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ABSTRACT
Benford’s law defines a probability distribution for patterns of significant digits in real numbers. When the
law is expected to hold for genuine observations, deviation from it can be taken as evidence of possible
data manipulation. We derive results on a transform of the significand function that provide motivation for
new tests of conformance to Benford’s law exploiting its sum-invariance characterization. We also study
the connection between sum invariance of the first digit and the corresponding marginal probability
distribution. We approximate the exact distribution of the new test statistics through a computationally
efficient Monte Carlo algorithm. We investigate the power of our tests under different alternatives and
we point out relevant situations in which they are clearly preferable to the available procedures. Finally,
we show the application potential of our approach in the context of fraud detection in international
trade.
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1. Introduction

Benford’s law is a well-known probability distribution for
significant digits (Berger and Hill 2015; Miller 2015). It relies on
the intriguing fact that in many natural and human phenomena
the significant digits are not uniformly scattered, as one could
naively expect, but follow a logarithmic-type distribution:
see Raimi (1976), Hill (1995a), and Berger and Hill (2011,
2020) for historical reviews from a mathematical perspective.
A major statistical result is the limit theorem presented by
Hill (1995b), which motivates the adoption of Benford’s law
as the digit-generating model in many real-world situations.
If Benford’s law is expected to hold for genuine observations,
then deviations from the law can be taken as evidence of
possible data manipulation. This idea has opened the door to
a rapidly increasing literature on the statistical detection of
frauds through Benford’s law, whose applications span over
diverse fields such as accounting and finance (Tam Cho and
Gaines 2007; Nigrini 2012; Kossovsky 2015), electoral processes
(Mebane 2010, 2011; Pericchi and Torres 2011; Fernandez-
Gracia and Lacasa 2018), and international trade (Barabesi
et al. 2018; Cerioli et al. 2019; Lacasa 2019).

Checking conformance to Benford’s law requires the avail-
ability of appropriate test statistics. The most popular choice
is to perform goodness-of-fit tests, often of Pearson’s type or
variants thereof, that compare the observed digit counts to those
expected under the law. For instance, if X is a random variable
and solely the leading digit of X, say D1(X), is analyzed, Ben-
ford’s law states that the probability of the event {D1(X) = d1},
with d1 ∈ {1, . . . , 9}, is
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pD1(X)(d1) = log10

(
d1 + 1

d1

)
. (1)

Goodness-of-fit tests stem on the characterization of Benford’s
law provided by its joint-digit probability function, for which (1)
is usually called the first-digit marginal.

In this work, we develop new tests that exploit an alternative
characterization of Benford’s law based on the sum-invariance
property. This characterization is perhaps even farther from
intuition than (1) and was first guessed by Nigrini (1992), who
noted that for datasets following the law the sum of the val-
ues with the same first significant digit d1 are approximately
equal for all d1 ∈ {1, . . . , 9}. He also argued that the sum-
invariance property provides a characterization of Benford’s
law, so that the sum of the values with the same first-k sig-
nificant digits, say (d1, . . . , dk), should be approximately equal
for all d1 ∈ {1, . . . , 9} and dj ∈ {0, . . . , 9}, with j =
2, . . . , k, and for all k ∈ Z

+. The conjecture was formally
proven by Allaart (1997) in terms of the significands (to be
defined in Section 2) of the values with the same first signif-
icant digit(s). On the basis of such a property, Nigrini (2012,
chap. 5) suggested a graphical comparison of the (normalized)
empirical sums of the observed values sharing the same first-
two significant digits. Large spikes in the resulting plot infor-
mally indicate deviation from the law, but the magnitude of
these spikes, and their evidence against the hypothesis, can-
not be assessed outside the framework of a formal statisti-
cal testing procedure. Indeed, in an exploratory approach the
origin of each spike can be explained only by inspecting the
original data.
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The contribution of this article is 2-fold. First, we derive
some theoretical results on a transform of the significand
function that are related to the sum-invariance characterization
of Benford’s law. When just the leading digit is considered,
neither sum invariance nor the one-dimensional marginal
probability (1) necessarily imply Benford’s law. We thus derive
some conditions that relate the sum-invariance property to
the validity of (1). Then, we use these results to provide
motivation and statistical tools for new tests of conformance
to Benford’s law based on the sum-invariance characterization.
We approximate the exact distribution of each test through a
simple but computationally efficient Monte Carlo algorithm
and we investigate the power of our tests under different
alternatives. We show situations where the sum-invariance
approach is not only preferable to the classical test of (1), but
also outperforms a Kolmogorov–Smirnov test built upon the
properties of the significand function. A further bonus of our
work is the possibility of combining different tests when no
information on the digit-generating process is available.

We show the application potential of our approach in the
context of fraud detection in international trade, where the
main available anti-fraud tools are derived from the theory
of outlier identification in robust regression (see, e.g., Riani,
Atkinson, and Perrotta 2014; Perrotta et al. 2020). We then com-
pare the assumptions about the data-generating model behind
our approach with those that underlie fraud detection through
robust statistical methods, and we point out relevant situations
where the new tests are clearly to be recommended. The sum-
invariance tests are also preferable when manipulation occurs
in one or more digits in unspecified positions, as it might be the
case with probability-savvy fraudsters who ensure compliance
of the first digit of their numbers to Benford’s law. Being almost
as easy to calculate as the standard goodness-of-fit statistics, our
tests thus provide a powerful addition to the battery of tools
available for statistical anti-fraud analysis.

2. Two Characterizations of Benford’s Law

We start by introducing the alternative characterizations of Ben-
ford’s law that are useful for the present work. We refer to Berger
and Hill (2015, chaps. 4 and 5) for a comprehensive and authori-
tative account of these and other mathematical characterizations
of the law.

The fractional part of x is 〈x〉 = x − �x�, where �x� =
max{n ∈ Z : n ≤ x} is the “floor function” (Graham, Knuth,
and Patashnik 1994). For each nonnull x ∈ R, the significand
function S : R → [1, 10[ is defined as

S(x) = 10〈log10 |x|〉.
For convenience, we take S(0) := 0. The first significant digit of
x, say D1(x), can be expressed as a function of S(x) since

D1(x) = �S(x)�.

Similarly, for k = 2, 3, . . ., the kth significant digit of x, say
Dk(x), is

Dk(x) = �10k−1S(x)� − 10�10k−2S(x)�.

Let D(x) = (D1(x), . . . , Dk(x)) and d = (d1, . . . , dk), where
d1 ∈ {1, . . . , 9} and dj ∈ {0, . . . , 9} for j = 2, . . . , k. The

following equivalence holds for k ∈ Z
+ (see Barabesi et al. 2018,

p. 357)

{x ∈ R : D(x) = d} = {x ∈ R : S(x) ∈ [101−kcd, 101−k(cd+1)[ },

where cd = ∑k
j=1 10k−jdj. We have suppressed the dependence

of cd on k for notational simplicity.
Let X be an absolutely continuous random variable

defined on the probability space (�,F , P). Furthermore,
let FS(X)(t) = P(S(X) ≤ t) be the distribution function of the
significand S(X). According to Berger and Hill (2015, p. 30), X
is defined to be Benford if

FS(X)(t) = log10 t I[1,10[(t) + I[10,∞[(t), (2)

where IE is the indicator function of the set E. Condition (2) is
equivalent to assume that S(X)

L= 10U or that 〈log10 |X|〉 L= U,
where U is a Uniform random variable on [0, 1[, that is, to
assume that log10 |X| is uniformly distributed modulo one
(Diaconis 1977; Berger and Hill 2015, p. 43). Thus, for each k,
the joint probability function of the random vector D(X) is

pD(X)(d) = P(D(X) = d) (3)

= FS(X)(101−k(cd + 1)) − FS(X)(101−kcd).

When X is Benford expression (3) becomes

pD(X)(d) = log10

(
cd + 1

cd

)
, (4)

which reduces to (1) when k = 1. Berger and Hill (2015, p. 44)
prove the key probabilistic result that (2) holds if and only if
the probability distribution (4) holds for all k ∈ Z

+. Therefore,
expression (1) on the first digit alone does not imply (2).

In turn, (2) implies (and is implied by) the sum-invariance
property. This property states that, for each d and for each k ∈
Z

+,

E[10k−1S(X)I[cd ,cd+1[(10k−1S(X))] = C, (5)

where C = log10 e (Allaart 1997; Berger and Hill 2015, §5.3).
Therefore, the expected value (5) does not depend on d if (and
only if) X is Benford. In the first-digit setting, (5) simplifies to

E[S(X)I[d1,d1+1[(S(X))] = C. (6)

In this case also, condition (6) alone does not imply (2).

3. Some Results on the Significand Transform

The key ingredient for developing tests of the sum-invariance
property (5) is the transform

Zd(X) = 10k−1S(X)I[cd ,cd+1[(10k−1S(X)), (7)

with k ∈ Z
+. We write FZd(X) for the distribution function of

Zd(X) and we adopt the notation Zd1(X) when k = 1.
Our first result gives the general expression for FZd(X). We

prove in the Appendix that

FZd(X)(z) = P(Zd(X) ≤ z)
= (1 − pD(X)(d))I[0,cd[(z)

+(1 − pD(X)(d) + FS(X)(101−kz)
−FS(X)(101−kcd))I[cd ,cd+1[(z)
+I[cd+1,∞[(z). (8)
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By recalling (2), if X is Benford then expression (8) specializes
to

FZd(X)(z) =
(

1 − log10

(
cd + 1

cd

))
I[0,cd[(z) (9)

+
(

1 − log10

(
cd + 1

z

))
I[cd ,cd+1[(z) + I[cd+1,∞[(z),

which, when k = 1, in turn reduces to

FZd1 (X)(z) =
(

1 − log10

(
d1 + 1

d1

))
I[0,d1[(z) (10)

+
(

1 − log10

(
d1 + 1

z

))
I[d1,d1+1[(z)+I[d1+1,∞[(z).

The mean and the variance of Zd(X) are crucial for the
development of statistical testing procedures. From the results
given in the Appendix (see (A.1)), we obtain

E[Zd(X)] = 10k−1
∫ 101−k(cd+1)

101−kcd

z dFS(X)(z)

and

var[Zd(X)] = 102(k−1)

∫ 101−k(cd+1)

101−kcd

z2 dFS(X)(z) − E[Zd(X)]2.

In the case of Benford’s law we then recover the sum invariance
property (5). We also obtain the variance of Zd as

var[Zd(X)] = C
(

cd + 1
2

− C
)

. (11)

Furthermore, since E[Zd(X)Zd′(X)] = 0 for d �= d′, it holds
that cov[Zd(X), Zd′(X)] = −E[Zd(X)]E[Zd′(X)], and under
Benford’s law the covariances have the constant value

cov[Zd(X), Zd′(X)] = −C2. (12)

The moments given above provide the basis for the testing
procedures proposed in Section 5. In the following example,
we illustrate the relevance of the previous results in a family of
significand distributions that includes Benford’s law as a special
case. The family will also be used to assess the power of the
proposed tests in one scenario of Section 6.2, since it contains
significand distributions which are continuously indexed by a
parameter which can be taken as a measure of departure from
the law.

Example: Generalized Benford’s law. A random variable X
is distributed according to the generalized Benford’s law with
parameter α if

FS(X)(t) =
{

log10 t α = 0
tα−1

10α−1 α �= 0

for t ∈ [1, 10[. This law has been introduced to represent digit
distributions generated by a power-law (Pietronero et al. 2001).
It includes Benford’s law as the special case α = 0 by continuity.
Noteworthy, it also describes the leading-digit distribution of
the sequences of prime numbers and nontrivial Riemann zeta

zeroes (Luque and Lacasa 2009). Under the generalized Ben-
ford’s law, by means of (3), it holds

pD(X)(d) =
⎧⎨
⎩log10

(
cd+1

cd

)
α = 0,

(cd+1)α−cαd
10kα−10(k−1)α α �= 0.

Therefore, for α �= 0 expression (8) becomes

FZd(X)(z) =
(

1 − (cd + 1)α − cα
d

10kα − 10(k−1)α

)
I[0,cd[(z)

+
(

1 − (cd + 1)α − zα

10kα − 10(k−1)α

)
I[cd ,cd+1[(z)

+I[cd+1,∞[(z),

while it reduces to (9) for α = 0. In the first-digit case, under
the generalized Benford’s law

pD1(d1) =
⎧⎨
⎩log10

(
d1+1

d1

)
α = 0,

(d1+1)α−dα
1

10α−1 α �= 0.

Therefore, the first-digit marginal of (8) becomes

FZd1 (X)(z) =
(

1 − (d1 + 1)α − dα
1

10α − 1

)
I[0,d1[(z)

+
(

1 − (d1 + 1)α − zα

10α − 1

)
I[d1,d1+1[(z)

+I[d1+1,∞[(z),

further specializing to (10) for α = 0. Figure 1 shows the shape
of FZd1 (X) for selected values of α and d1, when X follows the
generalized Benford’s law. In each panel the (solid) line drawn
for α = 0 yields the corresponding first-digit distribution
function under Benford’s law, while that for α = 1 (dot-dashed
line) corresponds to the Uniform distribution. The generalized
Benford’s law does not display symmetry with respect to α,
that is, negative parameter values yield structurally different
patterns in FZd1 (X) than their positive counterparts: see, for
example, the lines corresponding to α = −1 and α = 1.
However, note that X is distributed according to the generalized
Benford’s law with parameter α if and only if 1/X is distributed
according to the generalized Benford’s law with parameter −α.
We refer to Barabesi and Pratelli (2020) for further results on
products of generalized Benford random variables. We prove in
the Appendix that under the generalized Benford’s law

E[Zd(X)] =
{

C α = 0,
α

α+1
(cd+1)α+1−cα+1

d
10kα−10(k−1)α α �= 0,

(13)

which reduces to

E[Zd1(X)] =
{

C α = 0
α

α+1
(d1+1)α+1−dα+1

1
10α−1 α �= 0

for k = 1. Again, the case α = 0 yields the sum-invariance
property (5).
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Figure 1. Plot of FZd1 (X) for different values of d1 ∈ {1, . . . , 9} and for α = −2 (dashed line), α = −1 (dotted line), α = 0 (solid line), and α = 1 (dot-dashed line), when

X follows the generalized Benford’s law.

4. First-Digit Benford’s Law

We recall that, when the random variable X is Benford, charac-
terization (2) is equivalent to both (3) and (5), while it implies
(1) and (6). Instead, the first-digit properties (1) and (6) may
still hold even if X is not Benford and condition (2) is not true.
In such a case, we are interested in studying whether (1) is
equivalent to (6), or (1) implies (6), or (1) is implied by (6). For
simplicity, and with a slight abuse of notation, in what follows
we take d = d1 in such a way that d ∈ {1, . . . , 9}.

If X is an absolutely continuous random variable and S(X)

admits a probability density function fS(X) with respect to the
Lebesgue measure on R, condition (1) is equivalent to

πd =
∫ d+1

d
fS(X)(t)dt = log10

(
d + 1

d

)
, (14)

for all d ∈ {1, . . . , 9}, while condition (6) is equivalent to

ηd =
∫ d+1

d
tfS(X)(t)dt = C, (15)

for all d ∈ {1, . . . , 9}. Expressions (14) and (15) provide a system
of functional equations in fS(X), with the constraint that fS(X) be a
proper density function. It seems prohibitive to address the rela-
tionship between (1) and (6) in such a general setting, although
inequalities involving πd and ηd may be easily obtained. Indeed,

by integrating ηd = ∫ d+1
d tfS(X)(t)dt by parts, it can be proved

that

ηd = dπd + FS(X)(d + 1) −
∫ d+1

d
FS(X)(t)dt,

since πd = FS(X)(d + 1) − FS(X)(d). By also recalling that
FS(X)(d) ≤ ∫ d+1

d FS(X)(t)dt ≤ FS(X)(d + 1), the following two
inequalities are then obtained:

dπd ≤ ηd ≤ (d + 1)πd (16)

and
ηd

d + 1
≤ πd ≤ ηd

d
. (17)

To obtain workable results, it is convenient to consider for
fS(X) the following family of simple functions

fS(X)(t) =
9∑

d=1
(adI[d,d+1/2[(t) + bdI[d+1/2,d+1[(t)), (18)

where the coefficients ad and bd are real numbers that satisfy
the set of constraints ad ≥ 0, bd ≥ 0 and

∑9
d=1(ad + bd)/2 =

1. These constraints ensure that fS(X) is a bona fide probability
density function. In such a case, we obtain

πd =
∫ d+1

d
fS(X)(t)dt = 1

2
ad + 1

2
bd, (19)
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and

ηd =
∫ d+1

d
tfS(X)(t)dt = 4d + 1

8
ad + 4d + 3

8
bd. (20)

The constants (π1, . . . , π9) and (η1, . . . , η9) must be chosen
in such a way that they jointly satisfy the set of constraints
on the coefficients (a1, . . . , a9) and (b1, . . . , b9). It follows from
expressions (19) and (20) that

ad = (4d + 3)πd − 4ηd (21)

and

bd = −(4d + 1)πd + 4ηd. (22)

If the set (π1, . . . , π9) is fixed, from the nonnegativity of ad and
bd, we thus obtain

ηd ∈
[(

d + 1
4

)
πd,

(
d + 3

4

)
πd

]
, (23)

while if the set (η1, . . . , η9) is fixed, it must hold

πd ∈
[

ηd
d + 3/4

,
ηd

d + 1/4

]
, (24)

with
∑9

d=1 πd = 1. It is worth noting that the previous bounds
are close to the universal bounds obtained in (16) and (17).
Therefore, the considered family of simple functions covers a
wide range of models, also encompassing extreme situations.

We can see from (23) that the interval of values (if it exists)
for which ηd is a fixed constant for d = 1, . . . , 9, say ηd = η, is
given by

η ∈
[

max
d

{(
d + 1

4

)
πd

}
, min

d

{(
d + 3

4

)
πd

}]
.

Therefore, if (1) holds, it can be easily shown that

η ∈
[

37
4

log10
10
9

,
39
4

log10
10
9

]
. (25)

The interval given in (25) contains the value η = C, as it must
be under Benford’s law.

We can retrieve the simple function fS(X) for which expres-
sions (1) and (6) jointly hold, without necessarily assuming (2),
by substituting the values πd = log10 ((d + 1)/d) and ηd = C
in Equations (21) and (22). The resulting function is displayed
in Figure 2. In addition, on the basis of (25), we can obtain
simple functions fS(X) such that (1) holds while η1 = . . . =
η9 = η, but with η �= C. These functions provide examples of
cases where the first-digit marginal distribution (1) holds, albeit
the corresponding sum-invariance property (6) does not. One
similar instance is described in Section 6.1.

Conversely, if ηd = C for d = 1, . . . , 9, we see from (24) that
it must be

πd ∈
[

C
d + 3/4

,
C

d + 1/4

]
, (26)

with the constraint
∑9

d=1 πd = 1. Therefore, examples of simple
functions fS(X) for which expression (6) is true, but expression
(1) is not, can be easily achieved. We again refer to Section 6.1

Figure 2. The simple function fS(X) for which expressions (1) and (6) jointly hold.

for a similar instance. On the basis of the well-known inequal-
ities on the Neper number, it is also worth noting that for the
Benford’s first-digit probability (1) it holds

log10

(
d + 1

d

)
∈

[
C

d + 1
,

C
d

]
,

in agreement with (17). Hence, the constraints provided by (26)
are rather severe, as it can be numerically assessed. At least for
the considered class of simple functions, when (6) holds the
probabilities (π1, . . . , π9) are likely to resemble rather closely to
log10 ((d + 1)/d), especially for d ≥ 3.

5. A Battery of Sum-Invariance Test Statistics for the
First Digit

5.1. Null Hypotheses and Significand-Based Test Statistics

Following the argument of Section 4, in the present section we
detail the simple, but practically important, first-digit case. We
again take d = d1 in such a way that d ∈ {1, . . . , 9}.

Given a random sample (X1, . . . , Xn) of n independent copies
of X, the inferential target consists in assessing whether X is
Benford. According to (2), this hypothesis is stated as

H0 : S(X)
L= 10U ,

or as H0 : 〈log10 |X|〉 L= U, where U is a Uniform random
variable on [0, 1[. However, a test of the strong Benford null
H0 might be considered too restrictive in practical applications
owing to measurement limitations, since the realizations of X
are often recorded up to few significant digits. We provide a
more precise qualification of this common-sense statement in
Section 6.1. As a consequence of the perceived limitations of H0,
the null hypothesis on the first digit

Hdigit
0 : D1(X)

L= D1(10U)
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is often preferred by fraud examiners in practice. Hdigit
0 does not

imply H0, but the converse is true. Rejection of Hdigit
0 thus leads

to rejection of H0.
Similarly, in its simplest first-digit form, a sum-invariance

test aims at assessing the one-dimensional null hypothesis

Hsum
0 =

9⋂
d=1

Hsum
0,d , (27)

where Hsum
0,d : E[Zd(X)] = C. According to property (6), the

sub-hypotheses Hsum
0,d must hold for all d ∈ {1, . . . , 9} when X is

Benford. As for Hdigit
0 , rejection of Hsum

0 leads to rejection of H0.
The connection between Hsum

0 and Hdigit
0 originates from the

relationship between the corresponding first-digit properties (6)
and (1), investigated in Section 4. Furthermore, in Section 6, we
show evidence that examination of the first-digit properties of
X may, perhaps surprisingly, lead to more powerful conclusions
about departure from Benford’s law than considering a test
statistic specifically constructed for the assessment of H0.

Several tests exist for Hdigit
0 . In what follows we define a

battery of test statistics constructed for Hsum
0 . To this aim, we

consider the standardized sample mean

Td = Z̄d − C√
C(d + 1/2 − C)/n

,

where

Z̄d = 1
n

n∑
i=1

Zd(Xi)

and the denominator is obtained from (11) with k = 1 and d ∈
{1, . . . , 9}. The developments in Section 4 show that the exact
distribution function of the new test statistics under Hsum

0 will
be tractable only in special cases. Their distribution is instead
readily estimable under the more stringent Benford null H0.
Therefore, our suggestion in view of anti-fraud applications is
to evaluate the significance of these statistics under H0, even if
they are defined under the more general Hsum

0 , and to interpret
them as proper tests of conformance to Benford’s law. We do
the same with the available tests of Hdigit

0 . The consequences
of this choice are assessed in Section 6.1, where we compare
the behavior of the tests under the different hypotheses, and in
Section 6.2 in terms of power under several alternatives when
H0 is the relevant null.

5.2. Hotelling-Type Test

Let Z̄ = (Z̄1, . . . , Z̄9)
T and let μ be the vector of order 9 given

by μ = (C, . . . , C)T. Under H0, E[Z̄] = μ and

var[Z̄] = n−1Σ ,

where, according to (11) and (12), Σ = (σdd′) is a (9×9) matrix
such that σdd = C(d + 1/2 − C) and σdd′ = −C2 if d �= d′.
Hence, a Hotelling-type statistic is defined as

Q = n(Z̄ − μ)TΣ−1(Z̄ − μ).

In principle, the distribution function of the test statistic Q
under Benford’s law, say FQ, could be computed exactly, but this
task is prohibitive in practice. A Monte Carlo approximation of
this distribution is instead readily available by bearing in mind
that 10U is a Benford random variable and that S(10U) = 10U .
Specifically, B Monte Carlo replicates of Z̄, say Z̄∗

1 , . . . , Z̄∗
B, are

generated as

Z̄∗
b = (Z̄∗

1,b, . . . , Z̄∗
9,b)

T,

where Z̄∗
d,b = n−1 ∑n

i=1 Zd(10Ub,i) and (Ub,1, . . . , Ub,n)
are independent Uniform random variables on [0, 1[, for
b = 1, . . . , B. Therefore, B Monte Carlo replicates of Q, say
Q∗

1, . . . , Q∗
B, are

Q∗
b = n(Z̄∗

b − μ)TΣ−1(Z̄∗
b − μ),

yielding the Monte Carlo approximation of FQ

F∗
Q(q) = 1

B

B∑
b=1

I]−∞,q](Q∗
b).

Correspondingly, for a realization q of Q, the p-value pQ(q) =
1 − FQ(q) is approximated by p∗

Q(q) = 1 − F∗
Q(q). Finally, on

the basis of Corollary 1.7 by Serfling (1980, p. 26), Q L→ χ2
9 as

n → ∞, where χ2
ν denotes the chi-square random variable with

ν degrees of freedom.

5.3. Sup-Norm Test

A sup-norm test statistic for assessing Hsum
0 in (27) is

M = max
d

|Td|. (28)

This test rejects Hsum
0 for large realizations of M. Furthermore,

if FM denotes the distribution function of M under H0 and
qM,1−γ /2 is its (1 − γ /2)th quantile, simultaneous acceptance
intervals at significance level γ for the marginal test statistics
Z̄1, . . . , Z̄9 are, for d = 1, . . . , 9,

[C − qM,1−γ /2
√

C(d + 1/2 − C)/n, (29)

C + qM,1−γ /2
√

C(d + 1/2 − C)/n].
These simultaneous acceptance intervals can supplement
exploratory procedures, such as those presented by Nigrini
(2012, chap. 5), with inferential statements about the digits
involved in rejection of Hsum

0 .
As shown in Section 5.2, Monte Carlo replicates of M can be

generated as M∗
b = maxd |T∗

d,b|, for b = 1, . . . , B, where

T∗
d,b = Z̄∗

d,b − C√
C(d + 1/2 − C)/n

.

From these replicates we obtain the Monte Carlo approximation
of FM , say F∗

M(m), while p∗
M(m) = 1 − F∗

M(m) is the approxi-
mated p-value for a realization m of M. Moreover,

q∗
M,1−γ /2 = inf

u∈R

{
1
B

B∑
b=1

I]−∞,u[(M∗
b) ≥ 1 − γ /2

}

is the quantile estimate to be substituted for qM,1−γ /2 in (29).
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5.4. Min p-Value Test

Combination of p-values provides an alternative procedure for
assessing the null hypothesis Hsum

0 and simultaneously the sub-
hypotheses Hsum

0,d (see, e.g., Rubin-Delanchy, Heard, and Lawson
2019, for a recent discussion in the field of anomaly detection
in computer networks). If F|Td| is the distribution function of
|Td| under H0, let p|Td |(td) = 1 − F|Td|(td) be the p-value for
a realization td of |Td|. Moreover, let ψ : [0, 1]9 → R be a
suitable combining function, usually chosen as a function of the
minimum. The min-p-value test statistic is

G = ψ(p|T1|(|T1|), . . . , p|T9|(|T9|)).

If the test rejects Hsum
0 for large values of G, its p-value is pG(g) =

1 − FG(g), where g = ψ(p|T1|(t1), . . . , p|T9|(t9)) is a realization
of G and FG is the distribution function of G under H0.

Now, G∗
b = ψ(p∗|T1|(|T∗

1,b|), . . . , p∗|T9|(|T∗
9,b|)), for b =

1, . . . , B, provide B Monte Carlo replicates of G, where

p∗|Td|(td) = 1
B

B∑
b=1

I]td ,∞[(|T∗
d,b|).

The Monte Carlo approximation of FG is then

F∗
G(g) = 1

B

B∑
b=1

I]−∞,g](G∗
b),

while p∗
G(g∗) = 1−F∗

G(g∗) is the Monte Carlo estimate of pG(g),
with

g∗ = ψ(p∗|T1|(t1), . . . , p∗|T9|(t9)).

The same (Ub,1, . . . , Ub,n) are now considered for com-
puting T∗

1,b, . . . , T∗
9,b, to keep the dependence structure of

p|T1|(|T1,b|), . . . , p|T9|(|T9,b|).

5.5. A Combined Test

Since Hsum
0 is not equivalent to Hdigit

0 , our final proposal is to
consider a combined test statistic tailored to the null hypothesis
Hdigit

0 ∩ Hsum
0 . The aim of this strategy is to develop a robust

procedure with good power under different alternatives, such as
those which are likely to be detected by focusing on Hsum

0 and
Hdigit

0 separately. For simplicity, we only detail the case where Q
is combined with the first-digit Pearson’s statistic, that is,

χ2 =
9∑

d=1

(Nd − npD1(d))2

npD1(d)
, (30)

with Nd = ∑n
i=1 I{d}(D1(Xi)). The choice of a suitable combin-

ing function φ : [0, 1]2 → R yields the test statistic

L = φ(pχ2(χ2), pQ(Q)),

where, for a realization x of χ2, pχ2(x) = 1 − Fχ2(x) is the p-
value and Fχ2 is the distribution function of χ2 under H0. If the
test rejects for large values of L, the p-value is pL(l) = 1 − FL(l),
where l = φ(pχ2(x), pQ(q)) is a realization of L and FL is the
distribution function of L under H0.

As before, the Monte Carlo approximation of the distribution
function of χ2 under H0 is

F∗
χ2(t) = 1

B

B∑
b=1

I]−∞,t](χ2∗
b ),

where the replicates χ2∗
1 , . . . , χ2∗

B of χ2 are generated as

χ2∗
b =

9∑
d=1

(N∗
d,b − npD1(d))2

npD1(d)
,

with N∗
d,b = ∑n

i=1 I{d}(�10Ub,i�)) for b = 1, . . . , B. The p-value
is approximated by p∗

χ2(x) = 1−F∗
χ2(x). Correspondingly, the B

Monte Carlo replicates of L are L∗
b = φ(p∗

χ2(χ
2∗
b ), p∗

Q(Q∗
b)), for

b = 1, . . . , B, where χ2∗
b and Q∗

b are computed by means of the
same (Ub,1, . . . , Ub,n). The Monte Carlo approximation of FL is

F∗
L(l) = 1

B

B∑
b=1

I]−∞,l](L∗
b),

while the Monte Carlo estimate of pL(l) is p∗
L(l∗) = 1 − F∗

L(l∗),
where l∗ = φ(p∗

χ2(x), p∗
Q(q)).

5.6. Extension to the First-k Significant Digits

Generalization to the case k > 1 is straightforward, even if
more cumbersome notation is required. We report the details
as supplementary materials.

6. Simulation Study

As in Section 5, we consider sum-invariance test statistics based
on the first-digit. We take the minimum as the combining
function in the computation of L. For this test statistic, we write
Lχ2,Q, Lχ2,M , and Lχ2,G when (30) is combined with Q, M,
and G, respectively. In our simulation study, we address two
major issues: the behavior of the tests when Hdigit

0 and Hsum
0

hold, but H0 does not, and their power under several alternative
distributions, some of which are directly related to the anti-fraud
context of our application domain. In the latter instance we take
H0 to be the relevant null, since the exact distribution function
of the test statistics under Hsum

0 is not available in general, as
emphasized in Section 4.

In anti-fraud operations related to international trade, like
the one reported by European Commission (2014) and like
those mentioned in Section 7, it is advisable to limit the number
of false rejections, because substantial investigations are often
demanding and time consuming. We thus display the results
obtained when γ = 0.01 is the nominal test size. A selection of
results for γ = 0.05 is instead given as supplementary materials.
Unless otherwise stated, we take B = 1,000,000 as the number
of Monte Carlo replicates for estimating distribution functions.
Rejection rates are computed on 100,000 independent simula-
tion runs.
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6.1. Test Behavior Under the First-Digit Benford’s Law

The Monte Carlo approximation to the distribution function of
our test statistics assumes that the data are generated from a
Benford random variable, implying that the samples are drawn
from the strong Benford null hypothesis H0. The resulting tests
are thus exact under Benford’s law and their empirical size
under the law will differ from the nominal one solely because
of simulation error.

Since H0 is more restrictive than Hdigit
0 and Hsum

0 , it is of
interest to see the behavior of the tests when X satisfies one
(or both) of these more general hypotheses but not H0. We rely
upon the results obtained in Section 4 to provide examples of
this behavior. We elaborate the models belonging to class (18)
in a variety of situations that span both worst-case scenarios and
alternatives very close to H0. Specifically, we consider the data
generating models that follow:

(a) Equations (21) and (22) with πd = log10 ((d + 1)/d) and
ηd = C (see Figure 2), so that expressions (1) and (6) jointly
hold, without necessarily assuming (2);

(b) the lower endpoint of interval (23) with πd =
log10 ((d + 1)/d), so that Hdigit

0 holds but Hsum
0 does

not.
(c) three instances where Hsum

0 holds but Hdigit
0 does not, with

π1, . . . , π9 chosen to obtain:

(c1) a “small” chi-square distance from Benford’s law
within intervals (26), for d = 1, . . . , 9; in the selected
case the actual distance is 0.0002;

(c2) an “intermediate” chi-square distance from Benford’s
law within intervals (26), for d = 1, . . . , 9; in the
selected case the actual distance is 0.0014;

(c3) the largest chi-square distance from Benford’s law
within intervals (26), for d = 1, . . . , 9; this distance
is 0.0096.

The distribution functions FS(X) associated to the five
selected models are displayed in Figure 3, where they are also
compared to the Benford’s distribution function (2). Case (a)
is extremely close to H0, as can be assessed both visually and
numerically (the sup-norm distance from (2) is 0.008). Cases
(b) and (c3) correspond instead to the most extreme deviations
from H0 in the considered class, the sup-norm distance of the
distribution functions from (2) being 0.124 and 0.162, respec-
tively. Alternatives (c1) and (c2) are milder and yield sup-norm
distances from (2) of 0.026 and 0.058, respectively.

Table 1 gives the Monte Carlo estimate of the rejection prob-
ability for each test in the five instances described above and
under the strong Benford null hypothesis H0. The results refer
to the case n = 100, while those for different sample sizes
are reported as supplementary materials. In our comparison,
we also include a Kolmogorov–Smirnov test statistic which is
built upon characterization (2) of the significand function under
Benford’s law. This statistic is defined as

KS = sup
t∈[1,10[

|F̂S(X)(t) − log10 t|, (31)

where F̂S(X) is the empirical distribution function of S(X) based
on the available random sample (X1, . . . , Xn). Strictly speaking,

Figure 3. Plot of FS(X) under different data-generating models. From left to right: Benford’s law, (a) and (b) (first row); (c1), (c2), and (c3) (second row). See text for
explanation.
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Table 1. Monte Carlo estimate of the rejection probability of each test under different data generating models, when n = 100.

Data generating model χ2 KS Q M G Lχ2,Q Lχ2,M Lχ2,G

Benford’s law: H0 true 0.010 0.009 0.010 0.010 0.010 0.010 0.010 0.010
(a): Hdigit

0 and Hsum
0 true; H0 false 0.010 0.011 0.010 0.010 0.010 0.010 0.010 0.010

(b): Hdigit
0 true; Hsum

0 false 0.010 0.303 1.000 0.004 0.006 1.000 0.008 0.008

(c1): Hsum
0 true; Hdigit

0 false 0.010 0.012 0.010 0.010 0.010 0.010 0.009 0.010

(c2): Hsum
0 true; Hdigit

0 false 0.010 0.034 0.011 0.010 0.011 0.011 0.011 0.011

(c3): Hsum
0 true; Hdigit

0 false 0.015 0.604 0.018 0.012 0.013 0.019 0.016 0.016

NOTE: The nominal test size is 0.01.

KS is constructed to provide a test of the strong Benford null H0,
not just of Hsum

0 and Hdigit
0 . It can thus be considered a sensible

competitor to our tests when their focus is on checking the fit to
Benford’s law, as it happens in the simulation study of Section 6.2
and in anti-fraud applications.

The first two lines of Table 1 confirm that the joint set of
constraints implied by the validity of both Hdigit

0 and Hsum
0

(model (a)) makes the distribution of each test statistic virtually
indistinguishable from that obtained under the strong Benford
null H0. In this case even the omnibus KS test is not able to detect
the departure from H0 with customary sample sizes and much
larger values of n are required. For instance, the power of KS
under model (a), computed for simplicity over 1000 replications,
raises to 0.052 if n = 10,000.

When moving to the scenario where only Hsum
0 is true (mod-

els (c1)–(c3)), we first note that class (18) provides a rather
extreme choice with respect to H0, since it gives rise to absolutely
continuous distribution functions for S(X) which are not differ-
entiable at 18 points. We also recall that the universal bounds for
πd under Hsum

0 , given in (16), are fairly close to those obtained
from (26). The considered class is thus convenient to assess
the behavior of our sum-invariance tests in a relatively unfa-
vorable framework. By imposing more realistic models (e.g., by
considering continuously differentiable distribution functions
for S(X)), the proposed tests should arguably improve their
empirical performance under Hsum

0 when significance is instead
evaluated under the more stringent H0.

In spite of the “pessimistic” nature of the selected class, the
empirical size of our tests is close to the nominal value under
both models (c1) and (c2). In the supplementary materials, it
can be seen that the same conclusion is also true when γ = 0.05
and when n = 500. Therefore, the distribution functions of our
test statistics under H0 are good approximations to those under
Hsum

0 for customary sample sizes even when the two hypotheses
are relatively far apart. On the other hand, assuming H0 when
model (c2) holds can have more severe consequences on the
Kolmogorov–Smirnov test, especially when n is of the order of
a few hundreds (see the supplementary materials). This result
reinforces the idea that a test specifically tailored to H0, such as
KS, may be too stringent under moderate violations of Benford’s
law which are very unlikely to correspond to frauds, since Hsum

0
is still satisfied.

The least favorable choice for our tests under Hsum
0 is data

generating model (c3), where the true density fS(X) is the farthest
admissible one from Benford’s law within class (18). Even in this
problematic instance the empirical size of M and G is close to the
nominal target. Both Q and χ2 instead exhibit some liberality,

thus showing moderate discrepancy between the actual test dis-
tribution and the approximation provided by the Monte Carlo
procedure described in Section 5. Although the performance of
our approach is not ideal in this scenario, we note that similar
and even worse degrees of liberality may hold for the asymptotic
version of the chi-square test (see, e.g., Cerioli et al. 2019, Table
1), which is often the selected choice in practice. Furthermore, a
correction procedure similar to that proposed in Cerioli et al.
(2019), and applied in Section 7.2, can be adopted if strict
control of the nominal size under Hsum

0 is deemed necessary.
This procedure, which can be easily extended should class (18)
be replaced by a wider family of density functions, computes
the Monte Carlo estimates of the null quantiles under model
(c3) and compares the observed test statistics to such quantiles.
The sum-invariance tests thus become exact under the least
favorable specification of Hsum

0 . They also become slightly con-
servative under the other models that satisfy Hsum

0 and that are
closer to H0. To provide a quantification of the corresponding
conservativeness, in the supplementary materials we repeat the
information given in Table 1 when the null distribution function
of each test statistic is estimated by Monte Carlo simulation from
model (c3).

The situation is considerably different when only Hdigit
0 holds.

The distribution of χ2 is virtually unchanged by this relaxation
of the data-generating process, even if model (b) is the most
extreme choice in the selected class. The effect on both KS and
Q is instead paramount. It is perhaps surprising to see that the
rejection rate of the first-digit statistic Q is much higher than
that of the significand-based statistic KS, which is specifically
constructed to provide a test of the strong Benford null H0.
However, we argue that this is a positive feature of Q in view
of anti-fraud applications, since it is much easier in practice to
fabricate first digits that conform to (1) than to replicate the
sum-invariance property (6). One reason for the large power of
Q under model (b) is that the generalized variance of Z̄ is much
smaller than under Benford’s law. The deviance matrix nvar[Z̄]
under model (b), say Υ , is reported in the supplementary mate-
rials and we obtain

det (Υ Σ−1) = 0.11.

The information provided by the random vector Z̄ and by its
full covariance matrix can thus outperform a complete test
of fit of model (2) if just the first-digit distribution conforms
to Benford’s law. Further examples of the advantages of Q in
possibly fraudulent situations where Hdigit

0 holds, but H0 does
not, are reported in the sections below.
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We conclude our analysis of model (b) by noting the remark-
able difference in power between the Hotelling-type and the
other two sum-invariance tests. The reason is the peculiar dis-
tribution of M and G, which turns out to be more concentrated
than under Benford’s law. Figure 4 compares the estimated
quantiles of M under the two models, in the case n = 100.
The shorter right tail of the distribution of M under model
(b) yields a reduced variability of the test statistic, whose stan-
dard error drops from 0.55 under H0 to 0.49 under model
(b). A corresponding decrease is observed for the 99th quan-
tile. Such a peculiar behavior can be explained by looking at
Table 2, which reports the estimates of E(|Td|) and var(|Td|),
for d = 1, . . . , 9, under both models. When H0 holds all the
first-digit statistics have roughly the same mean and the same
variance, thus ensuring good properties to the sup-norm metric
in (28). On the contrary, we observe a noticeable shift in the
parameters of |T1| under model (b). The resulting heteroscedas-
ticy is not taken into account by M, as it instead happens
with Q.

Figure 4. Quantile plot comparing the empirical distribution of M when X is a
Benford random variable (horizontal axis) with the same distribution when X is
generated according to model (b) (vertical axis), in the case n = 100. Both
distributions are estimated from 100,000 Monte Carlo replicates.

6.2. Power Comparison

We now investigate the ability of our tests, as well as that of χ2

and KS, to detect departures from Benford’s law in a number
of practically relevant alternative models, some of which can
be directly related to the anti-fraud context of our application
domain. The null distribution function of each test statistic is
estimated using the Monte Carlo procedure described in Sec-
tion 5. Therefore, all the tests under comparison are exact under
H0 and their empirical performance under the strong Benford
null is shown in the first line of Table 1.

In our first power scenario we assume that X is a Lognormal
random variable, so that the observed data come from one
of the most frequently adopted distributional models in many
fields, including the analysis of the economic aggregates that
arise in international trade (Barabesi et al. 2016a, 2016b). It
is well known (Berger and Hill 2015, p. 55) that a Lognormal
random variable becomes practically indistinguishable from a
Benford random variable when the shape parameter is large.
Therefore, this popular data-generating mechanism provides
an alternative to Benford’s law whose separation from the null
model can be continuously indexed by its shape parameter. We
take the scale parameter equal to 1, but similar results have
been observed for different choices. In our simulations, the
shape parameter ranges between 0.5 and 0.8, since outside this
interval all the tests share similar performances. Table 3 shows
the power of our tests, together with that of the Pearson’s chi-
square statistic (30) and of the Kolmogorov–Smirnov statistic
(31), when n = 100. The results for different sample sizes are
reported as supplementary materials. All our tests have sensible
properties, with power converging to 1 as the shape parameter
of the Lognormal distribution decreases and as the sample size
grows (see the supplementary materials). There is a considerable
advantage of Q over M and G, due to the information provided
by the deviance matrix nvar[Z̄].

Since no parameter is estimated under Benford’s law, taking
into account the full covariance matrix of Z̄ does not lead to
overfitting and can thus be recommended.

Our Hotelling-type test also shows a considerable advantage
over the KS test of H0 provided by (31), and a slight but sys-
tematic improvement over the chi-square test derived under
Hdigit

0 . The advantage of Q over KS is further documented in

Table 2. Monte Carlo estimates of E(|Td|) and var(|Td|), for d = 1, . . . , 9, under H0 (Benford’s law) and model (b), based on 100,000 Monte Carlo replicates.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

H0
E(|Td|) 0.794 0.798 0.799 0.803 0.794 0.801 0.797 0.793 0.805
var(|Td|) 0.359 0.362 0.361 0.363 0.370 0.360 0.363 0.372 0.350

Model (b) E(|Td|) 1.002 0.802 0.781 0.774 0.774 0.767 0.769 0.785 0.788
var(|Td|) 0.453 0.342 0.326 0.325 0.327 0.339 0.349 0.338 0.336

Table 3. Estimated power when X is a Lognormal random variable with scale parameter 1, for different values of the shape parameter and n = 100.

Shape parameter χ2 KS Q M G Lχ2,Q Lχ2,M Lχ2,G

0.5 0.952 0.733 0.961 0.432 0.484 0.961 0.933 0.932
0.6 0.454 0.254 0.472 0.140 0.140 0.473 0.394 0.393
0.7 0.111 0.073 0.115 0.051 0.047 0.114 0.091 0.091
0.8 0.032 0.027 0.033 0.024 0.020 0.033 0.029 0.028

NOTE: The nominal test size is 0.01.
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Figure 5. Left-hand panel: Quantile plot comparing the empirical distribution of the p-values computed from Q (solid line) and from KS (dashed line) when X is a Lognormal
random variable with shape parameter 0.6 (horizontal axis) with the Uniform distribution (vertical axis), in the case n = 100. Right-hand panel: Zoom of the quantile plot
in a rectangular area close to the origin.

Table 4. Estimated power when X is a Weibull random variable with scale parameter 1, for different values of the shape parameter and n = 100.

Shape parameter χ2 KS Q M G Lχ2,Q Lχ2,M Lχ2,G

1.2 0.037 0.048 0.038 0.025 0.026 0.038 0.032 0.034
1.4 0.113 0.087 0.116 0.050 0.131 0.116 0.093 0.095
1.6 0.289 0.170 0.302 0.096 0.097 0.303 0.242 0.242
1.8 0.554 0.327 0.583 0.192 0.205 0.583 0.492 0.493
2.0 0.799 0.546 0.834 0.367 0.402 0.833 0.751 0.754
2.2 0.936 0.764 0.958 0.588 0.630 0.957 0.913 0.916

NOTE: The nominal test size is 0.01.

Figure 5, which contrasts the empirical distribution of the p-
values computed from each test statistic under the Lognor-
mal model with shape parameter 0.6 (horizontal axis) to the
Uniform distribution of the same p-values under H0 (vertical
axis). It is clearly seen that the distribution of Q under this
alternative is considerably farther from the null than that of
KS, and especially so in the right tail, where a much larger
proportion of very small p-values is observed.

Our second power scenario assumes that X comes from
another popular distributional model in economic and engi-
neering applications. Specifically, we take X to be distributed
according to a Weibull distribution whose shape parameter
ranges between 1.2 and 2.2. Also in this case departure from
Benford’s law can be indexed by the shape parameter, since
a Weibull random variable is reasonably close to be Benford
when the shape parameter is not too large (Miller 2015, §3.5.3).
Explicit error estimates for convergence of Weibull distributions
to Benford’s law can be found in Dümbgen and Leuenberger
(2008, 2015), while Engel and Leuenberger (2003), Miller and
Nigrini (2008), and Berger and Twelves (2018) addressed the
special case of the Exponential distribution. We take the scale
parameter equal to 1, but similar results have been observed for
different choices. Table 4 gives the findings when n = 100, while
those for different sample sizes are reported as supplementary
materials. Our results confirm those obtained under the Log-
normal alternative, with Q considerably more powerful than M,
G and also KS, except when X comes very close to be Benford.
We thus see that first-digit test statistics still outperform the
ideally more stringent test based on (31) for a large part of the
parameter space where comparison among tests is useful. These

results also suggest that for the Weibull distribution there might
be more effective discrepancy measures than the Kolmogorov–
Smirnov metric considered by Miller (2015, p. 101), at least in
this part of the parameter space.

In our third power scenario, we model the digit distribution
directly and we take X to be distributed according to the gener-
alized Benford’s law with α �= 0. For instance, under this model
the first-digit masses span from pD1(1) = 0.556 to pD1(9) =
0.012 when α = −1, while we recover the uniform first-digit
distribution pD1(1) = · · · = pD1(9) = 1/9 when α = 1.
Table 5 reports power for selected values of α ∈ [−0.8, 0.8] when
n = 100, while we again refer to the supplementary materials
for further sample sizes. The generalized Benford distribution
appears to be the least favorable case for first-digit test statistics
because KS is the most powerful choice for all values of α.
Furthermore, there is no systematic winner between Q and χ2,
since the former dominates when α < 0 and the latter is
to be preferred for α > 0. However, the performance of the
simple combiner Lχ2,Q is consistently close to the best solution
provided by either Q or χ2. We thus conclude that combination
of these two test statistics provides a robust strategy when the
direction of the departure from Benford’s law is unknown. A
further strategy, suggested by the results in Table 5, will be to
combine Q and KS, to borrow strength from the best performer
under the specific alternative. We will pursue this path in future
research.

Our last power scenario refers to a potentially relevant
instance of fraud. Therefore, it is directly related to the appli-
cation domain considered in Section 7. In this scenario we
mimic the behavior of a probability-savvy fraudster who ensures
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Table 5. Estimated power under the generalized Benford’s law with parameter α �=
0, for n = 100.

α χ2 KS Q M G Lχ2,Q Lχ2,M Lχ2,G

−0.8 0.839 0.989 0.860 0.687 0.758 0.861 0.814 0.830
−0.6 0.445 0.869 0.475 0.337 0.417 0.474 0.421 0.457
−0.4 0.106 0.469 0.121 0.086 0.122 0.119 0.103 0.125

0.4 0.254 0.379 0.238 0.133 0.132 0.244 0.223 0.224
0.6 0.652 0.809 0.631 0.371 0.389 0.641 0.607 0.612
0.8 0.932 0.980 0.925 0.697 0.722 0.929 0.914 0.916

NOTE: The nominal test size is 0.01.

Table 6. Estimated power when D1(X) follows (1) while the other digits of X follow
the generalized Benford’s law with parameter α.

n = 200 n = 500

α χ2 χ2{2} KS Q χ2 χ2{2} KS Q

−1 0.010 0.034 0.016 0.054 0.010 0.155 0.022 0.226
−0.6 0.010 0.016 0.012 0.015 0.010 0.036 0.014 0.028

0.6 0.010 0.016 0.010 0.036 0.011 0.026 0.013 0.107
1 0.010 0.020 0.010 0.065 0.010 0.046 0.016 0.239
2 0.010 0.034 0.011 0.151 0.010 0.117 0.028 0.564
3 0.010 0.047 0.013 0.241 0.010 0.212 0.042 0.770

NOTE: The nominal test size is 0.01.

compliance of the first few digits of X to Benford’s law, but is
not able to ensure that X is truly Benford, due to administrative
or accounting constraints. For instance, Nigrini (2012, p. 255)
reports the possibly suspect case of the list of payments made
shortly before bankruptcy by a major company. This list shows
almost perfect compliance with the two-digit extension of (1),
thus calling for the use of more complex analytical tools than
digit-conformance tests. Similar cautionary claims about the
validity of (1) in the presence of data manipulation abound in
the digital forensic literature (see, e.g., Kossovsky 2015, p. 82),
while some studies seem to indicate that people need not be
terribly bad at inventing numbers (Nigrini 2012, chap. 13), even
without the help of random simulation. An example of this sub-
tle, but potentially very dangerous, contamination framework
is given in Table 6, where D1(X) follows (1) while the other
digits of X are generated according to the generalized Benford’s
law with parameter α. We display the results for n = 200 and
n = 500, but similar patterns are observed with smaller sample
sizes. As expected, the first-digit Pearson’s statistic (30) is not
able to detect the departure from Benford’s law. Therefore, as
a benchmark we now compute the two-digit version of (30),
χ2{2} in the notation of the supplementary materials, which
is sometimes advocated as the primary choice in applications
with moderate sample sizes (see, e.g., Nigrini 2012, p. 78). It is
clearly seen that Q often outperforms χ2{2} to a large extent,
even if use of the latter implicitly assumes the additional (but
usually unknown) information that contamination occurs in
one of the first-two digits and not in the subsequent ones. The
power values (not shown in the table) of M and G are instead
inferior in this example, as they are under model (b) in Table 1.
We thus argue that also in this framework information on the
covariance structure of Z̄ is essential to detect departure from
Benford’s law when some of the digits marginally do follow the
law. Surprisingly, the performance of KS is extremely poor in
this setting, in spite of the fact that all the digits after the first
one follow a generalized Benford’s model, against which test (31)
was seen to have the largest power.

Table 7. Estimated power of sum-invariance statistics under truncation to 0 of the
last digits of a Benford random variable (see the text for details), with n = 200.

Kmin Q M G

2 0.0102 0.0097 0.0096
3 0.0100 0.0100 0.0097
4 0.0098 0.0093 0.0093
5 0.0102 0.0096 0.0096

NOTE: The nominal test size is 0.01.

Finally, we show that our sum-invariance statistics are not
affected by contamination in the last significant digits, like
rounding errors or other numerical inaccuracies, although all
the recoded digits of X are involved in their computation
through the standardized sample means T1, . . . , T9. In partic-
ular, we report the results obtained when each Benford random
variable in the sample, simulated according to (2), is multi-
plied by 10K . The order of magnitude K is randomly sampled
from an empirical data base of customs declarations with the
constraint that K > Kmin and Kmin ∈ {2, 3, 4, 5}. The first
three digits are then retained, while the others are set equal
to zero. Table 7, drawn for the different values of Kmin, shows
that the power under this contamination scheme is virtually
indistinguishable from the test size, meaning that the number
of rejections induced by the truncated digits is negligible. This
is another important property of test statistics for their use in
anti-fraud applications, since rounding and inaccuracies in data
typically have very different implications than data fabrication
(see, e.g., Diaconis and Freedman 1979).

7. Application to the Detection of Customs Frauds

7.1. Analysis of Trade Data

To show the potential of our sum-invariance tests for the pur-
pose of fraud detection, we describe their application to the
transaction data reported in the customs declarations of two
traders for which one instance of fraudulent underreporting
of the declared value, a so-called undervaluation, was found.
These data were collected in the context of a specific operation
on import undervaluation in a member state of the European
Union. Such anti-fraud operations typically rely on sophisti-
cated risk profiling systems that aim at predicting possible frauds
on the basis of the combination of various types of alerts. These
systems often give large weight to the signals provided by outlier
detection tools that are applied to monthly-aggregated data (see
Perrotta et al. 2020, and the references therein), thus not being
directly comparable to the present proposal. Furthermore, an
important issue in the identification of customs frauds by means
of outlier diagnostics is that substantive controls are costly
and time consuming, so that only a very limited number of
individual transactions are usually checked for each suspected
trader. It is then essential that statistical tests provide a hint to
the cases where more controls are needed. Our sum-invariance
approach is a natural candidate to fulfill this need, since it is
particularly effective for the purpose of hunting serial fraudsters
(see Section 7.2).

For the first trader that we analyze n = 171, but only 6
transactions were actually checked. The p-value of the Pearson’s
statistic (30) is 0.023, suggesting only mild evidence of data
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manipulation in the whole set of transactions. On the contrary,
for the sum-invariance tests we obtain q = 25.326, m = 3.402,
and g = 0.999, yielding p-values p∗

Q(q) = 0.003, p∗
M(m) =

0.009 and p∗
G(g) = 0.007, respectively. Combination of χ2 and Q

retains the high power of the sum-invariance test, since p∗
L(l∗) =

0.004. Therefore, our approach suggests that more transactions
of this trader should be checked in the search for frauds.

For the second trader we observe n = 292 transactions, of
which only 3 were checked. The results that we obtain resemble
those for the savvy contamination scheme described in Sec-
tion 6.2, since the p-value of (30) is 0.611, whereas p∗

Q(q) =
0.005, p∗

M(m) = 0.555, and p∗
G(g) = 0.559. Therefore, Q

points to the conclusion that more transactions could have
been manipulated, even if their first-digit distribution conforms
to Benford’s law. Combination of χ2 and Q again provides a
powerful, yet robust, strategy, yielding a p-value of 0.006. In
this example the information mainly comes from the inclu-
sion in the test statistic of the null covariance structure of the
standardized averages (Z̄1, . . . , Z̄9) involving all the recorded
digits. Further inspection of the trader indeed shows strong
discrepancy between the estimated conditional probabilities of
subsequent digits given the first one and the corresponding
values expected under Benford’s law (see Hill 1995b, p. 355). For
instance, for d2 ∈ {0, 1, . . . , 9}, Table 8 reports the estimates
of P(D2(X) = d2 | D1(X) = 1) computed for this trader,
together with the null conditional probabilities obtained from
(4). The chi-square statistic for this table (based on a subset of 91
transactions) is 23.12 and suggests strong disagreement between
estimated and null conditional digit probabilities. Neither (30)
nor its multi-digit extensions would be able to detect this subtle
departure from Benford’s law, whose anti-fraud implications are
worth to be investigated.

7.2. Comparison With Outlier Detection

Following Bolton and Hand (2002), most unsupervised fraud
detection methods look for anomalies in the data. Therefore, all
of these techniques assume (either explicitly or implicitly) that
the available data have been generated by a k-variate random
vector, say Y , whose distribution function FY is an (unknown)
element within the following family C of distribution functions
(see, e.g., Cerioli, Farcomeni, and Riani 2019, and the references
therein)

C = {FY : FY = (1 − λ)F0 + λF1, λ ∈ [0, 1[}. (32)

In this model, F0 is the distribution function of the “good” part
of the data, that is, F0 represents the postulated null model, F1
is the contaminant distribution, which is usually left unspecified
except at most for the assumption of some regularity conditions,
and λ is the contamination rate. Consistent estimation of the
parameters in F0, which is crucial for correct identification of
the outliers, requires the adoption of robust high-breakdown

techniques and often assumes Y to be normally distributed in
the absence of contamination. See, for example, Cerioli (2010),
Riani, Atkinson, and Perrotta (2014), Riani, Corbellini, and
Atkinson (2018), and Rousseeuw et al. (2019) for a description
of relevant methods in the anti-fraud domain.

Cast in the framework of international trade, where k = 1
and the value of an individual import transaction originates
from the product of the traded amount with the unit price, a
simple form of the postulated null model in (32) is

F0(y) = �

(
y − β0 − β1v

b

)
, (33)

where y denotes the transaction value and v is the traded
amount, both on a logarithmic scale, β0 and β1 are unknown
parameters, and � is the distribution function of a standard
Normal random variable. Therefore, if a random sample of
N transaction values is available together with the associated
traded amounts, yielding vectors (Y1, . . . , YN) and (v1, . . . , vN),
it is assumed that in the absence of fraud each transaction
follows the simple regression model

Yi = β0 + β1vi + εi, (34)

for i = 1, . . . , N, where ε1, . . . , εN are independent Normal
errors with mean 0 and variance b2. In this setting, λ defines
the probability of contamination, and thus of potential fraud,
for each transaction drawn from population (32). Therefore, for
transaction i we have that λ = λi and outlier detection aims at
checking whether λi = 0, for i = 1, . . . , N.

Our conformance tests to Benford’s law instead rely on a
different specification of contamination model (32) for interna-
tional trade data. Although k = 1 as in (33), in our framework
Y is the significand of the transaction value and

F0(t) = log10 t I[1,10[(t) + I[10,∞[(t), (35)

as in (2). It is apparent that no parameter has to be estimated
under model (35). Even more importantly, our operational
generating model for outlier-free significands is trader-specific.
Given a set of L traders, the model for trader l is written as

Yi,l = 10Ui , (36)

where i = 1, . . . , nl and l = 1, . . . , L, Yi,l is the significand of
the ith transaction value for trader l, nl is the total number of
transactions for this trader and Ui is a Uniform random variable
on [0, 1[. Cerioli et al. (2019) investigated the trade conditions
under which (36) may yield a reasonable approximation for
the first-digit distribution of the customs values of the selected
trader. They also suggested a correction to the distribution
of Pearson’s statistic (30) when these conditions are not met.
Since λ now defines the probability of contamination among
the transactions of trader l, that is, λ = λl, rejection of the
hypothesis λl = 0 labels trader l as a potential fraudster. This
information is not available under model (33).

Table 8. Estimates of the conditional probabilities P(D2(X) = d2 | D1(X) = 1) for d2 ∈ {0, 1, . . . , 9} (first row), and their values under Benford’s law (second row).

d2 = 0 d2 = 1 d2 = 2 d2 = 3 d2 = 4 d2 = 5 d2 = 6 d2 = 7 d2 = 8 d2 = 9

0.077 0.055 0.132 0.055 0.066 0.143 0.132 0.088 0.165 0.088
0.138 0.126 0.115 0.107 0.100 0.093 0.087 0.082 0.078 0.074
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Comparison of models (34) and (36) shows that outlier
detection and conformance to Benford’s law look at different
types of anomalies. They also entail different computational
efforts, since the former requires that a complex algorithm for
robust parameter estimation be applied to a potentially very
large number N of market transactions, while the latter only
needs L repeated calls to a goodness-of-fit algorithm which is
generally fast (even allowing for Monte Carlo estimation of the
test distribution).

It may be expected that outlier detection could help to iden-
tify large individual frauds in specific markets, while Benford
analysis could be beneficial for the labeling of serial fraudsters.
To provide empirical evidence of this intuition, in what follows
we make the simplifying assumption that only one product
originates all the transactions under investigation, so that (34)
may become a suitable data generating model for outlier-free
data, on a logarithmic scale. Among the five robust regression
methods applied to trade data by Riani, Atkinson, and Perrotta
(2014), we first adopt least trimmed squares (LTS) to estimate
the parameters in (34) and to identify the outliers. We per-
form our analysis with the implementation of LTS which is
available in the MATLAB FSDA toolbox described by Perrotta
et al. (2020, p. 9) and accessible from http://rosa.unipr.it/fsda.
html. This algorithm appears to be reasonably fast with just one
predictor, allowing us to handle a realistic number of traders
and market transactions. We select the default initialization
option, involving examination of 3000 random subsamples,
and a breakdown value of 0.25. The latter is often deemed to
be a sensible compromise between robustness and efficiency
when the expected number of outliers in not too large (Hubert,
Rousseeuw, and Van Aelst 2008, p. 95). Outlier labeling comes
from the analysis of robust regression residuals, which can be
compared to their asymptotic Normal distribution when the
number of transactions is large. We set 0.01 as the nominal
test size for outlier detection, to ensure comparison with the
simulation results in Section 6.2. Correspondingly, we apply the
correction method of Cerioli et al. (2019) to the distribution of
our sum-invariance tests, as well as to the distribution of χ2 and
KS, since (35) is not an adequate model under a trade scenario
involving just one product. The nominal size of such tests is
again 0.01.

We simulate transaction values for L = 1000 “idealized”
traders of the selected product, whose specific description is
omitted for confidentiality reasons. This product is chosen, after
appropriate anonymization that makes it impossible to infer the
features of individual operators, from a national database of one
calendar-year customs declarations (see Cerioli et al. 2019, for
further details on the data). Our simulation scheme is able to

mimic the main features observed in the original market of the
product. Therefore, in the selection process we have carefully
avoided the products involving multiple populations, a pattern
that often affects customs trade data (Cerioli and Perrotta 2014;
Cerasa, Torti, and Perrotta 2016) but that violates the assump-
tion of model (34) for genuine transactions. We assume that
each idealized operator trades a constant number of nl = 100
transactions, thus replicating the case n = 100 described in
Section 6.2. The total number of transactions for outlier detec-
tion in (34) is then N = 100,000, with the assumption that at
least N/4 + 1 of them follow the null model. For simplicity, in
our trader-specific version of contamination model (32) we also
assume that each fraudster has the same propensity to fraud, so
that λl is constant among the cheating traders. It is worth noting
that the absence of parameters to be estimated under (35) allows
us to extend model (32) to include the extreme case λl = 1,
defining a “complete” fraudster.

We generate noncontaminated transactions by picking unit
price and traded quantity of the selected product at random
from the same national database of customs declarations. Specif-
ically, we adopt a product-constrained version of the simulation
algorithm of Cerioli et al. (2019, SI Appendix, §2) and we
randomly assign each transaction to a trader. The first column of
Table 9 reports the empirical size of the Benford tests Q, X2, and
KS (for these tests size corresponds to the instance where λl = 0
for l = 1, . . . , L) and also the empirical size of outlier detection
through LTS, over 100 replications of the market simulation
exercise. It is seen that all the Benford methods provide good
control of the proportion of false fraud signals when indeed no
contamination is present in the data, while LTS turns out to be
somewhat conservative with this kind of data structures. They
also confirm that the correction method of Cerioli et al. (2019)
works equally well for Q and KS, as it was for χ2.

We then contaminate 4000 transactions in the market
through the digit contamination scheme which is detailed in
the supplementary materials. The artificially introduced frauds
are uniformly split within a proportion τ of fraudulent traders,
with τ ∈ {0.04, 0.05, 0.08, 0.1, 0.2, 0.4}. This framework allows
us to compare our Benford analysis with outlier detection under
different cheating scenarios. For instance, if τ = 0.04 we only
have 40 fraudsters among the 1000 traders and all the 100
transactions of each fraudster are then contaminated, yielding
λl = 1 if trader l is a fraudster and λl = 0 otherwise. On the
opposite end, if τ = 0.4 as many as 400 traders are cheating, but
all of them in 10 transactions only (hence, λl = 0.1 if trader l is a
fraudster). Table 9 gives the corresponding power results, again
averaged over 100 replications of the market simulation exercise.
As expected, the detection power of LTS does not depend on

Table 9. Estimated size and power over 100 replications of the market simulation exercise for different proportions τ of fraudsters (the corresponding propensity to fraud
of each fraudster l, λl , is also shown).

Size τ = 0.4 τ = 0.2 τ = 0.1 τ = 0.08 τ = 0.05 τ = 0.04
λl = 0 λl = 0.1 λl = 0.2 λl = 0.4 λl = 0.5 λl = 0.8 λl = 1

Q 0.009 0.025 0.102 0.777 0.983 1.000 1.000
X2 0.010 0.026 0.070 0.318 0.517 0.959 1.000
KS 0.010 0.036 0.138 0.694 0.911 1.000 1.000
LTS 0.002 0.393 0.392 0.392 0.391 0.392 0.391

NOTE: The nominal size of each test is 0.01. The contamination scheme is described in the supplementary materials.

http://rosa.unipr.it/fsda.html
http://rosa.unipr.it/fsda.html
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τ (and hence neither on λl), since testing is performed on the
N available transactions independently of the trader. Outlier
detection is advantageous when the propensity to fraud is low,
so that information about the behavior of each trader is less
relevant. However, it is clearly outperformed by both Q and
KS in the case of serial cheating, with a large gap already for
λl = 0.4, at least for this specific product and choice of robust
method.

To investigate the stability of our results under the same
market conditions, we perform a further comparison with the
Forward Search (FS) for regression, which is another major
robust tool for parameter estimation in (34) and for outlier
detection in the domain of international trade (Perrotta et al.
2020). FS is also the recommended method in Riani, Atkin-
son, and Perrotta (2014). It is not advisable to run the full FS
algorithm in the present context, where N is very large and the
contamination rate is not extreme. We thus adopt the “batch”
version of FS for regression developed by Torti, Corbellini,
and Atkinson (2021), who suggested to reduce the number of
updating steps in the algorithm for the analysis of big datasets.
In our implementation each FS step corresponds to the inclu-
sion of 100 additional observations in the fitting subset. For
simplicity we now restrict to a single fraud scenario, again with
4000 contaminated transactions and 100 market replicates as
in Table 9, since we have seen that outlier detection does not
depend on the propensity to fraud. To save computing time we
also take advantage of the knowledge of the contamination rate
and we start the usual monitoring process implied by FS from
a subset of cardinality 0.9N = 90,000 (the robust fitting algo-
rithm is instead unaltered). Using now a larger proportion of
uncontaminated data, we may expect to reach higher efficiency
in parameter estimation, and larger power in the subsequent
outlier identification phase, than through LTS. The estimated
power of FS is in fact 0.498, about ten decimal points higher
than the average value obtained for LTS. However, this gain
comes at the cost of moderate liberality, the empirical size in
100 uncontaminated markets being 0.043. Even more important
for the present comparison is the fact that the gain in power of
outlier detection through FS is still limited when contrasted to
the effectiveness of our sum-invariance test (and also of KS) in
the case of serial cheating.

As a final cautionary note, we recall that our comparison
relies on the major simplifying assumption that all the available
transactions be generated by trades involving a single product.
Much more complex data structures, often displaying multi-
ple linear populations, instead arise when this assumption is
relaxed. Model (34) then becomes inadequate to represent gen-
uine trade values and the performance of robust regression
techniques, such as FS, LTS and their competitors, is greatly
affected. A more accurate comparison would entail the use of
formal outlier detection procedures for such complex struc-
tures, which are not yet available. One possible solution in
this direction could be to build inferential statements for the
robust clustering techniques adopted by Cerioli and Perrotta
(2014) and by Cerioli, Farcomeni, and Riani (2019), which
might be broadly regarded as cluster-wise extensions of LTS and
FS, respectively. The development of suitable diagnostics and
formal outlier labeling rules for clustered trade-data structures
will be the subject of future research.

Appendix: Technical Results

Proof of result (8). We adopt the same notation as in Section 3. From
definition (7), it holds that Zd(X) = 10k−1S(X) with probability
pD(X)(d) if 10k−1S(X) ∈ [cd, cd + 1[. Otherwise, Zd(X) = 0 with
probability (1 − pD(X)(d)). The distribution of Zd(X) is thus a mixture
of an absolutely-continuous law and the Dirac law with mass at zero. In
addition, by using expression (3), we have

P(Zd(X) ≤ z | 10k−1S(X) ∈ [cd, cd + 1[)

= P(10k−1S(X) ∈]−∞, z] ∩ [cd, cd + 1[)
P(10k−1S(X) ∈ [cd, cd + 1[)

= P(S(X) ∈]−∞, 101−kz] ∩ [101−kcd, 101−k(cd + 1)[)
P(S(X) ∈ [101−kcd, 101−k(cd+1)[)

= FS(X)(101−kz) − FS(X)(101−kcd)

pD(X)(d)
I[cd ,cd+1[(z)

+ I[cd+1,∞[(z),

while

P(Zd(X) ≤ z | 10k−1S(X) /∈ [cd, cd + 1[) = I[0,∞[(z).

We then obtain that the distribution function of Zd(X) is

FZd(X)(z) = P(Zd(X) ≤ z | 10k−1S(X) ∈ [cd, cd + 1[)P(10k−1S(X)

∈ [cd, cd + 1[)
+ P(Zd(X) ≤ z | 10k−1S(X) /∈ [cd, cd + 1[)P(10k−1S(X)

/∈ [cd, cd + 1[)
= (FS(X)(101−kz) − FS(X)(101−kcd)) I[cd ,cd+1[(z)

+ pD(X)(d)I[cd+1,∞[(z)
+ (1 − pD(X)(d))I[0,∞[(z)
= (1 − pD(X)(d))I[0,cd[(z)

+ (1 − pD(X)(d) + FS(X)(101−kz)

− FS(X)(101−kcd)) I[cd ,cd+1[(z) + I[cd+1,∞[(z).

Proof of result (13). From expression (7) and for r ∈ Z
+, it follows that

E[Zd(X)r] =
∫
R

(10k−1zI[cd ,cd+1[(10k−1z))rdFS(X)(z)

= 10r(k−1)

∫ 101−k(cd+1)

101−kcd
zrdFS(X)(z).

(A.1)

In the case of the generalized Benford’s law, the random variable S(X)

is absolutely continuous. Thus, the probability density function of S(X)

with respect to the Lebesgue measure on R is

fS(X)(t) =
{ C

t α = 0
αtα−1
10α−1 α �= 0

for t ∈ [1, 10[. In the case of Benford’s law, that is, when α = 0, it
follows

E[Zd(X)r] = 10r(k−1)

∫ 101−k(cd+1)

101−kcd
zr C

z
dz = C

r
((cd + 1)r − cr

d).

On the other hand, for α �= 0, it holds

E[Zd(X)r] = 10r(k−1)

∫ 101−k(cd+1)

101−kcd
zr αzα−1

10α − 1
dz

= α

α + r
(cd + 1)α+r − cα+r

d
10kα − 10(k−1)α

.
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Supplementary Materials

Supplementary materials include:

• the extension to the first-k significant digits of the results on the signif-
icand transform and of the sum-invariance test statistics;

• additional simulation results that complement those given in the article;
• the details of the contamination scheme adopted in Section 7.2.
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