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Abstract: We analyze the information that can be retrieved from the tracking parameters produced by

an innovative wearable eye tracker. The latter is based on a permanent-magnet marked corneal lens

and by an array of magnetoresistive detectors that measure the magnetostatic field in several positions

in the eye proximity. We demonstrate that, despite missing information due to the axial symmetry

of the measured field, physiological constraints or measurement conditions make possible to infer

complete eye-pose data. Angular precision and accuracy achieved with the current prototypical

device are also assessed and briefly discussed. The results show that the instrumentation considered

is suitable as a new, moderately invasive medical diagnostics for the characterization of ocular

movements and associated disorders.

Keywords: eye tracking; magnetic tracker; magnetoresistor; magnetic sensor; sensor array; microcontroller;

eye motion; Donders’ law; Listing’s law

1. Introduction

The localization of magnetostatic sources on the basis of multiple measurements
performed in known, pre-assigned positions is widely studied and finds application in
several areas, including medical diagnostics [1–3]. Setups based on permanent-magnet
sources enable wireless measurements, which come with low invasivity and low cost. The
developed methodology produces rich tracking data that include both target position and
orientation and presents the advantage of an occlusion-free detection. Modern highly
magnetized materials and solid-state magnetometric devices help to reduce the invasivity
level and to improve the portability/wearability of the required instrumentation. We
have recently demonstrated that this methodology can achieve sufficient time and space
resolution to be applicable also to eye-tracking.

Concerning the instrumentation aimed to track ocular movements, devices with
diverse degrees of invasivity, accuracy, speed, wearability have been developed on the
basis of several concurrent technologies. The latter include electro-oculography [4], infrared-
reflection devices [5,6], video cameras [7,8], and inductive magnetic receivers (scleral search
coil, SSC) [9–12]. In this list, the former items are less precise and invasive while the latter
is considered the top-performance at expenses of a noticeable invasivity. It is worth noting
that the need of an electrical connection constitutes the main source of the SSC invasivity,
and that unwired (double induction) SSC have been proposed [13–15], which lead to an
invasivity level comparable to that of our non-inductive approach.

Our non-inductive magnetometric instrumentation for eye-tracking is characterized
by an intermediate level of invasivity (much less than wired SSC), low intrusivity (it is
fully wearable), low cost (<1 k€), high speed (>100 Sa/s), high precision (<1 degree), and
good robustness with respect to external disturbances, such as eye-blinking, facial muscles
actuation and fluctuations of ambient illumination. After a preliminary calibration of the
sensors, no patient-based calibration is required to track the bare magnet-pose and its
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movements, while a patient-based calibration remains necessary in applications where the
eye pose must be accurately gathered from the magnet pose.

Apart from some works aimed to localize multiple [16–18] or distributed [19,20]
magnetic sources, most of the non-inductive magnetic trackers reported in the literature
use some numerical algorithms to infer the magnetic target pose (position and orientation)
modeling the magnet in terms of a dipolar field source. Our device does not make an
exception to this common rule, but, differing from other setups, it tracks both the target
pose and the ambient field. To this end, both the magnet and the dipolar field of the
magnet and the homogeneous field of the Earth are taken into account in the field modeling.
Consequently the data analysis provides both the dipole pose and the ambient field, making
the latter no longer a disturbance term, but a source of additional information.

Like other single-target systems, our device provides comprehensive dipole pose
information, which however is not sufficient to fully characterize the target object’s pose,
even if simply modeled as a rigid body. More explicitly, the information that can be
extracted from dipole tracking includes three spatial and two angular co-ordinates (the
system being blind to rotations around the dipole direction), thus only 5 out of the 6 degrees
of freedom (DoF) of a free rigid body can be retrieved.

Wireless detection of eye movements based on magnetometric measurements for
eye-gesture estimation has been proposed as well, both in experimental animals (with
surgically inserted magnets) [21–23] and humans (with magnetized contact lenses) [20].

This paper provides an analysis of the information that can be retrieved from the 5 DoF
data produced by a dipole tracker. We specifically address the case of a dipole eye-tracker,
in which physiological constraints and/or predetermined maneuvers offer complementary
information and make the tracking output data sufficient to fully determine the eye pose.

The paper is organized as follows: after a brief description of the developed instru-
mentation and of the tracking parameters obtained from the data analysis (Section 2), we
describe in Section 3 several approaches that enable a complete eye-pose retrieval from
the dipole pose information. In the same section some examples of the retrieved gaze
trajectories are reported. In particular we discuss how the dipole-gaze misalignment may
affect the estimated gaze trajectory and how physiological constraints can be taken into
account to improve the accuracy. Conclusion and perspectives are drawn in Section 5.

2. Setup

2.1. Sensors and Hardware

The hardware of the eye tracker is shown in Figure 1a. Its structure is extensively de-
scribed in the Ref. [24]. The core of the device is made of eight three-axial magnetoresistive
sensors [25] that generate a total of 24 data per measurement (each datum corresponds to
one component of the total magnetic field—Earth field plus dipole field—measured in the
position where the sensor is located) . A microcontroller interfaces the sensors to a personal
computer. The user may set sensitivity, acquisition rate, and operation mode. Operation
modes exist for sensors’ precalibration and for tracking operation, which includes data
recording and/or immediate analysis and visualization.

The sensors are included in highly integrated circuits, which also contain precondition-
ing electronics and analog-to-digital converters (14 bit, up to 200 Sa/s). They communicate
with the microcontroller via eight independent I2C buses, while the microcontroller is
connected to PC via a USB interface. This architecture helps accelerate the data transfer
and makes possible to acquire synchronized measurements from all the sensors.

The magnetoresistances have a quite linear response, but their gains may differ from
the nominal value causing an anisotropic response for each sensor and different responses
from one sensor to the other. In addition, each magnetoresistance output is affected by a
non-negligible offset. Thus, a pre-calibration procedure is necessary, to equalize the gains
and to identify and subtract the offsets [24].
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Figure 1. The sensor array—at the left side of image (a)—contains eight three-axial magnetoresis-

tive sensors (one of which is indicated by the yellow arrow) distributed on two parallel printed

circuit boards (PCB) displaced by ∆z = 16.6 mm). A third PCB—at the right side of the image

(a)—hosts a microcontroller and other electronics necessary to store data during preliminary cali-

bration procedures and to communicate with a personal computer via a USB interface. The system

is designed to localize a small magnet—pointed out by the blue arrow in the image (b)—which is

inserted in a scleral lens to be worn by the patient.

2.2. Data Elaboration to Extract Tracking Parameters

The main scope of the described instrumentation is to retrieve the eye orientation from
the pose of a small magnet embedded in a scleral lens worn by the patient (Figure 1b). The
position and the orientation of the target-magnet are inferred from a set of simultaneous
field measurements performed in pre-assigned positions. The measured field is modeled
as a dipolar one generated by the magnet, superposed to an external one (the Earth field),
which is assumed to be homogeneous over the volume occupied by the sensors.

The determination of the magnet pose (orientation and position) and intensity (dipole
modulus), plus intensity and orientation of the environmental field constitute an inverse
problem, which is solved by means of numeric tools.

The size of the magnet (0.5 mm thick and 2 mm in diameter) is selected in such a way
as to make its field on the sensors of the same order of magnitude as the Earth field (few
tens of microtesla), which creates a good condition to accurately identify both the magnet
pose and the environmental field.

Having equalized the readings to convert them in calibrated magnetometric data

~B
(meas)
k , solving the inverse problem requires to minimize the quantity:

S = ∑
k

∣

∣

∣

~B
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k − B

(mod)
k

∣

∣

∣

2
(1)

where k = 0 . . . 7 is the sensor index, and
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4π
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∣

∣

5
−

~m
∣

∣~r(k) −~r
∣

∣

3

)

+ ~Bgeo, (2)

the field expected on the basis of the dipole model, in the position~r(k) of the kth sensor,
being ~m a magnetic dipole placed in the position~r. The term ~Bgeo accounts for the uniform

environmental field. The positions {~r(k)} are referred to the sensor frame, which is rigidly
connected to the patient’s head. The best fit procedure minimizes S and outputs the
estimates of~r, ~m, ~Bgeo, for a total of nine tracking parameters. As discussed in Ref. [26],
under some conditions, the number of fitting parameters can be reduced to eight after
having determined the modulus of ~m, while it is definitely inopportune to assume a fixed
value for |~Bgeo|, because the environmental field is commonly enough homogeneous on the
volume of the array, but can vary significantly when the array is moved within the room
where the system operates.
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We have investigated the reliability of ordinary best-fitting procedures obtaining en-
couraging results [26]. In particular, we verified that a Levenberg–Marquardt minimization
algorithm is sufficiently fast and adequately robust with respect to the initial guess: there
exists a volume larger than the region in which the magnet can move, such that any calcu-
lation starting from a dipole guess in that volume, systematically converges to the correct
solution, regardless of the initially assigned orientation.

2.3. From Tracking Parameters to Eye (and Head) Pose

Once the minimization algorithm outputs the estimate of~r, ~m and ~Bgeo, the pose of eye
and head can be inferred. While~r, ~m provide information of the eye pose with respect to
the sensor array, the measure of the environmental field can be used as a three-dimensional
compass to evaluate the absolute orientation of the sensor array, i.e., of the patient’s
head. Combining relative eye-gaze and head orientations enables the determination of the
absolute gaze [27] direction. Notice that the system is non-sensitive to head translation,
thus the retrieval of the gaze direction is not sufficient to identify a fixation point at a
finite distance.

In addition, the comparison of eye and head angular motions can be used to evaluate
the eye actuation in response to head rotation, such as in measurements of vestibulo-ocular
reflex (VOR)[28] (see also Section 3.3). However, this paper focuses on the analysis of the
eye pose relative to the head, and we are not considering further the retrieval of head pose
from ~Bgeo.

The orientation of ~m is related to eye rotations, but it does not provide the gaze
direction directly, unless the magnetic dipole is parallel to the optical axis of the eye (let the
latter be ê). Eye rotations around the ~m direction would not be revealed. This has a twofold
consequence: if ~m ‖ ê, torsional angular displacements are not detected; if ~m ∦ ê, some extra
assumptions are necessary to infer ê from ~m, and, in particular, rotations around ~m would
affect ê without being detected.

It is worth recalling that besides ~m, the best-fit procedure outputs the magnet position
~r, which provides additional information about eye motion. However, the position co-
ordinates are known with respect to the sensor reference frame and not to the eye center,
thus the eye gaze cannot be retrieved directly from~r. Despite this feature, the partially
redundant information given by~r could be used in conjunction with that extracted from ~m
to improve or to complete the eye pose reconstruction, as it will be discussed in Section 3.6.

3. Gaze Retrieval

In this section, we examine some procedures that can be followed to retrieve the eye
gaze with respect to the sensor frame from the tracker output, more specifically from the
estimates of ~m and~r. Eye translations, that can in principle be studied with an adequate
analysis of~r will not be taken into consideration, and we will focus on eye-ball rotations,
modeling the eye as a rigid sphere rotating about its (fixed) center. Although mathematically
unnecessary, this will turn into a useful simplification of the following ~m-related discussion
with no further hypothesis or loss of information. Moreover, the fixed-center rigid sphere
model applies to the~r information discussion in the realistic approximation of very small
displacements of the eye-ball center compared to the eye radius.

It has to be pointed out that the pose of a rigid body freely rotating about an assigned
point requires three angular parameters to be fully defined. In other terms, generally
speaking, the faced problem has 3 degrees of freedom (DoF). The modulus of the magnetic
dipole is nominally constant, and the tracking uses its direction m̂ only, thus the analysis
of the unitary vector m̂ provides only bidimensional information, e.g., the zenithal and
azimuthal angles, when described in spherical co-ordinates. These 2D data are not sufficient
to determine the 3 DoF orientation of the eye-ball: it is necessary to consider reduced-DoF
problems to achieve complete pose determination.
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3.1. Small-Angle and Near-Front Sight Approximation

A simple case is obtained in the hypothesis that torsional movements can be neglected
and that the angle between the gaze and the front direction (ẑ in the notation of our setup,
see Figure 1) is maintained small.

In this hypothesis the current gaze êi is always nearly parallel to ẑ and it can be
expressed as the rotation of the front gaze direction ê0, êi = Rê0:

R =





1 0 φy

0 1 φx

−φy −φx 1



 (3)

the first-order approximation of a rotation matrix whose parameters φx, φy represent small
rotation angles around the x and the y axes, respectively. The same rotation applies to the
magnetic moment ~m0, as it is rigidly connected to the eye-ball. Thus, m̂i = Rm̂0 and the
two angles φx, φy can be retrieved from this last relation.

In summary, here ê0 is the front sight gaze, m̂0 the corresponding orientation of the
dipole, and êi the gaze at the ith measurement, to be inferred from the estimated dipole
~mi. In this approach, ê0 is assumed to coincide with ẑ, and m̂0 should be known from an
independent characterization of the magnet in the scleral lens, or tentatively assigned as it
will be explained below.

3.2. Larger Rotations about the Front (ẑ) Direction

A more complex case occurs when the first-order approximation is not applicable. If
so, even with the simplifying hypothesis ê0 ‖ ẑ, the eyeball rotation cannot be, in general,
resolved as a sequence of two rotations around arbitrary axes. As we will see in the
following, further information is needed in this case, such as a known rotation axis or a
model for the eye movements. As an intuitive proof of this, consider the two-angle rotations
around the pre-set Cartesian axes x and y defined by Ryx = RyRx or Rxy = RxRy. These
have the general form

Ryx =





cos φy − sin φx sin φy cos φx sin φy

0 cos φx sin φx

− sin φy − sin φx cos φy cos φx cos φy



,

Rxy =





cos φy
′ 0 sin φy

′

− sin φx
′ sin φy

′ cos φx
′ sin φx

′ cos φy
′

− cos φx
′ sin φy

′ − sin φx
′ cos φx

′ cos φy
′



,

(4)

and both converge to the above operator (3) in the small angle approximation. On the other
hand, they represent intrinsically different operators for large angles. It is worth noting the
two operators coincide if φx = φx

′ = 0 or φy = φy
′ = 0, that is if one of the two x or y axes

happens to be the unique rotation axis. This has a practical utility that will be discussed in
Section 3.3.

Indeed, the two angular data extracted from the direction of m̂ are not sufficient to
determine uniquely the 3-DoF configuration, and the selection of a particular rotation
order corresponds to arbitrarily assign the missing information. Such an approach allows
for producing tentative eye gaze trajectories, but the solution is not stringent and diverse
choices results in diverse and variously distorted trajectories. Nevertheless, also with this
under-specified analysis, the main features of the gaze trajectories can be identified, which
can be satisfactory in some eye-tracking applications.

As an example, in Figure 2 we represent tracking results obtained in an in vivo
experiment, using the Rxy and Ryx operators alternatively. The subject was requested to
read a short text (title, a complete line, a half-line) on a monitor and then to follow the
monitor frame. The four represented trajectories are obtained from the same dataset, with
an analysis of the dipole orientation based upon the two operators, respectively. In this
elaboration, one selects (tentatively) the m̂0 orientation, i.e., the trajectory point to which
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the (φx = 0, φy = 0) co-ordinates are being assigned in such a way to obtain as straight
lines and right angles as possible. As one can see, in all cases features such as text line
distribution and small displacements around the running line of sight are well tracked,
while distortions cannot be canceled and affect long segments that should be straight and
angles at the monitor corners that should be right.

The subject was sitting in front of the monitor so that ê0 is expected to coincide with
(to be in the proximity of) the measurement tracked at the monitor center. Two of the
trajectories—(a) and (c)—are obtained in this hypothesis, assigning ê0 to the central point
of the figure (thus selecting the corresponding m̂ as m̂0). The other trajectories—(b) and
(d)—are instead obtained with a wrong assignment (ê0 in coincidence of the upper-left
corner, about 20 degree away from the nominal direction). As can be seen, the main features
of the trajectory are well reproduced also in this case, which demonstrates robustness with
respect to the (ê0, m̂0) assignment.

Is worth reminding that in principle, also the ê0 could be at some angle from ẑ; however,
this angle amounts at less then 10° and it would cause minor changes to the plots shown in
Figure 2.

Figure 2. Gaze trajectories reconstructed on the basis of the approach described in Section 3.2. The

subject was sitting about 110 cm away from a monitor, whose frame is 40 cm × 71.5 cm in size.

He was requested to read a three-line text and then to follow the monitor frame (see also Figure 5).

The upper plots (a,b) are obtained using R = RyRx, while the lower ones (c,d) are obtained with

R = RxRy. The front sight direction (0,0) is not known and is in turn assigned to a central point of

the screen (left plots, a,c), or to the upper-left corner (right plots, b,d). The small displacements of

the trajectory are well tracked in all the cases, but evident image distortions occur over the large

distances, i.e., when large rotations are involved. This kind of distortion arises independently on the

assignment of the front-sight direction.

3.3. Large Rotations about an Assigned Axis

The issue related to the noncommutativity of finite 3D rotation is overcome in a
preeminent application of the eye-tracking systems. In VOR measurements, the head of
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the patient is rotated around a predetermined axis, which is usually vertical (pitch) or
horizontal (yaw), the expected (ideal) response of the eye is an opposite (compensating)
rotation around the same axis, and this is the quantity to be estimated and analyzed.

In this case, the data are to be interpreted in terms of a single rotation angle around
one axis. That axis can be assumed to coincide with the nominal one that is approximately
either the x̂ or the ŷ direction defined in Figure 1 in the cases of pitch or yaw, respectively.

Improved accuracy is achieved if the actual rotation axis is identified on the basis of
the ~Bgeo measurement set {~Bi} (i = 1, . . . , N) recorded during the maneuver. For instance,

one can find the common plane intercepting the measured ~Bi vectors (with a mean square
distance minimization). The perpendicular direction to the plane, û, provides an estimate
of the rotation axis direction [29,30]. Subsequently, both the head and eye rotations can be
evaluated around the determined direction. The eye rotation angle can be estimated from
two measured values ~mi (i = 1, 2) as

φu,1 − φu,2 = arcsin
|~m1,⊥ × ~m2,⊥|

|m1,⊥||m2,⊥|
(5)

where ~mi,⊥ = ~mi − (~mi · û)û and similarly—using ~Bgeo—for the head.
This perfecting produces just a slight enhancement of the accuracy, if the misalignment

between ideal and actual rotation axes is small, i.e., û ≈ x̂ or û ≈ ŷ. Whatever the actual
rotation axis is, in this application eye and head rotations never exceed π/2, which makes
unnecessary to refine Equation (5) for out-of-range arcsine issues. An alternative method
to determine the rotation axis is fitting a 3D circle on the ~Bi, as ~B moves nominally on
a circle at constant zenithal angle with respect to the rotation axis [31]. To this end, we
have implemented a procedure that: (i) applies a rotation matrix parametrized with a
couple of Euler angles (α, β) to a set {~Bi} or {~mi}; (ii) represents the data in spherical co-
ordinates; (iii) determines the couple (α, β) as that minimizing the standard deviation of
the zenithal angles.

It is worth noting that assuming that the axes of rotation of the head and eye coincide
is a popular but coarse approximation. Indeed, considering the case of a generic rotation,
the VOR gain is not isotropic [32,33], so that—also in the simplified assumption of a linear
and non-delayed response—the VOR gain should be expressed tensorially. E.g., focusing
on the angular velocities, the relationship between eye and head speed would be expressed
as ~ωe = G~ωh, where G is a 3 × 3 matrix. G is expected to be a non-diagonal matrix,
implying that eye and head rotation axes are generally not parallel. A correct and complete
analysis of the VOR gain involves the determination of all the elements Gij, which (at least
in principle) can be obtained from the above described data.

As an additional remark, let us point out that our prototype contains only magne-
tometric sensors; however, improved setups could be designed to include gyroscopic
detectors. In this case, additional and complementary estimates of the head rotations
would be available, with improved accuracy in VOR gain estimations.

3.4. Physiological Constraints

The arbitrariness of the rotation matrix introduced in Section 3.2 (Equation (4)) can be
avoided if the DoF reduction is performed on the basis of physiological constraints of the
eye. Torsional movements of the eye are strongly depressed and in a good approximation
the eye movements respect a 1D constraint enunciated in the 19th century and named
Donders’ law. Abundant literature is available on this subject. The reader may find a useful
introduction to the matter in Ref. [34] and more mathematical details in Ref. [35]. Donders’
law states that each direction of the gaze corresponds to a single orientation of the eye,
regardless of the trajectory that led to the corresponding eye pose. In other words, each
direction of view corresponds to a unique eye configuration and torsional movements
around the current line of sight do not occur or can be neglected.
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As far as the Donders’ law is respected, the eye movements have only two DoF, hence
it is possible to search for a biunique relationship between m̂ and ê. A second phenomeno-
logical law that rules the eye movement is known as Listing’s law. It suggests a good
parametrization to describe these two-DoF configurations allowed by the Donders’ law.

According to the Listing’s law, there exists a direction (primary orientation) (p̂) such
that any eye configuration can be described as if reached moving from that primary
orientation by means of a single rotation around an axis perpendicular to p̂, as sketched in
Figure 3.

Figure 3. Definition of the axes and geometry of the Listing’s model. The primary orientation ê0

(along the normal p̂ to the Listing’s plane λ) is nearly parallel to ẑ. In our setup, when the eye is

in its primary orientation the magnetic dipole is generically oriented (m̂0). When the gaze varies,

both vectors ~m and ê undergo rotations (dashed arcs) obeying the Listing’s law: each accessible

configuration is such that it could be reached from the primary orientation with one rotation around

an axis laying on λ. In this figure, the direction û embodies one of those axes.

In other terms, making reference to a spherical co-ordinate system having the polar
axis along p̂, all the eye configurations can be reached with one opportune zenithal rotation
from the primary orientation: the rotation axes lay on the equatorial plane of that co-
ordinate system, the so-called Listing’s plane. When the head is erect and the eye is at the
primary orientation, the gaze is approximately straight ahead, thus the Listing’s plane is
not far from being vertical.

Summarizing, the Listing’s law reduces the DoF of eye configuration to two: each eye
configuration can be considered as the result of a rotation by a given zenithal angle around
an axis û that lays on the Listing’s plane and has a given orientation (azimuthal angle) on
that plane. The data elaboration needed to retrieve êi from m̂i consists of the determination
of those two angles from the current orientation of the dipole (m̂i) and its orientation (m̂0)
when the gaze is along the primary direction. This problem is focused in next Section 3.5.

3.5. Applying the Listing’s Law to the Present Case

In our implementation, p̂ is approximately antiparallel to ẑ. Let p̂ be known or
tentatively assigned (see below). First of all we refer the tracking data to a rotated coordinate
system XYZ (see Figure 4) such that p̂ = −Ẑ. To this end, we determine the Rodrigues’
matrix [36,37] that leads ẑ to coincide with Ẑ = − p̂ and we use this matrix to represent
the measurements ~mi in these new co-ordinates XYZ, where the Listing’s plane is the XY
plane. Note that the reference axis X can be arbitrarily chosen on the Listing’s plane, since
all data of interest are related to angular displacements (and not to absolute directions).
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Figure 4. In the rotated system XYZ, the Listing’s plane λ is the XY plane. In (a) the projections of

m̂0 and m̂i on that plane are represented. The rotation axis û lays on that plane and is identified as the

normal to the difference between the projections of m̂0 and m̂i. The direction of û, together with the

Z axis, identifies the plane βu. In (b) the projections of m̂0 and m̂i on βu are shown: βu is the plane

where the rotation angle ϕi around û can be evaluated.

Let m̂0 and ê0 be the magnet and the eye directions corresponding to the primary
orientation: by definition, ê0 = −Ẑ, while m̂0 must be known or tentatively assigned.
The task is now to determine the orientation êi corresponding to the measured m̂i on the
basis that êi = Rϕi ,ûi

ê0 and m̂i = Rϕi ,ûi
m̂0, where Rϕi ,ûi

is a rotation by an angle θ around
the direction û that lies on the XY plane (again, the Rodrigues’ formula can be used to
determine the corresponding matrix).

Rϕi ,ûi
can be uniquely determined from m̂0, m̂i as follows. The rotation axis

û = (uX, uY, 0) is perpendicular to the projection of ∆m̂ = m̂0 − m̂i on the XY plane:
û · (m0X − miX, m0Y − miY, 0) = 0. Now consider the projections of m̂0 and m̂i on the
plane perpendicular to û: ϕi the angle between those projections can be evaluated with the
method described by Equation (5). The retrieved û and φi give the axis and the rotation
angle, respectively, in the Listing’s model of the eye.

When p̂ and/or m̂0 are not known a priori, they can be tentatively assigned and their
appropriateness can be evaluated on the basis of the distortion of the reconstructed gaze
trajectory corresponding to regular and known shapes. This is the case of the trajectory
represented in Figure 5. The same recording used for Figure 2 is here processed according
to the above described Listing’s model procedure. A direct comparison with the trajectories
shown in Figure 2 puts in evidence a clear reduction of distortion effects. On the basis of
this observation, we conclude that the Listing’s law makes it possible to develop a good
procedure to accurately retrieve the eye-gaze, despite the m̂ − ê misalignment.

A hardware solution based on aligning the magnetic dipole to the visual axis of the eye
would greatly simplify the task of retrieving the gaze from the measured m̂. Unfortunately
the visual axis is not known a priori, and a patient based calibration would be anyhow
needed. The visual axis is generally oriented at small angle from the optical axis (the so
called angle kappa amounts typically to about 5◦ [38]), thus a compromise solution may
consist of aligning m̂ to the optical axis and subsequently use the Listing’s model described
above for refinements. To this aim, the magnetic disc should be inserted out of the lens
axis (to be non-obstructive for the view) and tilted with respect to the lens surface, an
arrangement that comes with some geometrical issues, as sketched in Figure 6b,c.



Instruments 2023, 7, 8 10 of 16

Figure 5. The same data used to produce the gaze trajectories represented in Figure 2 are here

elaborated on the basis of the Listing’s model. With an appropriate selection of the m̂0 and p̂

directions, the whole data set fits with much lower distortion onto a shape that reproduces the text

and the monitor frame observed by the subject (sketched in the right figure).

In Figure 6b, for instance, ê0 and m̂0 come to a complete identity and no recipro-
cal rotation has to be measured or estimated. Figure 6c, instead, opens new possibili-
ties by allowing direct measurements of the torsional movement of the eye. These in-
teresting perspectives are beyond the scope of the present work and will be subject of
further investigation.

Figure 6. Schematic representation (not to scale) of an eye-ball (EB) (OA is its optical axis) wearing a

lens (L) with a magnetized disk (M) embedded. The red–blue colors represent the M magnetization.

In the current implementation (a), the disk is axially magnetized and is inserted tangentially to the

lens, a few mm displaced from the optical axis. This reduces the magnet encumbrance, at expenses

of a m̂ − ê misalignment and consequent need of indirect gaze retrieval. Constructive efforts can

be devoted to make the dipole parallel to the gaze direction (b) or perpendicular to it (c). This

would simplify the data elaboration and—in the case (c), i.e., with a diametrical magnetization—it

would make the system highly responsive to torsional movements: an unprecedented feature of

this methodology. As sketched, the (b,c) arrangements may present issues to guarantee a complete

magnet embedding). For simplicity, the angle kappa is neglected in these figures: the optical and

visual axes are represented as coincident.

3.6. Retrieving the Eye Gaze from the Magnet Position

An alternative approach that could enable the estimation of the eye orientation with
respect to the sensor array is based on the analysis of the magnet position. As said
(Section 2.2), the best fit procedure provides, beside ~Bgeo and ~m, also the position ~r of
the dipole. As far as the eye is adequately described in terms of a fixed-center sphere,~r is
expected to move on a spherical surface. The radius of that sphere is the eye radius (12 mm,
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as a typical value), and its center is located at the eye center ~Re, which is (at least initially)
an unknown position.

In principle (see Figure 7), one could first determine ~Re fitting a large set of {~ri} on a
sphere and then use the quantities {~si =~ri − ~Re}, similarly to what is conducted with ~m.

Figure 7. The retrieved positions~ri are determined with respect to the sensor array frame. A large set

~ri might enable the determination of the eye center ~Re, and hence the positions~si with respect to the

eye center. The gaze orientation~e moves rigidly with the position~s of the magnet, and~s could be

used alternatively to (or in conjunction with) ~m to determine~e. This requires that ~Re is determined

with a high accuracy, which is not the case due to the small range of available~ri.

More interestingly, provided that m̂ e ŝ are not parallel, it would be possible to use
both to determine the eye orientation with no need for extra hypotheses. Indeed, m̂, ŝ (e.g.,
together with m̂ × ŝ) would constitute a basis in the 3D space, hence the matrix R such that
m̂i = Rm̂0 and ŝi = Rŝ0 would be uniquely determined (even over-determined) from two
subsequent estimates of m̂ and ŝ.

Physiological constraints prevent~r from ranging over a sufficiently wide portion of the
spherical surface and this results in a rather rough estimation of ~Re. As a consequence, these
alternative approaches—at least with the precision achieved in current implementation—do
not help improve the quality of the gaze estimations.

An additional approach based on the analysis both~r and ~m might follow the method-
ology presented in Refs. [39,40] for video-oculography, where the gaze is determined on
the basis of the position of the pupil and of the eye glints, after opportune calibration. In
the present case, apart from offsets to be determined by an additional calibration,~r and ~m
would provide analogous information as the pupil position and glints, respectively.

4. Instrumental Uncertainties

By operating with a single rotation axis, as described in Section 3.3, facilitates the
quantification of the intrinsic instrumental precision and accuracy (that will affect the
tracking, regardless of the methods used to infer ê from ~m), as set by the sensitivity of
the detectors and by the operation conditions. To this end, we have performed several
experiments aimed to provide estimates under typical operation conditions.

It is worth recalling that the analyses of these in vitro measurements do not require
any calibration, apart from the pre-calibration that is necessary to compensate non-ideal
offsets and gains of the single sensors (see [24] for details). This equalization must be
performed on each sensor array after its assembling, and is advantageously repeated if
the pre-calibration is suspected to have become inaccurate, e.g. after several weeks, in
case of relevant changes in temperature, in case of accidental exposure to strong magnetic
fields etc.

The plots shown in Figures 8 and 9 are obtained from the elaboration of data recorded
with a mechanical system based on a numerically controlled motor. The magnet is rotated
in steps around the z axis along a circular orbit 8 mm in radius on the z = 10 mm plane
(a region compatible with the eye positions), with the dipole radially oriented. A com-
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plete rotation (360◦) is performed in 51 steps (7.06◦ each), and one hundred trackings are
performed in static conditions after each rotation step.
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Figure 8. The magnet rotates in steps around the z axis on a circumference 8 mm in radius, each

step corresponds to 360/51 = 7.06◦ and is followed by 100 trackings in static conditions. The

non-monotonic behavior of the trace in the first plot is caused by the arcsin inversion, and can be

numerically overcome. The zoomed plot at right provides a visual estimation of the precision, while

the ramp (non)linearity accounts for the accuracy limits.

Figure 9. The measurements plotted in Figure 8 are analyzed to quantify the angular uncertainties.

Mean value and standard deviation of the estimated angle are evaluated after each step. The standard

deviation is represented with the error bars, while the mean value (corrected for non-monotonicity)

is plotted having subtracted of the nominal angle φz−nom. The error bars provide an estimate of the

instrumental precision, and the difference ∆φz between estimated and nominal angles is a measure of

the accuracy.

The data are then analyzed as described in Section 2.3 and the rotation angle around
the z axis is inferred according to Equation (5). The two plots in Figure 8 show the whole
set of measurements and a zoomed portion of it, respectively.

The plot in Figure 9 reports the deviation from expected to measured angles, i.e.,
the difference between the average values of the angle retrieved at each step and the
corresponding nominal angle (assigned by the stepped motor), as a function of this latter.
The error bars represent the standard deviation of the corresponding data sub-sets, and
hence the precision. The non-zero value of the deviation exceeds the error bars, pointing
out a limited accuracy due to systematic errors. These latter are likely to be ascribed to
inhomogeneities of the ambient field and imperfect calibration of the sensors.

The above presented measurements were performed while maintaining the system
steady with respect to the ambient field. This exclude the effect of covariance between
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different tracking parameters, which instead can be source of additional uncertainties.
Specifically, instrumental errors in the estimation of ~m can be evaluated when the whole
system is rotated in the ambient field and, complementarily, errors in the estimation of ~Bgeo

can be evaluated while moving the magnet with respect to the steady sensors. Performing
these experiments in our working conditions (operating in a normal room, with some care
in avoiding ferromagnetic furniture in the proximity) we obtained typical RMS fluctuations
of the order of 0.3◦ within maximum ranges of about ±1◦, for both the vectors, as detailed
in Table 1 both in terms of RMS and maximal deviations.

Table 1. The first two lines report the apparent rotation of ~m when the system is freely moved in the

room and the magnet is in the z = 10 mm plane, oriented along z, in a fixed position with respect to

the sensor frame. Rotations around x and y are evaluated accordingly to Equation (5) (the system is

blind to rotations around z). The results are analyzed in terms of standard and maximal deviation.

Conversely (last three lines), the apparent rotation of ~Bgeo is evaluated when the sensor array is fixed

and the magnet (oriented along z) moves on a circle 10mm in radius on the z = 10 mm plane. These

estimates are just exemplifying numbers, as the results depend on several features of the working

conditions (ambient field inhomogeneities, accuracy of the sensor calibration, free motion applied to

the system) that assume typical but non-reproducible values.

Quantity St. Dev. Range

φx 0.23◦ ±0.98◦

φy 0.28◦ ±0.75◦

θx 0.33◦ ±0.50◦

θy 0.25◦ ±0.85◦

θz 0.18◦ ±1.0◦

It is important to take into account that other spurious phenomena may occur in the
in vivo application and that they can relevantly affect the ultimate precision and accuracy.
In particular, similarly to the case of SSC technology, slippage of the lens with respect to
the eye constitute an error source. Furthermore, slippage of the sensor array with respect
to the head must be carefully avoided. The latter is particularly relevant in head-impulse-
test maneuvers for VOR-gain estimations. Future prototypes are being designed with
a lightened sensor frame and a mechanically separated microcontroller PCB: a reduced
inertia will help counteract such sensor-head slippage issue.

Furthermore, the rapid decay of the dipolar field with the distance, makes the magnet-
sensor distance a crucial parameter to record data with a good signal to noise ratio. In in
vivo application, physiological constraints hinder the task of maintaining the sensors at a
short distance from the eye: an accurate design of the sensor frame is planned to this end,
and it will greatly help improve the performance.

5. Conclusions

An innovative eye-tracker is developed, based on non-inductive magnetometric mea-
surements simultaneously performed at 100 Sa/s rate in a set of prearranged positions with
the aid of an array of magnetoresistive sensors. This kind of instrumentation extends to the
eye-tracking some advantageous features of similar magnetostatic trackers developed for
other applications.

Moderate invasivity, high speed, spatial and angular accuracy, robustness, simplicity,
and low cost emerge as attractive characteristics in comparison with other
eye-tracking technologies.

The instrumentation is in a prototypical stage and several refinements will be needed
to improve its performance to the level achieved by other (mature) competing technologies
and hopefully beyond. In particular, some technical issues (such as those related to scleral
lens and/or sensor array slippage) should be addressed to improve precision and accuracy.
There is also room for other improvements, e.g., to provide wireless data transfer or to
simultaneously acquire gyroscopic data as well.
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Despite position and orientation of the magnet are fully characterized, the conversion
of magnet tracking data to gaze information is not immediate and may require specific
procedures. In this paper, we have examined the problem of retrieving the eye gaze from
the magnet orientation when optical axis and dipole are not parallel.

In particular, we have demonstrated how the combination of tracking parameters with
physiological constraints of the eye motion enables an accurate reconstruction of the eye-
gaze trajectories, while alternative simplified analyses can be implemented and—despite
some distortion effects—they enable the extraction of basic features of the gaze trajectory.

6. Patents

A patent [41] is pending about inventions related to this research.
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