 that

and, afterwords, from equations (9) and Proposition 2 that

As a consequence, also by using Equation (17) again,

Finally, from equations (18) and (19) we obtain

Remark 1  By construction the RHS of Equation (12) equals the RHS of Equation (20) for p = p , 
whereas it is larger than the latter for p > p. As a consequence, the RHS of Equation (19) 
equals zero for p = p and is positive for p > p.

Another remark concerns a constant finding of our simulations, according to which the 
RHS of Equation (19) is strictly increasing over the relevant subset. Whenever this is the case, 
Equations (19) and (20) hold throughout [p, p] and [p, p] =

⋃
r∈− Sr. On the other hand, we 

have not been able to establish theoretically the generality of the above finding, except for the 
special case in which k1 +⋯ + kn = D(pm). Nevertheless, a general characterization of equilibria 
is possible. This will be done in the Mathematical Appendix. The following proposition is stated 
in the assumption that the RHS of Equation (19) is strictly increasing over the relevant subset. 
Let us clarify that if the RHS of Equation (19) is not so, then there is in [p, p] some interval which 
is not in the support of any of the small firms and therefore the union of the supports of the small 
firms is not connected.

(17)
∏
j∈

�j(p)=
p−F(p)

p
.

(18)�l(p)=
1

kl

p−F(p)

p−pm

⎡⎢⎢⎣
�
j∈

kj+
�

r∈−

�r(p)kr −D(p)
⎤⎥⎥⎦

l∈ .

(19)

�
r∈−

�r(p)kr =

�
p

p−F(p)

� n−1
n p−pm

p

⎛⎜⎜⎝
�
j∈

kj

⎞⎟⎟⎠

1
n

−

⎡⎢⎢⎣
�
j∈

kj−D(p)
⎤⎥⎥⎦
.

(20)�l(p)=
1

kl

�
p−F(p)

p

� 1
n
⎛⎜⎜⎝
�
j∈

kj

⎞⎟⎟⎠

1
n

l∈ .
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Proposition 5  Let the RHS of Equation (19) be strictly increasing over the range (p, p(n)
M
). Then, 

  (i)	 p is the unique solution of the equation 

 over the range (p, p(n)
M
).

(ii)	 Πr(p,𝜙−r) < Π∗
r over the range (p, pM ], each r ∈  − .

Remark 2  There is a continuum of profiles of equilibrium distributions for the small firms, and 
this is so whether or not the RHS of Equation (19) is strictly increasing over the relevant 
subset. The continuum of equilibria includes one in which the equilibrium distributions 
are the same for each small firm: at the “symmetric” equilibrium,

for any p ∈
⋃

r∈− Sr (each r ∈  − ).

Some considerations are in order about the role played by firms r ∈  − . Although the 
total capacity of these firms is fairly small, their impact on the equilibrium may well be sizeable. 
Simple comparative statics will help to see this point. This will be shown in next section.

4  |   THE ROLE OF SMALL FIRMS IS NOT NEGLIGIBLE

In this section, we show that the impact of total capacity of small firms on the equilibrium 
may well be sizeable. Take the number and capacities of the small firms as an independent 
variable while keeping fixed the number and capacities of the large firms. Of course, mere 
reshuffling of capacities among the small firms would not affect Si, Π∗

i
 (each i ∈ ), ∑

r∈−Π∗
r , and ∪ Sr∈−  . On the other hand, there is room for a significant (upward or 

downward) change in �: =
∑

r∈− kr that does not violate inequalities (5) and (6): any 
such change would have a considerable impact on the equilibria. The resulting change of 
the equilibrium payoff is ΔΠ∗

i
≈ −

ki
k1
pMΔ� for any large firm; thus, for each large firm, the 

proportional change in the equilibrium payoff is 
ΔΠ∗

i

Π∗
i

≈ −
Δ�

D(pM )−
∑
j≠1kj

, which may be far 

from negligible, as the following example illustrates.
Let n = 5, D(p) = 22 − p, k1 = 9.2, k2 = 8.5, k3 = 6, k4 = 0.4, k5 = 0.2. Then pM = 3.45, pm = 1.29375, 

Π∗
1 = pmk1 = 11.9025, and Π∗

2 = pmk2 = 10.996875. Since k1 + k2 + k3 = 23.7 > D(pm) = 20.70625 and 
D(pM ) = 18.55 > K − k3 = 18.3, then firms 1, 2, and 3 are “large” firms, consequently 
Π∗
3 = pmk3 = 7.7625, and firms 4 and 5 are “small” firms. Inequality (5) is strict and hence 

L = {1, 2, 3}. According to Equation (12), over the range [pm, p], �1(p) = 1

9.2

√
469.2

p−1.29375

p(1.7+p)
, 

�2(p) =
1

8.5

√
469.2

p−1.29375

p(1.7+p)
 and �3(p) =

1

6

√
469.2

p−1.29375

p(1.7+p)
; hence, 

G(p)kr = p

[
1 − 21.66102489

(
p−1.29375

p(1.7+p)

) 3
2

]
kr

 

(21)
�
p−F(p)

p

� n−1
n

=
p−pm

p
�
K−D(p)

�
⎛⎜⎜⎝
�
j∈

kj

⎞⎟⎟⎠

1
n

(22)
�r(p)=

�
p

p−F(p)

� n−1
n p−pm

p

�
∏
j∈

kj

� 1
n

−

�
∑
j∈

kj−D(p)

�

∑
r∈−

kr



814  |      DE FRANCESCO et al.

(r = 3, 4) over the range [pm, p̃
(3)
M
] = [1.29375; 1.761639635]. Then it is found that 

argmax
p∈(pm,p̃

(3)
M
)
G(p) = 1.330357324, implying that F(p) = 1.305422514 and hence 

Π∗
4 = F(p)k4 = 0.5221690056 and Π∗

5 = F(p)k5 = 0.2610845028. Over the range ∪r∈{4,5}Sr, 
(�4(p),�5(p)) is any pair of continuous and non-decreasing functions such that 	
Equation (19) holds, namely:

The RHS of Equation (22) is strictly increasing throughout [p, p̃(3)
M
], implying that 

∪r∈{4,5}Sr = [p, p] , where p = 1.423433842, the single value of p ∈ [p, p̃(3)
M
] such that 	

the RHS of (22) is equal to 0.6. According to Equation (20), over the range 
[p, p] = [1.330357324; 1.423433842], �1(p) = 1

9.2

(
469.2

p−1.305422514

p

) 1
3, �2(p) = 1

8.5

(
469.2

p−1.305422514

p

) 1
3, 

and �3(p) = 1

6

(
469.2

p−1.305422514

p

) 1
3.

Over the range (p, p(3)
M
] = (1.423433842; 1.911346695], �1(p) =

1

9.2

√
p−1.29375

p(2.3+p)
469.2, 

�2(p) =
1

8.5

√
p−1.29375

p(2.3+p)
469.2 and �3(p) =

1

6

√
p−1.29375

p(2.3+p)
469.2; p(3)

M
= 1.911346695. Over the remain-

ing range (p(3)
M
, pM ] = (1.911346695; 3.45], �1(p) = 8.5

p−1.29375

p(2.3+p)
 and �2(p) = 9.2

p−1.29375

p(2.3+p)
: of course, 

�2(pM ) = 1 while �1(pM ) =
k2
k1

=
8.5

9.2
= 0.9239130437. Figure 1 provides a graphical representation 

of one of the equilibria. More specifically, the dashed curve represents the uniform cumulative 
distribution of the small firms in the “symmetric” equilibrium, in which 

�r(p) =
1

0.6

(
p−1.29375

p

(
p

p−1.305422514

) 2
3
469. 20

1
3 − 1.7 − p

)
 for r ∈ {4, 5} throughout [p, p]; the other 

curves represent the unique cumulative distributions of the large firms in any equilibrium.

A few variants of this numerical example also allow us to assess the role played by the small 
firms. Suppose that, other things being equal, the total capacity of the small firms decreases from 
0.6 to zero. This would result in a sizeable increase in pM, pm, and Π∗

i
 (each i ∈ ): Π∗

1 would rise 
to 14.0625, meaning that Π∗

i
 (each i ∈ ) would increase approximately by 18.15%. Alternatively, 

let total capacity of the small firms increase from 0.6 to 1.1. Note that firms 1, 2, and 3 are still 
“large” firms while the remaining firms are still “small” firms in that inequalities (5) and (6) still 
hold. By straightforward computation it is found that the equilibrium payoff of firm 1 would now 
fall to 10.24, meaning a fall by approximately 13.97% for each large firm, compared to the initial 
industry structure.

Quite interestingly, what is, according to our criterion, the small-firm segment of a bi-
polarized industry might account for a remarkable share of industry capacity. As before, let 
D(p) = 22 − p, n = 5, and k1 + k2 + k3 = 23.7 but now let k1 = k2 = k3 = 7.9. Now, firms 4 and 5 
would be “small” firms even with capacities much closer to k1 than in previous simulations. 
Let, for instance, k4 = k5 = 3. Then pM = 0.1, pm = 0.0012658, Π∗

1 = pmk1 = 11.9025, and hence 
k1 + k2 + k3 = 23.7 > D(pm) = 21.9987 and D(pM ) = 21.9 > K − k3 = 21.8: as before, inequalities 
(5) and (6) both hold: firms 1, 2, and 3 are large firms while firms 4 and 5 are small firms. 
But now small firms are more than one third as large as the largest firms; and the small-firm 
segment accounts for 20% of industry capacity. Thus, a “bipolarized” industry structure need 
not involve that the small-firm segment is a “fringe” or that each small firm is negligible.

(23)0.4�4(p)+0.2�5(p)=
p−1.29375

p

(
p

p−1.305422514

) 2
3

469. 20
1
3 −1.7−p.
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5  |   THE REGION OF NO PURE STRATEGY EQUILIBRIA 
INVESTIGATED IN THIS PAPER IS NOT SMALL

In this section, we show that the part of the region of no pure strategy equilibria in which ine-
qualities (5) (6) hold can be quite large indeed. In order to do so and to represent our data in a 
plane, we consider a subset of the part of the region of no pure strategy equilibria in which ine-
qualities (5) (6) hold, and precisely the subset in which kn+1 +⋯ + kz =

1

10
K and n = 2, so that 

kn = k2 =
9

10
K − k1. As a consequence, inequalities (5) (6) can be represented in terms of K and k1 

only:

since pM and pm are determined by K and k1 (and the demand function) only.
Figure 2 represents a partition of the space in the case in which the demand is D(p) = 1 − p 

(and therefore pM =
1−K +k1

2
 and pm =

(1−K+k1)
2

4k1
) and z = 25. K is on the horizontal axis and k1 is 

on the vertical axis. Of course the whole space is below the 45◦ line and either above or along the 
straight line k1 =

1

z
K. The portions of space A and B are the regions in which pure strategy equi-

libria exist. Portion C1, above the curve k1 =
1

5
[1 + K + 2

√
3K − K2 − 1, is the subset of the region 

of no pure strategy equilibria in which K1 > D(pm). Portion C2, above or along the curve 
k1 = 1 − 4

5
K + 2

√
1

10
K −

9

100
K2 and below or along the straight line k1 =

1

3
+

4

15
K, is the subset of 

(24)9

10
K ⩾D(pm)

(25)D(pM )⩾
1

10
K+k1.

F I G U R E  1   The cumulative distributions in the symmetric equilibrium
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the region of no pure strategy equilibria in which inequalities (23) (24) hold. Portion C3 is the 
remaining part of the region of no pure strategy equilibria.

6  |   CONCLUDING REMARKS

This paper is a further contribution to the analysis of equilibria of the price game in a setting 
of given capacities. We in fact characterized the equilibria in a specific subset of the no-pure 
strategy equilibrium region of the capacity space, the subset where, according to a well-
defined distinction, there are “large” firms along with “small” firms. It was found that, with 
an industry structure like this, the interval between the minimum price pm and maximum 
price pM being quoted in equilibria can be partitioned into three intervals, [pm, p), [p, p], and 
(p, pM ], where p and p are, respectively, the minimum and the maximum of the union of the 
supports of the small firms. The first part is empty in a limit case, whereas the other two 
are never so. We determined the equilibrium payoffs for all firms and we saw that, for firms 
of the same type, the equilibrium payoffs are proportional to capacities. Except in the limit 
case in which p = pm, the equilibrium payoff per unit of capacity is larger for the small firms 
and we saw that p, and correspondingly the equilibrium payoff of each small firm, is the 
solution of a maximization problem facing any small firm. Finally, although a continuum 
of equilibrium distributions exists for the small firms, the capacity-weighted sum of these 
distributions is the same at each equilibrium and hence the union of the supports of their 
equilibrium strategies is also the same.

To conclude, there is undoubtedly still a long way to go before the equilibria of the 
price game among capacity-constrained sellers across the whole region of no-pure strategy 
equilibria are characterized. Yet it is encouraging that such a task could be performed for 
the bipolarized distribution of total capacity assumed in the present paper. It seems rea-
sonable to expect that the findings obtained—most notably, the procedure to determine 
the equilibrium payoff and the minimum price for the relatively small firms—may also 

F I G U R E  2   A partition of the space
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be helpful to characterize equilibria in parts of that region that lie somewhere in between 
the “quasi-symmetric” case (De Francesco & Salvadori, 2011) and the bipolarized industry 
structure of this paper.
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APPENDIX A

MATHEMATICAL APPENDIX

Proof of Proposition 1 
 (i)	 The contents of this part has already been established in the recent literature: see, for ex-

ample, Claim 1 in Hirata (2009).13

 (ii)	 If D(pm) >
∑

i∈ki, then Πi(p,𝜙−i) = pki > pmki = Π∗
i
 (each i ∈ ) for p larger than and close 

enough to pm. If D(pm) =
∑

i∈ki, then 
pmk1 ⩾

∏
i∈−{1}�i(p)[D(p) −

∑
i∈−{1}kj] + (1 −

∏
i∈−{1}�i(p))pk1 for p larger than and 

close enough to pm. This implies a contradiction since 
∏

i∈𝜙i(p) ⩾
(p−pm)kj

p[
∑
i∈ki −D(p)]

> 1 for p 

larger than and close enough to pm, since limp→pm+
(p−pm)k1

p
�∑

i∈kj −D(p)
� = k1

−pmD
�(pm)

> 1: indeed, 

pmk1 > − p2D�(p) over the range [pm, pM ), since − p2D�(p) is strictly increasing over that 
range, because of strict concavity of pD(p), and [−p2D�(p)]p=pM = pmk1. The last equality 
derives from equalities [D(p)−

∑
j≠1kj+pD

�(p)]p=pM = 0 and pmk1 = pM [D(pM ) −
∑

i≠1ki] 
because of part (i). If Pr𝜙i (pi = pm) > 0 for some i ∈ , then Πj(p,𝜙−j) < Πj(pm,𝜙−j) (any 
j ∈  − {i}) for p larger than and close enough to pm, and hence p ∉ ( ∪ Sj∈−{i}). This means 
that Pr𝜙j (pj = pm) > 0 (each j ∈  − {i}), in its turn implying that 
Π∗
j
= Πj(pm,𝜙−j) < pmkj = limp→p−m

Πj(p,𝜙−j). Finally, since 
D(pm) > D(pM ) >

∑
j≠1kj ≥

∑
i:i∈,ki<k1

ki and given that Pr�i (pi = pm) = 0 (each i ∈ ), it 
follows that Π∗

i
= pmki for each i ∈  − {1}.

(iii)	 �Without loss of generality, let p(1)m = pm, p(1)
M

= pM, Π∗
1 = pM (D(pM ) −

∑
j≠1kj) and, by way 

of contradiction, let p(i)m > pm for some i such that ki = k1. Then, since D(pM ) −
∑

j≠1kj > 0 , 
it would be D(pm) >

∑
j∈kj contrary to part (i). Thus, p(i)m = pm and hence Π∗

i
= Π∗

1 = pmk1. 	
This in its turn implies that p(i)

M
= pM: if not, then, 𝜙i(p) = 1 > 𝜙1(p) for any 

p ∈ S1 ∩ [p
(i)
M
, pM ) , but then from Π1(p,�−i) = Π∗

1 it would follow Πi(p,𝜙−i) > Π∗
i
, an obvi-

ous contradiction. And, of course, Pr�i (pi = pM ) = 0 for any i such that ki = k1, for other-
wise Π∗

i
> pM (D(pM ) −

∑
j≠1kj) .

(iv)	 �Let k1 > k2. If Pr�1 (p1 = pM ) = 0, then Π∗
i
= Πi(pM ,�−i) = pMmax {D(pM ) −

∑
j≠ikj, 0} for 

i ∈ − {1}. We are already done if D(pM ) −
∑

j≠ikj ≤ 0. If D(pM ) −
∑

j≠ikj > 0, then firm 
i has failed to make a best response since p[D(p) −

∑
j≠ikj] is a decreasing function for p 

less than and close enough to pM.

 13In De Francesco (2003) this statement was proved under the assumption that D′′(p) ≤ 0 over the range [0, p]. The 
proof in Hirata (2009) relies upon the weaker assumption that pD(p) is strictly concave over the range in which D(p) is 
positive [0, p], which assures that argmaxpp(D(p) −

∑
j≠1kj) is a singleton.

https://doi.org/10.1111/meca.12382
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Proof of Proposition 2 
       (i)	 Since 

∑
i∈ki > D(pm) > D(pM ) ⩾ K − kn because of Proposition 1(ii), inequality pm < pM, 	

and inequality (6), if  ⊉ , and therefore K − kn ⩾
∑

i∈ki, then a contradiction is ob-
tained.  ⊇  implies Π∗

i
= pmki (each i ∈ ), because of Proposition 1(ii) and inequalities 

D(pm) > D(pM ) ⩾ K − kn > k1; the last inequality being a consequence of n > 1.14 Hence 

       because of Equation (9). As a consequence, for any p ∈ Si ∩ Sj(i, j ∈ ), �i(p)ki = �j(p)kj. 
Moreover, from equations (9), we obtain that, almost everywhere throughout [pm, pM ], 

 where 

    (ii)	 Equations (10) imply that Πr(p,�−r)ks = Πs(p,�−s)kr (any r, s ∈  − ), almost every-
where throughout [pm, pM ].

15 Then the claim follows straightforwardly. Indeed, if 
Π∗
r∕kr < Π∗

s ∕ks, then Sr ∩ Ss = � since, at any p ∈ Sr ∩ Ss , Πr(p,�−r(p)) = Π∗
r and 

Πs(p,�−s(p)) = Π∗
s; but then firm r’s strategy would not be a best response to �−r, since a 

payoff of Πr(p,𝜙−r) = (kr∕ks)Π
∗
s > Π∗

r is obtained by quoting any p ∈ Ss .
       (iii)	 If  ⊃ , then, by Proposition 1(ii) and part (ii), Π∗

r = pmkr (each r ∈  − ). Then, 
again by Proposition 1(ii), p ∈ Sr (some r ∈  − ) for p larger than and close enough to 
pm. Hence Equation (10) implies 

∏
i∈�i(p) =

p−pm
p

. Thus, on a right neighborhood of 
pm, 

∑
j∈ kj +

∑
r∈−�r(p)kr − D(p) = �i(p)ki, because of Equation (25) (each i ∈ ); 

but then it follows from limp→pm+
�i(p) = 0 that limp→pm+

∑
r∈−𝜙r(p)kr < 0. Thus 

 = .16 Further, since limp→pm+
F �(p) = 1, F(p) is increasing on a right neighborhood of 

pm. As a consequence, Π∗
r > pmkr (any r ∈  − ). Otherwise firm r would have failed to 

make a best response given that Πr(p,𝜙−r) > pmkr for p close enough to pm.

        (iv)	 If  = , then Proposition 1(ii) is contradicted. Therefore, by Proposition 1(ii) and part 
(ii), Π∗

r = pmkr (each r ∈  − ).
       (v)	 The first of the two claims is obviously equivalent to: 

 14If n = 1, Π∗
1 ⩽ pmk1; the equality holds only when inequality (5) is satisfied as an equality; the whole part (i) collapses 

to  ⊇  .

(A1)

�
j∈−{i}

�j(p)=
(p−pm)ki

p

�
∑
j∈

kj+
∑

r∈−

�r(p)kr −D(p)

� ,∀p∈Si

Πj(p,�−j)

kj
−
Πi(p,�−i)

ki
=

[
1

�i(p)ki
−

1

�j(p)kj

]
A(p)

A(p)=p
∏
l∈

�l(p)

[∑
l∈

kl+
∑

r∈−

�r(p)kr −D(p)

]
.

 15The argument in the text would work even if, contrary to part (vi), not yet proved, Pr𝜙i (pi = p◦) > 0 (some p◦ ∈ Si and 
some i ∈  ), except for Πr (p

◦,�−r ) and Πs(p
◦,�−s) being replaced by limp→p◦−Πr (p,�−r ) and limp→p◦−Πs(p,�−r ), 

respectively.

 16If n = 1 Equation (25) does not hold (unless D(pm) = k1), and indeed  ⊃  = {1} because of Proposition 1(i).

(A2)
Sn−u=

[
pm, p

(n−u)
M

]
=∩h∈[1,…,n−u]Sh u=0, 1,…,n−2
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Property (A2) will be proved by induction. Let us first prove that it holds for u = 0. 
Because of part (i) and Proposition 1(ii), there is p̃ such that [pm, �p] ⊆ ∩i∈ Si. Note that 
dΠi(p,�−i)

dp
=

�Πi(p,�−i)

�p
+

∑
j∈−{i}

�Πi(p,�−i)

��j
��

j (p) = 0 in the range [pm, p̃], and therefore in 

the same range 𝜕Πi(p,𝜙−i)

𝜕p
> 0, since 

 if j ∈ − {i} and 𝜕Πi(p,𝜙−i)

𝜕𝜙j
= − pkj

∏
h∈ −{i}

𝜙h(p) < 0, if j ∈  − . If there is ��p > �p such 

that (p̃, ̃̃p) ∩ (∩i∈ Si) = �, then either (a) p̃ = p(n)
M

, or (b) Pr𝜙i (pi = �p) > 0 for some i ∈ , or 
(c) there is a gap (p̃, p◦) in Sj (some j ∈  and some p◦ ⩾ ̃̃p): namely, �j(p◦) = �j(p̃), while 
�j(p) is increasing in both p̃ and p◦. Obviously property (A2) for u = 0 holds in event (a). Let 
us first exclude event (b). By way of contradiction, let Pr𝜙r (pr = �p) > 0 (some r ∈  −). 
As a consequence, there is p◦ ∈ (p̃, pM ) such that (p̃, p◦) ∩ (∪j∈ Sj) = �, since 
limp→�p+Πj(p,𝜙−j) < limp→�p−Πj(p,𝜙−j) = Π∗

j
, each j ∈ . But then it follows from 

Equation (10) that Πr(p,𝜙−r) > Πr(�p,𝜙−r) = Π∗
r over the range (p̃, p◦). Quite similarly, if 

Pr𝜙i (pi = �p) > 0 (some i ∈), then (p̃, p◦) ∩ (∪j∈−{i}Sj) = � for some p◦ ∈ (p̃, pM ), but 
then Πi(p,𝜙−i) > Πi(�p,𝜙−i) = Π∗

i
 on the right of p̃. Let us now exclude event (c). If there is 

p◦◦ ∈ (p̃, p◦] such that (p̃, p◦◦) ∩ (∪i∈Si) = �, the same argument applies. Then there is 
h ≠ j such that (p̃, p◦) ∩ Sh ≠ � and 𝜙j(p◦)kj = 𝜙j(�p)kj = 𝜙h(�p)kh < 𝜙h(p

◦)kh, and therefore 
Πj(p

◦,𝜙−j) <
kj

kh
Πh(p

◦,𝜙−h) ⩽
kj

kh
Π∗
h
= Π∗

j
, contrary to the fact that p◦ ∈ Sj. Now assume 

that property (A2) holds for u = v < n − 2; then there is p̃ ⩾ p(n−v)
M

 such that 
[pm, p̃] = ∩h∈ ;h⩽n−v−1Sh. Hence the same argument used above proves that property (A2) 
holds for u = v + 1. Note that p(n−v)

M
= p(n−v−1)

M
 if and only if kn−v−1 = kn−v, because of part 

(i).

                   (vi)	 It is an obvious consequence of part (v).
        (vii)	 �By way of contradiction, let p > p(n)

M
.17 Then 𝜙1(p) > 𝜙1(p

(n)
M
) =

kn
k1

, the equality being a 

consequence of part (i). Therefore, 

the equality is a consequence of Equation (9) and part (i) since ∑r∈−�r(p)kr =
∑

r∈− kr; 	
the second inequality is a consequence of inequality (6). Thus Πr(p,𝜙−r)) < pmkr be-
cause of Equation (10) and the definition of p is contradicted.

(viii)	 By way of contradiction, let p = p(n)
M

. Then instead of (A3) we have18

𝜕Πi(p,𝜙−i)

𝜕𝜙j
=p

∏
h∈−{i,j}

𝜙h(p)

[
D(p)−

∑
h∈

kh−
∑

r∈−

𝜙r(p)kr

]
<0,

 17If n = 1, p > p(n)
M

= p(1)
M

 contradicts Proposition 1(i), and therefore the statement holds, but the proof provided in the 
text does not apply since part (i) does not hold and therefore the equality (A3) is not satisfied in general; it is, of course, 
when D(pm) = k1.

(A3)
∏
j∈

𝜙j(p)=𝜙1(p)
p−pm

p

k1

K−D(p)
>
p−pm

p

kn

K−D(p)
⩾
p−pm

p
:

 18If n = 1 , the first equality (A4) does not hold, unless D(pm) = k1 (see previous footnote); this time also the statement is 
false since p = p(n)

M
= p(1)

M
 because of Proposition 1(i).
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It follows that Πr(p,�−r)) ⩽ pmkr. Hence, if inequality (5) holds as a strict inequality, part (iii) 
is contradicted; if either inequality (6) holds as a strict inequality or k2 > kn (or both), then 
the weak inequality in (A4) is satisfied as a strict inequality and hence Πr(p,𝜙−r)) < pmkr. 
Finally, it follows from p < p(n)

M
 that 

 implying that Πr(p
(n)
M
,�−r)) ⩽ pmkr ⩽ Π∗

r, with at least one strict inequality: the last in-
equality is strict if inequality (5) is strict and the first inequality is strict if either k2 > kn, or 
inequality (6) is strict (or both).

Proof of Proposition 3  Since G(�p(n)
M
) =

�
1 −

∏
j∈𝜙

g
j
(%p̃(n)

M
)
�
�p(n)
M

< pm, as can easily be 

checked, G(p) has a maximum at some p ∈ (pm, p̃
(n)
M
). By way of contradiction, let 

G(p) ⩾ F(p) for some p ∈ (p, p̃(n)
M
). Then, �

1 −
∏

j∈�j(p)
�
p ⩽ F (p) = G (p) ⩽ G(p) =

�
1 −

∏
j∈�

g
j
(p)

�
p, where the first weak in-

equality is certainly an equality for p ∈ ∪ Sr. Therefore, 
∏

j∈�j(p) ⩾
∏

j∈�
g
j
(p) and, 

as a consequence of Equation (A1) and the definition of functions �
g
j
(p)’s, ∑

r∈−�r(p)kr ⩽ 0, an obvious contradiction. Next, again by way of contradiction, let 
G(p) > G(p) for some p ∈ (pm, p). Under such an event, firm r would get G(p)kr > Π∗

r = G(p)kr 
by charging a price somewhat less than p. Finally, Equation (13) derives straightfor-
wardly from Π∗

r = F(p)kr (each r ∈  − ) and Equation (12).
Proof of Proposition 4  It is enough to remark that over any non-empty range (p(i+1)

M
, p(i)

M
], 

Πl(p,𝜙−l)∕kl < Πi(p,𝜙−i)∕ki = pm for any l ⩾ i + 1, since 𝜙i(p) >
kl
ki

.

Proof of Proposition 5 

   (i)	 By definition p is the unique solution to Equation (21) and p < p < p(n)
M

 because of Proposition 
2(v)&(viii).

(ii)	 Since 
∑

r∈−�r(p)kr =
∑

r∈− kr is lower than the RHS of Equation (19) over the range 
(p, p(n)

M
], over the same range �l(p) is larger than the RHS of Equation (20), each l ∈ , 	

and, as a consequence, F(p) < F(p). If kn < k2, so that p(n)
M

< pM, then 
F(p) = p

[
1 − 𝜙1(p)

p−pm
p

k1
K −D(p)

]
< pm < F(p) over the range (p(n)

M
, pM ). The first inequality derives 

from 𝜙1(p) > 𝜙1(p
(n)
M
) =

kn
k1

>
K −D(p)

k1
, whereas the last inequality holds since inequality (5) is strict 

and Proposition 2(iii) holds.
As mentioned in the main text, we have not proved that the RHS of Equation (19) is strictly 

increasing over the relevant subset. For this reason we establish here the following results, that 
complete Proposition 5.

Proposition A1  If k1 +⋯ + kn > D(pm), in any equilibrium 
   (i)	 p is the largest solution of the Equation (21) over the range (p, p(n)

M
);

(ii)	 the set of equilibrium distributions of the small firms is any set of non-negative, continuous 
and non-decreasing functions no larger than 1 such that 

(A4)
∏
j∈

�j(p)=�1(p)
p−pm

p

k1

K−D(p)
=
p−pm

p

kn

K−D(p)
⩾
p−pm

p
.

∏
j∈

�j(p
(n)
M
)=�1(p

(n)
M
)

(p(n)
M

−pm)k1

p(n)
M

[
K−D(p(n)

M
)
] = (p(n)

M
−pm)kn

p(n)
M

[
K−D(p(n)

M
)
] ⩾ p(n)

M
−pm

p(n)
M

,
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 over the range [p, p];
(iii)	�the equilibrium distributions of the large firms are uniquely determined by the 

equations 

 over the range [p, p];
   (iv)	Πr(p,𝜙−r) < Π∗

r over the range (p, pM ], each r ∈  − .
      (v)	If k1 +⋯ + kn = D(pm), then the RHS of Equation (19) is increasing in the whole range 

[p, p], so that [p, p] =
⋃

r∈− Sr,
19 and p < p(n)

M
⩽ pM; p is the single solution of the 

equation 

over the range (p, p(n)
M
); the set of equilibrium distributions of the small firms is, over the 

range [p, p], any set of non-negative, continuous and non-decreasing functions no larger 
than 1 such that 

 the equilibrium distributions of the large firms are uniquely determined by the Equation 
(A6) over the range [p, p]; Πr(p,𝜙−r) < Π∗

r over the range (p, pM ], each r ∈  − .

Proof   (i) By definition p is a solution to Equation (21) and p < p < p(n)
M

 because of Proposition 
2(v)&(viii). Note, furthermore, that the RHS of (21) is lower (higher) than the LHS at any p 
where the RHS of (19) is lower (higher) than 

∑
j∈Z− kr. Over (p, p(n)

M
) Equation (21) has an 

odd number of solutions. Indeed, since the RHS of Equation (19) equals zero at p (Remark 
1), the RHS of Equation (21) is smaller than the LHS at p too. On the other side, the RHS of 
Equation (21) is larger than the LHS at p(n)

M
. In order to recognize this fact, we obtain from 

equations (11) and (16) for i = n, that

(A5)

�
r∈−

�r(p)kr =

miny∈[p,p]

⎧⎪⎨⎪⎩

�
y

y−F(p)

� n−1
n y−pm

y

⎛
⎜⎜⎝
�
j∈

kj

⎞
⎟⎟⎠

1
n

−

⎡
⎢⎢⎣
�
j∈

kj−D(y)
⎤
⎥⎥⎦

⎫⎪⎬⎪⎭

(A6)�i(p)=
1

ki

⎛⎜⎜⎜⎝

p−pm
p

∏
j∈

kj

∑
j∈

kj+
∑

r∈−

�r(p)kr −D(p)

⎞⎟⎟⎟⎠

1
n−1

 19Equality 
⋃

r∈− Sr = [pm, pM ] is easily proved if n = 1. In such a case, 
∑

r∈−�r (p)kr =D(p)−Π∗
1∕p over the range 

[pm, pM ], where Π∗
1 = pmD(pm): indeed, by the strict concavity of pD(p), pD(p)− pmD(pm)

p
 is strictly increasing.

(A7)⎛⎜⎜⎝
p−pm
p

�
j∈

kj

⎞⎟⎟⎠

1
n

−
�
K−D(p)

�
=0

(A8)
�

r∈−

�r(p)kr =
⎛⎜⎜⎝
p−pm
p

�
j∈

kj

⎞⎟⎟⎠

1
n

−

⎡⎢⎢⎣
�
j∈

kj−D(p)
⎤⎥⎥⎦
;
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and since F(p(n)
M
) < F(p) because of Proposition 2(viii), we obtain that the RHS of Equation 

(21) is larger than the LHS at p(n)
M

.
Let us say that a solution is odd if there is a left neighborhood in which the RHS of Equation 
(21) is smaller than the LHS, whereas a solution is even if there is a left neighborhood in 
which the RHS of Equation (21) exceeds the LHS. Let p′ be an odd solution differing from 
the largest one and p′′ be the lowest even solution larger than p′. Clearly, p ≠ p′′ since the 
RHS of Equation (19) is decreasing for p less than and close enough to p′′ whereas, because 
of Proposition 2(vi), p ∈

⋃
r∈− Sr on some left neighborhood of p. Nor can it be that 

p = p�. Under such an event, 
∑

r∈−�r(p)kr =
∑

r∈− kr is larger than the RHS of 
Equation (19) in a right neighborhood of p′′ that is part of 

⋂
i∈ Si (see Proposition 2(v)-

(vi)) and therefore �j(p) is lower than the RHS of Equation (20) (each j ∈ ), but then 
F(p) = F(p), an obvious contradiction.

(ii) and (iii) The RHS of Equation (A5) is a non-decreasing function that equals 0 at p, 	
also because of Remark 1, and equals 

∑
r∈− kr at p. Whenever the RHS of Equation 

(A5) is increasing, it equals the RHS of Equation (19) and the RHS of Equation (A6) 
equals the RHS of Equation (20). Therefore, F(p) = F(p) whenever the RHS of Equation 
(A5) is increasing. Over any range (p′, p′′) ⊂ [p, p] in which the RHS of Equation (A5) 
is constant, it is lower than the RHS of Equation (19) and the RHS of Equation (A6) is 
higher than the RHS of Equation (20). Therefore F(p) < F(p), consistent with the fact 
that (p�, p��) ∩ (∪r∈− Sr) = � .
(iv) By exploring the proof of part (i) we obtain that 

∑
r∈−�r(p)kr =

∑
r∈− kr is lower 

than the RHS of Equation (19) over the range (p, p(n)
M
]. The the proof follows along the same 

lines of the proof of Proposition 5(ii).
(v) Because of Proposition 2(iii), p = F(p) = pm. As a consequence, Equation (19) can be 
written as Equation (A8) and Equation (21) can be written as Equation (A7). The derivative 
of the RHS of Equation (A8) is positive if, and only if, 

The LHS of inequality (A1) is a strictly decreasing function in the range [pm, pM ] since the sec-
ond addend is strictly decreasing due to the strict concavity of pD(p). This is enough since the 
LHS of inequality (A1) is by definition non-negative for p = p. Now we will prove that 
p < p(n)

M
= pM. Because of Proposition 2(viii) we can concentrate on the case in which k2 = kn 

and K − kn = D(pM ) > K − k1 (the inequality is a consequence of Proposition 1(i)). In this case 
the RHS of Equation (A8) equals 

∑
r∈− kr also at pM = p(n)

M
. Nevertheless, at p = pM, the LHS 

of inequality (A1) is negative since, because of the fact that p2
M
D�(pM ) = − pmk1, it equals 

pmk
1
n

1
k
n−1
n

2
− n

(
pM−pm
pM

) n−1
n
pmk1 = pmk

1
m

1

[
k
n−1
n

2
− n

(
pM−pm
pM

k1

) n−1
n

]
= pmk

1
n

1
(1 −m)

[
K−D(pM )

] n−1
n < 0 ,

F(p(n)
M
)=

⎡
⎢⎢⎢⎢⎣
1−

1∏
j∈

kj

⎛⎜⎜⎜⎝

p(n)
M

−pm

p(n)
M

∏
j∈

kj

K−D(p(n)
M
)

⎞⎟⎟⎟⎠

n
n−1 ⎤⎥⎥⎥⎥⎦

p(n)
M

(A9)pm

⎛⎜⎜⎝
�
j∈

kj

⎞⎟⎟⎠

1
n

+n

�
p−pm
p

� n−1
n

p2D�(p)>0.
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the last equality deriving since pM−pm
pM

=�1(pM ) =
k2
k1

. Hence, because of quasi-concavity of 

the RHS, Equation (A7) has two solutions in the range [p, pM ]: the former is p, the latter is 
pM. Clearly, over the range (p, pM ), the RHS of Equation (A8) is higher than 

∑
r∈− kr. 

Therefore, Πr(p,𝜙−r) < Π∗
r over that range and Πr(pM ,𝜙−r) < Π∗

r.


