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 Abstract. The research used an artificial neural network (ANN) to examine 
optimum extraction conditions and phytochemical contents of Luffa 
cylindrica seed oil. The oil yield was predicted using an artificial neural 
network. The performance of the ANN and response surface methodology 
models was compared. The optimum extraction yielded 7.567% oil yield, 
185.676 mg/l phenol, and 45.087 mg/l terpineol at 75.57 °C extraction 
temperature, 5.77 h extraction time, and 10.68 g/mol n-hexane concentration, 
respectively. These data show that the oil output is poor but has a significant 
phenol and terpenoid content that may be employed in pharmaceutical 
sectors. The FT-IR analysis of Luffa cylindrica seed oil revealed a high level of 
unsaturated hydrocarbons and esters, making the oil appropriate for using in 
the paint industry and creating cosmetics. 

Keywords: Artificial Neural Networks; Luffa cylindrica seed oil; alkyd resin; 
phytochemicals. 

 

 

INTRODUCTION 

Various plants have been used to produce oil. 
Although many different portions of plants may 
provide oil in commercial practice, oil is typically 
collected from seeds (endosperm) of plants that 
grow all over the globe. The properties of oils 
from various sources are determined mainly by 
their composition; no oil from a single source 
may be used for all applications [1]. The world is 
becoming more environmentally aware with the 
rising substitution of synthetic items with organ-
ically produced ones. Consequently, there is a 
rise in demand for seed oils as raw materials in 
the chemical industry. Some of these oils are in-
gested directly or indirectly as dietary ingredi-
ents or as components of many industrial items 
(e.g. soaps, perfumes, personal care and skin 
products, candles, and cosmetic products). Seed 

oils are also employed in biodiesel manufacture. 
Several oils, including moringa oil, sunflower oil, 
rapeseed oil, palm oil, soya bean oil, corn oil, ba-
obab oil, and pumpkin oil [2], are expensive. 
Thus, there is a need for new low-cost oil seed 
crops for the production of inexpensive oils suit-
able for food, pharmaceutical, and Luffa cylindri-
ca seed oil is one product that may be used to 
provide a good outcome in terms of cost, renew-
ability, biodegradability, and non-edibility. With 
the current industrial attention to its renewabil-
ity and global friendliness, luffa oil derivatives 
may find larger markets globally, increasing the 
quantity of study focused on harnessing its seed 
oils for diverse purposes. Regarding availability 
and renewability, Luffa cylindrica seed oil has 
been discovered to be a sustainable resource for 
biodiesel and alkyd resin production. Luffa cylin-
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drica is a rapidly growing annual vine that 
spreads widely and matures in four months. The 
luffa plant is a cucurbit that includes gourds, 
pumpkins, and cucumbers and is part of the Cu-
curbitaceae family. Various names, including 
smooth loofah, loofah, loofah sponge, sponge 
gourd, vegetable sponge, dishrag gourd, and Chi-
nese okra, know the Luffa. The luffa species are 
luffa cylindrica and luffa aegyptiaca [3]. In Nige-
ria, it is known as 'soso' in Hausa, 'kankan' in Yo-
ruba, and 'asisa' in Ibo [4]. Most oil extraction 
processes are expensive owing to the inability to 
control specific intrinsic characteristics. Many 
studies have been conducted to discover alter-
nate methods of manufacturing oil for process 
industries and the food business. It has been 
found that practically all seeds contain oil, which 
opens the door for other researchers to look for 
other applications for additional oil-producing 
chemicals prevalent in people’s daily lives [5]. 

There are various methods for extracting oil from 
oilseeds. However, solvent extraction has been 
reported to be the most efficient [6], implying the 
need for process industries to optimise current 
extraction methods, thereby improving produc-
tion profitability and ensuring a sufficient oil 
supply. Bioactive molecules in vegetables, fruits, 
cereal grains, and plant-based drinks such as tea 
and wine are known as phytochemicals. Because 
of their antioxidant and free radical scavenging 
properties, phytochemical ingestion is linked to a 
lower risk of various chronic illnesses [7]. Recent 
studies have also shown that they may have a 
role in better endothelial function and higher 
vascular blood flow [8]. About 10,000 phyto-
chemicals have been identified, and many remain 
unknown [7]. Based on their chemical structure, 
phytochemicals can be broken into groups [9], as 
shown below in Figure 1. 

 

Figure 1 – Types of phytochemicals [10] 

Response Surface Methodology (RSM) and Artifi-
cial Neural Networks (ANN) are mathematical 

and statistical approaches that may help assess 
observational evidence, determine the best sce-
nario, and anticipate outcomes.  

Depending on the degree of non-linearity and the 
initial assumption, most classic optimisation 
strategies based on gradient methods have the 
potential to get imprisoned at local optima. As a 
result, it does not assure global optimal and has 
restricted use. Non-traditional optimisation and 
search techniques and approaches based on nat-
ural phenomena such as neural networks and 
evolutionary computing (simulated annealing, 
genetic algorithm, and differential evolution) 
have been created [11]. An artificial neural net-
work (ANN) is a simplified representation of a 
biological network’s structure [12]. An artificial 
neuron is the core processing element of ANN (or 
simply a neuron). A biological neuron gets infor-
mation from various sources, mixes it, applies a 
non-linear operation, and finally outputs the final 
result [13]. The primary benefit of ANN is that it 
does not need any mathematical model since it 
learns from examples and detects patterns in a 
sequence of input and output data without mak-
ing any assumptions about their nature or inter-
relationships [12]. ANN is an excellent substitute 
for traditional empirical modelling based on pol-
ynomial and linear regressions [14]. More infor-
mation is needed on the phytochemical composi-
tion of Luffa cylindrica seeds oil. As a result, this 
research aims to use an Artificial Neural Network 
to predict the phytochemical features of Luffa 
cylindrical seed oil. 

 

Statement of the problem 

Alternative materials are more required than ev-
er in today’s world for manufacturing lubricating 
oil, paints, varnishes, medicines, transformer oils, 
cosmetics, etc. Conventional fuels, such as coal, 
natural gas, and fossil fuel, are rapidly depleting; 
nonetheless, the world’s reliance on these fuels is 
increasing. These minerals are byproducts of pe-
troleum, which is non-renewable, non-
biodegradable, and pollutes the environment; 
also, its over-dependence has resulted in short-
ages and the production of inferior goods. The 
usage of ANN was motivated by the requirement 
for an efficient model since RSM may not be able 
to correctly evaluate a big data set necessary to 
achieve accurate and optimal results. 
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ANN was used in this study to forecast the oil ex-
traction process and to characterise the phyto-
chemical properties of this plant’s seed oil. 

The precise goals of this research are as follows:  

1. To extract, characterise, and evaluate the phy-
tochemical characteristics of Luffa cylindrica 
seed oil. 

2. To examine the influence of processing param-
eters on the extraction of Luffa seed oil and its 
phytochemical characteristics. 

3. ANN was used to predict the phytochemical 
characteristics of Luffa cylindrica seed oil. 

This research aims to reduce our reliance on im-
ported oil by producing oil locally from Luffa 
seed, which can be used as raw materials in in-
dustrial applications, and to develop a new route 
from potential oil-producing roots. Over the 
years, researchers have struggled to create a 
model that can effectively anticipate the behav-
iour of the phytochemical characteristics of Luffa 
cylindrica seed oil; such models may drastically 
decrease time and operating costs in many tech-
nical areas. As a result, a requirement is to model 
Luffa seed oil extracts using Artificial Neural 
Network (ANN). 

This research aims to extract Luffa cylindrica 
seed oil, analyse its phytochemical characteris-
tics, investigate and optimise process factors, and 
forecast the phytochemical characteristics of Luf-
fa seed oil using an Artificial Neural Network. 

 

MATERIALS AND METHOD 

Sample Collection. The Luffa samples were ac-
quired from the National Root Crops Research 
Institute Umudike, Abia State, South-East of Ni-
geria and surrounding. The pieces were sorted, 
and the Luffa seed was extracted from the gourd 
by hand. The samples were maintained in an ov-
en for a few hours to attain an equilibrium tem-
perature with the environment before utilisation. 
Both ripened and dried fruit of this tree were col-
lected in massive amounts. The seeds will be 
winnowed, and husks and dirt will be removed, 
following which it will be sun-dried for easy re-
moval of the shell and will also be oven dried at 
60c to constant weight before grinding to en-
hance the surface area for oil extraction. 

The materials used for the experiment include the 
following: Oven, Grinder, Soxhlet Extractor, Re-

flux Condenser, Heating Mantle, and Round bot-
tom flask. 

Experimental design. The experiment was de-
signed using Design Expert version 6.0.8, where a 
Box-Behnken experimental design was employed 
to optimise oil extraction from Luffa cylindrica. 
The experiment was designed on three levels, 
three factors that will generate 17 experimental 
runs. The three independent factors are extrac-
tion time, extraction temperature and solvent 
ratio. 

Extraction of oil from Luffa Cylindrica using sol-
vent extraction method. The extraction of oil was 
carried out in the laboratory of the Department 
of Chemical Engineering, the Michael Okpara 
University of Agriculture Umudike, Abia State, 
Nigeria, using the technique given by [15]. The 
extraction was carried out using a soxhlet appa-
ratus of 250 cm3 capacity using n-hexane of ana-
lytical quality as the solvent. The extraction was 
done by utilising a prepared sample of 40 g of 
luffa ground seed; the powdered oil seed was put 
into the thimble, and the thimble was placed in 
the soxhlet apparatus (Figure 2).  

 

 

Figure 2 – Experimental apparatus for oil extraction 

 

A round bottom flask with a known solvent vol-
ume (n-hexane) was placed on a heating mantle, 
delivering heat at a temperature just below the 
solvent’s boiling. The soxhlet apparatus was put 
atop the flask, and intake and outflow water was 
linked to the condenser. Time of 4–6 hours, and 
extraction temperature ranges from 60 to 80 °C. 
The experimental runs were carried out accord-
ing to the experimental runs produced by Design 
Expert.  
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The solvent was collected after every experi-
mental run by a distillation procedure, and the 
natural oil produced was weighed. The experi-
ment was repeated for additional settings, and 
the % yield was determined. 

Determination of oil yield. The powdered seed 
will be weighed and put into a thimble. Soxhlet 
will be extracted for various time intervals based 
on the needed time interval for each experiment 
that will run between 4–6 hours using n-hexane 
as the solvent. The hexane extract will be filtered 
and evaporated under vacuum to create a thick 
mass of oil; the oil will be placed into a beaker of 
known weight and stored in a Griffin tempera-
ture adjustable oven at 60–70 °C to evaporate the 
excess solvent. The Luffa seed oil thus obtained 
shall be maintained in an air-tight container with 
no air gap and labelled appropriately. The per-
centage oil yield was measured as the ratio of the 
weight of oil recovered to the importance of the 
loofah seed sample before extraction. Oil yield 
was mathematically calculated using the formula 
employed by [16, 17]: 

 

, % 100
Weigt of Extracted Oil

Oil Yield
Weigt of the Seed

   (1) 

 

Screening of phytochemicals. Phenol Concentra-
tion Determination: The total phenol concentra-
tion measurement was adapted using the Folin 
Ciocalteu technique [18]. About 0.1 g of the oil 
extract was weighed into a test tube, and 1 ml of 
methanol was injected and brought into a water 
bath and shaker, where it was allowed to shake 
for 30 minutes at 40 °C.  

The sample was withdrawn, 1 ml of Folin Ciocal-
teu was inserted, and 2 ml of 20% Na2CO3 was 
introduced. The combination was allowed to rest 
for 10 minutes before being spun in a centrifuge 
for 20 minutes at 400 vpm. The absorbance was 
obtained using a UV spectrophotometer at 
625 nm. The standard curve was created by gen-
erating different levels of gallic acid starting at 
10 mg/l. 

Ann model development. Artificial neural network 
(ANN) architecture will be constructed in 
MATLAB 8.4 (R2015b) software environment 
where the training, validation and testing of the 
ANN model will be carried out. A three-layer 
ANN using a tangent sigmoid function (tensing) 
at the hidden layer, a linear transfer function at 

the output layer and the Levenberg-Marquardt 
backpropagation method with 1000 iterations. 
The input layer correlates with the three experi-
mental parameters: temperature (°C), solvent 
ratio and time (minutes). The output layer will be 
the oil yield, terpineol concentration and phenol 
concentration (Figure 3).  

 

 

Figure 3 – Proposed ANN structure 

 

All the data from oil extraction from Luffa cylin-
drica seed oil will be randomly separated into 
three groups (training, validation and testing) 
with a ratio of 70, 15 and 15%, respectively. In 
this investigation, ten neurons will be employed 
as a default test to establish the optimal method 
for the prediction. 1–15 neurons in the hidden 
layer and one neuron in the output layer will be 
applied, and data will be collected from multiple 
factors simultaneously. 

 

RESULTS AND DISCUSSION 

Oil yield analysis. The backpropagation method 
was determined after comparing eleven algo-
rithms. For all Back Propagation methods, a 
three-layer ANN with a tangent sigmoid transfer 
function (tensing) at the hidden layer and a line-
ar transfer function (purelin) at the output layer 
was employed. At the same time, ten neurons 
were utilised in the hidden layer for all BP strate-
gies. 

The benchmark comparison research demon-
strated that the LMA could give reduced MSE 
compared to other BP algorithms. As indicated in 
Table 1, the minimum MSE was achieved at ap-
proximately 4.66180 x 10-7 using the trainlm 
function. However, trainrp and conjugate gradi-
ent algorithms such as traincgf, traincgp and 
traincgb showed more significant errors than the 
LMA, with the biggest mistake being traingdx 
with an error of 0.4217. 

The loss in the optimality of the esti-
mates/results provided by various BP training 
methods may be ascribed to the experimental 
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data’s combinatorial character and non-linear 
structure. As a result, the different training 
methods used in the benchmark comparison con-
firmed the issue’s complexity analysis. 

 

Table 1 – Comparison of 11 backpropagation (BP) 
algorithms with ten neurons in the hidden layer for oil 
yield 

Backpropagation 
Algorithms 

Function MSE R2 

Levenberg–
Marquardt 
backpropagation  

Trainlm 4.66180 
x10-7 

0.999999 

Scaled conjugate 
gradient 
backpropagation  
 

Trainscg 2.05657 
x10-6 

0.999260 

Resilient 
backpropagation 
(Rprop)  

Trainrp 0.1692 0.90265 

Fletcher–Reeves 
conjugate gradient 
backpropagation  

Traincgf 0.0789 0.95038 

Polak–Ribi´ere 
conjugate gradient 
backpropagation  

Traincgp 0.1048 0.60435 

Bayesian 
Regularization 
backpropagation  

Trainbr 0.0542 0.7685 

BFGS Quasi-Newton 
backpropagation  

Trainbfg 0.0244 0.99786 

One step secant 
backpropagation  

Trainoss 0.0804 0.82931 

Batch gradient 
descent  

Traingd 0.1024 0.3752 

Vairable learning rate 
backpropagation  

traingdx 0.4217 0.43809 

Batch gradient 
descent with 
momentum  

traingdm 0.0796 0.93599 

 

The exemplary architecture of the ANN model 
and its parameter modification was established 
based on the most negligible value of the MSE of 
the training and prediction set. In the optimisa-
tion of the network, two neurons were employed 
in the hidden layer as an initial estimate. With an 
increase in the number of neurons, the network 
provided numerous local minimum values, and 
distinct MSE values were acquired for the train-
ing set. The criteria for selecting the ideal ANN 
structure are the MSE of the train data and the 
correlation coefficient (R2). Table 2 indicates the 

association between the number of neurons, R2 
and MSE for provided ANN. 

Table 2 demonstrates the dependency of the MSE 
and R2 on the number of neurons. The data indi-
cated that the MSE lowers when the number of 
neurons grows with the MSE of 1.03080 × 10-3 
and 2.50496 × 10-6 at neurons 2 and 3 corre-
spondingly. 

 

Table 2 – Comparison of 15 neurons in the hidden 
layer for oil yield using ANN model with Levenberg–
Marquardt backpropagation algorithm 

Neuron MSE R2 
2 1.03080 x 10-3 0.996386 
3 2.50496 x 10-6 0.999996 
4 3.15407 x 10-7 0.999999 
5 5.85051 x 10-11 0.999999 
6 4.17916 x 10-16 0.999999 
7 1.02388 x 10-19 0.999999 
8 2.72892 x 10-8 0.999999 
9 5.02974 x 10-8 0.999999 
10 5.43892 x 10-6 0.999999 
11 4.54943 x 10-8 0.999999 
12 2.79719 x 10-7 0.999999 
13 1.37048 x 10-11 0.999999 
14 1.01675 x 10-10 0.999999 
15 1.43506 x 10-12 0.999999 

 

The value falls, yielding the lowest MSE and R2 
value of 1.02388 × 10-19 and 0.999999 corre-
spondingly at neuron 7. With hidden neuron 8, 
the MSE rose dramatically to 2.72892 × 10-8. 
Hence, the neural network comprising seven 
hidden neurons (MSE 1.02388 × 10-19) was se-
lected as the best instance. The training was end-
ed after 15 iterations (TRAINLM) for the LMA 
because the discrepancies between training error 
and validation error began to rise. Figure 4 dis-
plays the MSE vs the number of epochs for opti-
mum ANN models. 

Phenol analysis. The best-suited Back propaga-
tion algorithm was selected by comparing eleven 
backpropagation algorithms. For all Back Propa-
gation algorithms, a three-layer ANN with a tan-
gent sigmoid transfer function (tansig) at the 
hidden layer and a linear transfer function 
(purelin) at the output layer was used. In con-
trast, all BP algorithms used ten neurons in the 
hidden layer. 
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Figure 4 – Training, validation and testing mean 
squared errors using Levenberg-Marquardt algorithm 

for oil yield 

 

The comparison analysis indicated that the LMA 
could reduce MSE compared to other BP algo-
rithms. As shown in Table 3, the least MSE was 
found as 2.56353 × 10-9 for trainlm function. 
However, trainrp and conjugate gradient algo-
rithms such as traincgf, traincgp and traincgb ex-
hibited higher inaccuracy than the LMA. 

 

Table 3 – Comparison of 11 backpropagation (BP) 
algorithms with ten neurons in the hidden layer for 
phenol  

Backpropagation 
Algorithms 

Function MSE R2 

Levenberg–
Marquardt back-
propagation  

Trainlm 2.56353 
x10-9 

0.999999 

Scaled conjugate 
gradient backpropa-
gation  

Trainscg 2.04897 
x10-1 

0.999966 

Resilient backpropa-
gation (Rprop)  

Trainrp 933.0959 0.90666 

Fletcher–Reeves 
conjugate gradient 
backpropagation  

Traincgf 404.8389 0.9947 

Polak–Ribi´ere 
conjugate gradient 
backpropagation  

Traincgp 517.2193 0.88381 

Bayesian Regulariza-
tion backpropaga-
tion  

Trainbr 2314.8 0.24899 

BFGS Quasi-Newton 
backpropagation  

Trainbfg 3855.8 0.3115 

One step secant 
backpropagation  

Trainoss 831.5908 0.88366 

Batch gradient de-
scent  

Traingd 46575 0.065591 

Backpropagation 
Algorithms 

Function MSE R2 

Vairable learning 
rate backpropaga-
tion  

traingdx 2297.3 0.56472 

Batch gradient de-
scent with momen-
tum  

traingdm 11918 0.76078 

 

The loss of the optimality of the esti-
mates/results provided by various BP training 
methods may be ascribed to the experimental 
data’s combinatorial character and non-linear 
structure. Hence, the complexity analysis of the 
issue was corroborated by the outcomes of the 
different training methods employed in the 
benchmark comparison. 

The optimal architecture of the ANN model and 
its parameter modification was established 
based on the most negligible value of the MSE of 
the training and prediction set. In the optimisa-
tion of the network, two neurons were employed 
in the hidden layer as an initial estimate. With an 
increase in the number of neurons, the network 
provided numerous local minimum values, and 
distinct MSE values were acquired for the train-
ing set. The criteria for selecting the ideal ANN 
structure are the MSE of the train data and the 
correlation coefficient R2.  

The result in Table 4 demonstrates the associa-
tion between the number of neurons, R2 and MSE 
for provided ANN. 

 

Table 4 – Comparison of 15 neurons in the hidden 
layer for phenol using ANN model with Levenberg-
Marquardt backpropagation algorithm 

Neuron MSE R2 
2 0.514682 0.999835 
3 169.61173 0.959863 
4 22.95281 0.996263 
5 0.844487 0.999740 
6 5.94709 x 10-6 0.999999 
7 1.41027 x 10-2 0.999998 
8 0.115657 0.999983 
9 1.53708 x 10-2 0.999998 

10 1.34121 x 10-3 0.999999 
11 3.74065 x 10-17 0.999999 
12 1.27561 x 10-5 0.999999 
13 1.49294 x 10-3 0.999999 
14 1.54694 x 10-4 0.999999 
15 2.62219 x 10-6 0.999999 
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The result in Table 4 demonstrates the relation-
ship between the MSE and R2 on the number of 
neurons. The observation indicated that the MSE 
value lowers as the number of neurons rises.  

The MSE value of 0.514682, 169.61173 and 
22.95281 was found at neuron 2, 3 and 4, accord-
ingly revealing an unfitted correlation of the ex-
perimental results. The MSE value reduced dra-
matically at neuron 6 to 5.94709 × 10-6 while the 
lowest MSE value and best correlation coefficient 
(R2) of 3.74065 × 10-17 and 0.999999 was found 
when the number of the hidden neuron was 
raised to 11. Therefore, the neural network com-
prising 11 hidden neurons was the best instance. 
The training was ended after 15 iterations 
(TRAINLM) for the LMA because the discrepan-
cies between training error and validation error 
began to rise.  

Figure 5 displays the MSE vs the number of 
epochs for optimum ANN models. 

 

 

Figure 5 – Training, validation, and test mean squared 
errors using the Levenberg-Marquardt algorithm for 

phenol 

 

Terpenol analysis. The backpropagation algo-
rithm was selected by comparing eleven algo-
rithms. For all Back Propagation algorithms, a 
three-layer ANN with a tangent sigmoid transfer 
function (tansig) at the hidden layer and a linear 
transfer function (purelin) at the output layer 
was used. In contrast, all BP algorithms used ten 
neurons in the hidden layer.  

The benchmark comparison study showed that 
the LMA could provide smaller MSE than other 
BP algorithms. As shown in Table 5, the smallest 
MSE was obtained at about 4.97667 × 10-6 for 

trainlm function. However, trainrp and conjugate 
gradient algorithms such as traincgf, traincgp and 
traincgb produced more significant errors than 
the LMA. 

 

Table 5 – Comparison of 11 backpropagation (BP) 
algorithms with ten neurons in the hidden layer for 
terpenol 

Backpropagation 
Algorithms 

Function MSE R2 

Levenberg–
Marquardt 
backpropagation  

Trainlm 4.97667 
x10-6 

0.999999 

Scaled conjugate 
gradient 
backpropagation  

Trainscg 0.143568 0.999991 

Resilient 
backpropagation 
(Rprop)  

Trainrp 8405.1 0.96085 

Fletcher–Reeves 
conjugate gradient 
backpropagation  

Traincgf 4093.2 0.99678 

Polak–Ribi´ere 
conjugate gradient 
backpropagation  

Traincgp 10718 0.99996 

Bayesian 
Regularization 
backpropagation  

Trainbr 69787 0 

BFGS quasi-Newton 
backpropagation  

Trainbfg 151130 0.26056 

One step secant 
backpropagation  

Trainoss 50466 0.98762 

Batch gradient 
descent  

Traingd 768840 0.5117 

Vairable learning 
rate 
backpropagation  

Traingdx 264140 0.57543 

Batch gradient 
descent with 
momentum  

Traingdm 377800 0.21375 

 

The loss of the optimality of the esti-
mates/results produced by some BP training al-
gorithms can be attributed to the experimental 
data’s combinatorial nature and non-linear struc-
ture. Hence, the complexity analysis of the prob-
lem was validated by the results of the various 
training algorithms used in the benchmark com-
parison. 

Table 6 depicts the dependence of the MSE and 
R2 on the number of neurons. The result showed 
that the MSE decreases as the number of hidden 
neurons increases. 
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Table 6 – Comparison of 15 neurons in the hidden 
layer for oil yield using ANN model with Levenberg–
Marquardt backpropagation algorithm 

Neuron MSE R2 
2 8.74906 0.999942 
3 18.22798 0.999815 
4 6.69517 × 10-2 0.999999 
5 2.99420 0.999979 
6 2.08963 × 10-2 0.999999 
7 7.55075 × 10-2 0.999999 
8 8.67223 × 10-3 0.999999 
9 3.06928 × 10-8 0.999999 

10 1.46451 × 10-3 0.999999 
11 2.13275 × 10-2 0.999999 
12 7.51982 × 10-26 0.999999 
13 2.16813 0.999986 
14 8.70552 × 10-5 0.999999 
15 2.39935 × 10-3 0.999999 

 

The MSE of 8.74906 and 18.22798 was obtained 
at neurons 2 and 3, respectively. The value re-
duces significantly to 6.69517 × 10-2 at four neu-
rons. The decrease was continuous to neuron 12, 
giving the lowest MSE and R2 values of 7.51982 × 
10-26 and 0.999999, respectively. Hence, the neu-
ral network containing 12 hidden neurons was 
the best case. The training was stopped after 15 
iterations (TRAINLM) for the LMA because the 
differences between training error and validation 
error started to increase. Figure 6 shows the MSE 
versus the number of epochs for optimal ANN 
models.  

 

 

Figure 6 – Training, validation, and test mean squared 
errors using the Levenberg-Marquardt algorithm for 

terpanol 

 

The comparison analysis (Table 7) of the re-
sponse surface methodology and artificial neural 
network showed that the correlation coefficient 
result of the oil yield for RSM was obtained as 
0.8395 while ANN has 0.99999.  

 

Table 7 – Comparison of RSM and ANN value  
 RSM ANN 

R2 MSE R2 
Oil Yield  0.8395 1.02388 x 10-19 0.999999 
Phenol  0.9942 3.74065 x 10-17 0.999999 
Terpanoid  0.9868 7.51982 x 10-26 0.999999 

 

The RSM correlation coefficient for phenol and 
terpanoid were obtained as 0.9942 and 0.9868, 
respectively, while the ANN correlation coeffi-
cient for phenol and terpanoid was 0.99999 for 
both. The result emphasised that the ANN model 
result has a better correlation than the RSM. 

The FT-IR result of the oil yield from Luffa cylin-
drical, as shown in Figure 7, indicated a pointed 
peak of 3008.0, indicating the alkene group, 
which is an unsaturated hydrocarbon.  

 

 

Figure 7 – FT-IR result of the oil yield 

 

Two sharp pointed peaks of 2922.2 and 2855.1 
told the alkane group. The figure also showed 
another sharply tapered area with a value of 
1744, indicating the presence of esters (6-
membered lactone) with the structure C=O; 
hence the oil has a high saponification value and 
could be recommended for soap production. The 
shorter, more minor point was observed with a 
value of 1461.1, indicating an alkane of the meth-
ylene group. In contrast, a medium sharp point 
was honoured with a value of 1379, showing an 
alkane of the gem dimethyl group. The point with 
value 1237.5 indicated an alkyl aryl ether with 
structure C–O–C, while 987.7 and 723.1 points 
indicated alkene compounds. 



Path of Science. 2023. Vol. 9, No 1  ISSN 2413-9009 

Section “Engineering, Manufacturing and Construction”  1009 

CONCLUSIONS  

A three-layer ANN with a tangent sigmoid trans-
fer function (tansig) at the hidden layer and a lin-
ear transfer function (purelin) at the output layer 
was suggested to estimate the oil yield, phenol 
and terpenol content of luffa cylindrica seed oil.  

The benchmark comparisons conducted with ten 
hidden neurons resulted that Levenberg–
Marquardt algorithm was the best algorithm 
among the eleven backpropagation algorithms 
used due to the nearness of its R2 to 1 and the 
Mean Root Square to zero compared to the other 
11 BP algorithms for the oil yield, phenol and 
terpenol content. The comparative study of the 
response surface methodology and artificial neu-
ral network indicated that the correlation coeffi-
cient result of the oil yield for RSM was achieved 
as 0.8395 while ANN has 0.99999. The RSM cor-
relation coefficient for phenol and terpanoid 
were found as 0.9942 and 0.9868, correspond-
ingly, while the ANN correlation coefficient for 

phenol and terpanoid was 0.99999 for both. The 
study underlined that the ANN model result cor-
relates more significantly than the RSM. The FT-
IR result of the Luffa cylindrical seed oil indicated 
a high degree of unsaturated hydrocarbon and 
esters. This makes the oil ideal to be utilised 
mainly in paint industries as a drying agent, cos-
metics manufacturing, and soap production and 
may also be edible for animal feed. 

The phytochemical properties of an oil are essen-
tial in determining the medicinal effects of the oil 
as well as its uses in various fields; hence it is 
recommended that further studies should be car-
ried out on predicting the phytochemical proper-
ties of the luffa cylindrical seed oil using another 
black box model such as Adaptive Neuro-Fuzzy 
Inference System (ANFIS). 

However, a simulation based on the ANN model 
may contribute to a better understanding of the 
dynamic behaviour of processes. 
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