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Cowpea (Vigna unguiculata (L.) Walp.) is one such legume that can facilitate

achieving sustainable nutrition and climate change goals. Assessing nutritional

traits conventionally can be laborious and time-consuming. NIRS is a

technique used to rapidly determine biochemical parameters for large

germplasm. NIRS prediction models were developed to assess protein, starch,

TDF, phenols, and phytic acid based on MPLS regression. Higher RSQexternal

values such as 0.903, 0.997, 0.901, 0.706, and 0.955 were obtained for protein,

starch, TDF, phenols, and phytic acid respectively. Models for all the traits

displayed RPD values of >2.5 except phenols and low SEP indicating the

excellent prediction of models. For all the traits worked, p-value ≥ 0.05

implied the accuracy and reliability score >0.8 (except phenol) ensured

the applicability of the models. These prediction models will facilitate high

throughput screening of large cowpea germplasm in a non-destructive way

and the selection of desirable chemotypes in any genetic background with

huge application in cowpea crop improvement programs across the world.

KEYWORDS

MPLS regression, germplasm screening, nutritional composition, RPD, RSQexternal

Introduction

Legumes have high nutritional qualities, are suitable for soil health and show

resilience to climate change; these attributes can help to attain food security among low

income developing nations of the world. Cowpea (Vigna unguiculata (L.) Walp.) is one

such multipurpose legume originating from Africa (1), that may facilitate in providing

food security and is adaptable to climate change and harsh conditions (2), becoming a

successful crop in arid and semi-arid areas. In Sub-Saharan Africa, Asia, and parts of
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America, it is a significant pulse crop, grossing a total world

production of 8.9 million metric tons (3). Nigeria accounts for

40% of total cowpea production, followed by Niger (26.8%) and

Burkina Faso (7.3%). In India, it is grown as a minor pulse in an

area of 3.9mhawith a production of 2.21million tons (4), mainly

in the arid and semi-arid tracts of Haryana, Punjab, Delhi, and

Western Uttar Pradesh.

Owing to its high nutritional value, cowpea can be a good

food source to combat malnutrition in low income developing

countries, especially in Asian and African countries (5). It

is rich in protein (24/100 g), total dietary fiber (11/100 g),

carbohydrates (60/100 g), and low in fatty acids (<2/100 g), with

a significant amount of essential amino acids1. High starch in

cowpea can be used to make processed products like moin-

moin and akara (6). It is a leguminous crop rich in TDF (16–20

/100 g), lowering the risk of cardiovascular diseases, diabetes and

heart ailments (7). A number of bio-functional non-nutrients

are present in dry cowpea seeds like phytates, flavonoids, and

tannins (8). Polyphenols are present in an abundant proportion

in legumes, which helps in imparting anti-oxidant properties

ranging from 46.5 to 119.6mg GAE/100 g (9, 10). Phytates are

distributed widely in cereals and legumes, mostly stored in the

form of phosphate in seeds. It has the ability to chelate divalent

cations like Fe, Mg, and Cu, decreasing the bioavailability of

the minerals. In cowpeas 0.5–3/100 g phytates has been reported

(8, 11).

Huge variability exists in the nutritional attributes of

cowpea, i.e., starch, protein, phenolics, phytates, TDF, and

even in micronutrients (12); along with genetic relationships

the variability in biochemical traits could help to develop

new cultivars with superior traits. Despite the fact that

crop improvement programs produce a large number no.

of crosses/lines each year, but it is difficult to evaluate

conventionally through complex methods which are labor

intensive, time taking and technically complex. For the

evaluation of a large number of accessions, NIRS has been

proven to be a better technique. NIRS is a non-destructive

technique widely used to predict organic compounds of grain

material based on electromagnetic radiation (13). It is known for

various advantages when compared to traditional procedures,

including rapid determination, non-destructive, minimal usage

of reagents, and less analysis of costs (14). Large scale rapid

screening previously has been done for fatty acid profile in

groundnut, major wood characteristics in Eucalyptus (15, 16).

Electromagnetic radiation from 780 to 2,500 nm in the NIR

region is covered by this technique (17), and absorption of

Abbreviations: NIRS, near infrared reflectance spectroscopy; MPLS,

modified partial least square; TDF, total dietary fiber; RSQ, coe�cient of

determination; RPD, ratio of performance to deviation; SEP, standard error

of performance.

1 http://fdc.nal.usda.gov

IR light by the substance under examination is the basis for

infrared spectroscopy. Molecular vibrations and rotation are

caused by absorption and relative proportion of C–H, N–H, O–

H, which forms the primary structure of biomolecules with a

frequency similar to those found in the infra-red region of the

electromagnetic spectrum (18, 19). These bands are important

for identifying molecular interaction between functional groups

and obtaining chemical information about the organic substance

(20). Establishing a spectrochemical prediction known as

spectrum calibration, multivariate regression methods, also

known as chemometrics, are utilized to calibrate the NIR

spectra to these organic elements due to the diversity of organic

compounds extensively in biomaterials (21). The biochemical

information included in a substance spectrum characteristic is

separated from the physical or chemical information revealed by

reference lab values via calibration (22). The analytical capacity

of NIRS was determined by the relation between the number

of biochemical parameters and the corresponding absorption

spectra. Authentication and validation of NIRS prediction

models depend on the accuracy of the relationship through pre-

processing the spectral data and multivariate statistical analysis.

Multiplicative scatter correction (MSC), standard normal variate

and detrend (SNV–DT) are common pre-treatment steps (23),

whereas multivariate regression techniques like partial least

square (PLS), modified PLS (MPLS) and principal component

regression (PCR) characterize the relation between biochemical

components and spectral data (22).

Among legumes, NIRS prediction models have been

developed for physicochemical properties, fatty acid andmineral

composition in lentil (24, 25), phytates in green gram (18),

neutral detergent fiber and acid detergent fiber fraction in

chickpea (26), nutritional quality for chickpea straw (27). In

cowpea, NIRS models have been developed to predict nitrogen

content in cowpea seed (12, 28), and crude protein content in

cowpea leaves (14).

In this study a combination of pre-processing methods

(derivatives, gaps, and smoothening) along with MPLS

regression have been used with an objective of developing

robust NIRS prediction models for five biochemical traits,

i.e., protein, starch, TDF, phenols, and phytates, to access

the nutritional diversity in cowpea germplasm. These models

could be applicable in different sectors of food industry,

high throughput screening in national and international

gene banks, seed industries and facilitate breeders in crop

improvement programs.

Materials and methods

Sample collection

Four hundred seventy-five accessions of cowpea consisting

of indigenous and exotic collections were taken from MTS of
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TABLE 1 Descriptive statistics of total protein, starch, TDF, phenols, and phytic acid.

Total dietary fiber% Starch% Protein% Phytate% Phenols%

N 121 121 121 121 121

Mean 17.3 32.6 24.0 1.11 0.272

Standard deviation 1.71 2.27 1.54 0.163 0.139

Minimum 13.7 27.5 19.4 0.690 0.03

Maximum 21.1 42.7 27.9 1.88 0.832

FIGURE 1

Box and whisker plots of 121 cowpea germplasm showing the distribution of protein, starch, TDF, phenols, and phytic acid.

National Gene Bank at ICAR-NBPGR, New Delhi, India, having

high variability in seed morphology. Using Augmented Block

Design accessions were grown in Issapur experimental farm,

New Delhi, India, following standard agronomic practices (29).

Matured and dried seeds were collected, and extraneousmaterial

was removed.

Sample selection for NIRS modeling

Using FOSS NIRS 6500, 475 accessions were scanned, and

the reflectance spectrum was recorded from 400 to 2,400 nm.

Hierarchical clustering was done by Ward’s method using

squared Euclidean distance of 5 on the normalized spectral data

of 475 samples. Major clusters and sub-clusters were identified

and separated in the same manner. A set of highly diverse 121

accessions were selected to cover the entire range of variability

in the data set. The wet chemistry values of these accessions

were used as reference values. These samples were homogenized,

ground, and sieved through a 1mm sieve in FOSS cyclotec,

and the flour thus obtained was used for scanning and wet

chemistry analysis.

Generation of reference data for NIRS
prediction models

Total protein content

Kjeldahl method (AOAC 984.13) (30) was used to estimate

total nitrogen content where FOSS Tecator 2300 Kjeltec
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Analyser Distiller Unit) was used. %N was converted to percent

protein using Jone’s conversion factor of 6.25.

Total starch content

Total starch content was estimated byMegazyme total starch

assay kit as per AOAC 996.11 (30) which uses α-amylase,

amyloglucosidase and glucose oxidase peroxidase. Absorbance

was recorded at 510 nm using a UV-VIS spectrophotometer, and

the results were expressed in g/100 g.

Total dietary fiber (TDF)

TDF was estimated using a commercial assay kit from

Megazyme International,Wicklow, Ireland (AOAC 985.29) (30),

which includes the use of α-amylase, amyloglucosidase, and

protease followed by precipitation with 95% ethanol and the

results were expressed in g/100 g.

Total phenolics

Total phenolics was estimated by Folin Ciocalteau Reagent

assay (31), which includes both oxidation and reduction

reaction. Absorbance was recorded at 650 nm using a UV-

VIS spectrophotometer, and the results were expressed

in GAE g/100 g.

Phytates

Phytates was estimated using commercial assay kit from

Megazyme International, Wicklow, Ireland (AOAC 986.11)

(30) with the use of phytase and alkaline phosphatase.

Absorbance was recorded at 655 nm, and the results were

expressed in g/100 g.

Quality control

All the estimations were carried out in duplicates to ensure

replicability and accuracy of the results. To ensure accuracy

suitable standards and reagents blanks were used for each

biochemical parameter. ASFRM-Rice-2 from PT-8 (INMU,

Thailand) was used to validate protein and TDF. Total starch

control kit (K-TSCK) control flours (wheat, maize starch) were

used for validation of total starch. Total phytic acid kit control

oat flour was used as standard reference material for phytic acid.

Spectroscopic analysis

FOSS NIRS 6500 spectrophotometer equipped with Win ISI

Project Manager Software Version 1.50 was calibrated using a

reference tile (100% white). Approximately 5 gm homogenized

samples were loaded and scanned in a circular ring cup with

a quartz window (3.8 cm and 1mm thickness). The average

spectrum was recorded by scanning the sample 32 times at 400–

2,500 nm and was registered as log (1/R) at increments of 2 nm,

where R is the respective reflectance.

Development of calibration and
validation sets

For development of calibration and validation set, the

accessions were arranged in ascending order and every second

value was taken out to make the calibration set. Therefore,

calibration and validation sets were obtained in the ratio of 2:1,

which ensured uniform variability in both the sets (32). Thus,

the accessions were divided into two sets for modeling, i.e., 81

accessions in the training set and 40 accessions in the validation

set for all the traits.

Calibration and validation of equations

Win ISI Project Manager Software Version 1.50 was used

to develop calibration equations using multivariate analysis

by regressing spectral data with laboratory values. MPLS

regression with cross-validation was used to develop equations

on the above software using full spectra. Various mathematical

algorithms, such as SNV–DT (SNV with detrend) were used

for scatter correction and pre-processing the spectral data for

each biochemical parameter. Moreover, different mathematical

treatments like “2,4,6,1”, “2,8,8,1”, “2,4,4,1”, “3,4,4,1”, and

“2,8,8,1” were used to develop models where the first digit

represents the order of derivative; the second digit represents

the gap (data points), third and fourth digits represents the

data point in first and second smoothening. The developed

calibration equations were assessed by different parameters

such as coefficient of determination (RSQ), standard error of

cross-validation [SEC(V)], standard deviation (SD), one minus

variance ratio (1-VR). SEC(V) of RSQinternal was calculated

by Win ISI Project Manager Software V 1.50. The portion of

the variation in reference data that may be characterized by

the variance in predicted data is displayed using RSQ. High

RSQ and lower SEC models are superior to low RSQ and

higher SEC values. Only cross-validation was insufficient to

assess the accuracy of the models [i.e., with SEC(V) and 1-

VR], so RSQexternal (coefficient of determination in external

validation), bias (difference between predicted and reference

values), SEP (standard error of performance), SEP(C) (corrected

standard error of performance) and RPD (ratio of performance

to deviation) values are used. RPD values are used for accuracy

of MPLS models where if RPD < 1.5, the model is not reliable,

in between 1.5 and 2.0, it indicates the capacity of a model to

distinguish high and low values, in between 2 and 2.5, indicating

approximate quantitative prediction, in between 2.5 and 3.0,
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FIGURE 2

(A) A combined plot of reflectance spectra of all the entire 121 cowpea germplasm. (B) An average reflectance spectrum of cowpea

homogenized flour with seven absorption bands.

indicates good quality prediction and if it is >3.0, then the

prediction is excellent (13).

Statistical analysis

All of the calibration and prediction was done using

Win ISI III Project Manager Software Version 1.50, which

applied various mathematical treatments based on spectral

and analytical data. Reference and predicted values were

monitored using Win ISI Project Manager Software V

1.50 with the developed equation. Using global statistical

values like RSQ, slope, bias, RPD and SEP(C), the accuracy

and predictive capacity of the model were evaluated. The

coefficient of determination (RSQinternal/external) was externally

plotted using Veusz statistical package for graphs of all the

biochemical parameters.

A paired sample t-test was performed between reference

and predicted values at 95% confidence interval using Jamovi
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TABLE 2 Calibration statistics of 81 cowpea accessions.

Traits N Outliers Range Math treatment Mean RSQ Slope SD SEC (V)

Protein 81 4 20.0–27.8% 2,4,6,1 23.9 0.800 1.000 1.29 1.23

Starch 81 7 26.7–38.7% 2,8,8,1 32.7 0.997 1.004 2.00 0.063

TDF 81 5 12.2–22.4% 2,4,4,1 17.3 0.934 0.954 1.70 1.11

Phenols 81 4 0.08–0.545% 3,4,4,1 0.251 0.719 1.000 0.098 0.085

Phytic Acid 81 5 0.583–1.62% 2,8,8,1 1.10 0.985 0.997 0.173 0.266

N, number of samples; RSQ, coefficient of determination; SD, standard deviation; SEC(V), standard error of cross validation.

TABLE 3 External validation statistics of 40 cowpea accessions.

Traits N Range Math treatment Mean RSQ Slope Bias SD SEP RPD

Protein 40 19.3–26.5% 2,4,6,1 24.2 0.903 1.122 0.197 1.67 0.598 2.80

Starch 40 28.1–42.7% 2,8,8,1 32.4 0.997 1.028 0.029 2.81 0.528 5.32

TDF 40 14.5–20.3% 2,4,4,1 17.2 0.901 0.954 −0.026 1.49 0.454 3.28

Phenols 40 0.03–0.496% 3,4,4,1 0.247 0.706 1.179 0.003 0.114 0.064 1.78

Phytic acid 40 0.866–1.40% 2,8,8,1 1.12 0.955 0.929 0.009 0.147 0.033 4.45

N, number of samples; RSQ, coefficient of determination; SD, standard deviation; SEP, standard error of performance; RPD, ratio of performance to deviation.

statistical software package v1.6.9 (33). Strict parallel analysis

was performed to check the reliability of the developed models

and the reliability score was calculated by IBM SPSS v17.3

between the predicted and laboratory validated samples.

Results and discussion

Quantification of biochemical
parameters

Five nutritional traits were worked out for 121 diverse

cowpea accessions, and descriptive statistics are given in Table 1,

whereas the box and whisker plots to showcase the variability of

each trait are given in Figure 1. Protein was found to be range

from 20 to 27.8/100 g, which is the most important trait for

any legume. It is within the interval previously reported from

17.4 to 31.7/100 g (34) but lower than the values of 28.1–31.8%

for five different Ethiopian cultivars (35). The protein content

of cowpea has essential amino acids like lysine, histidine, and

aromatic amino acids (36, 37). Starch content varied from 26.7

to 38.7/100 g, which is in agreement with the range of 28.3–

36.2/100 g reported (34) but is lower than compared to other

legumes like black gram 45/100 g and red bean 46 /100 g (38).

Starch content will be useful for making processed products like

moin-moin and akara. TDF in our study significantly varied

from 12.2 to 22.4/100 g with a mean of 17.3 /100 g, close

to the reported values worked by Akissoe et al. (15.6/100 g)

but lower than worked values of 27.4/100 g (39, 40). Higher

TDF in legumes corresponds to the lowering of cardiovascular

diseases, diabetes, obesity, etc. Anti-nutritional factors such as

phenolic compounds like phenolic acids, tannins, flavonoids,

and phytates were analyzed and found in the range of 0.08–0.545

GAE/100 and 0.583–1.62/100 g, respectively. These compounds,

if present in higher quantities, can limit the bioavailability of

divalent cations (41).

NIRS spectra acquisition

Combined NIRS spectra of 121 cowpea accessions in the

range of 400–2,490 nm is given in Figure 2A. The bands

result from overlapping absorption that corresponds to the

combination and overtones of vibrational modes N–H, O–H,

and C–H, found in proteins, fatty acids, and carbohydrates,

respectively. The main absorption bands were observed at

1,196, 1,468, 1,736, 1,934, 2,100, 2,310, and 2,482 nm, as shown

in Figure 2B. C–O and N–H stretch, found in the spectral

region between 2,000 and 2,222 nm, denoting protein content

(42). O–H group can also be found in 1,560–1,640 nm, which

can be allocated to the O–H group associated with phytates

(18). O–H stretch first overtone of hydroxyl phenol groups

present in 1,430–1,470 nm, whereas O–H bending/stretching

of polysaccharides was found near the peak of 1,920 nm. The

third polysaccharide overtone stretched by asymmetric C–O–

O stretch was found near 2,083 nm (43). Unclear peaks were

observed near 2,304–2,352 nm; this wavelength characterizes

fatty acids and oils; since cowpea has little number of fatty acids,

the bands were unclear. Symmetric stretching (–CH) in methyl

groups (–CH3) found in a wavelength of 1,200 nm causing weak

absorption bands. Similar bands were found in the study of rice

flour and its quality properties using NIRS (44).
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FIGURE 3

Scatter plot between the reference vs. predicted values for protein, starch, TDF, total dietary fiber, phenols, and phytic acid.

RSQexternal–coe�cient of determination for validation.
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TABLE 4 Paired sample t-test at 95% confidence interval.

Pairs Paired differences

Mean SD SEM 95% confidence interval

of the difference

t-value DF p-value

Lower Upper

Protein reference—protein

predicted

0.135 0.260 0.0934 −0.0549 0.325 1.44 40 0.158

Starch reference—starch

predicted

0.0179 0.02 0.0270 −0.0368 0.0725 0.662 40 0.512

TDF reference—TDF

predicted

0.0350 0.06 0.0736 −0.114 0.184 0.475 40 0.637

Phenol reference—phenol

predicted

0.00506 0.0318 0.0107 −0.0167 0.0268 0.473 40 0.639

Phytate reference—phytate

predicted

0.00850 −0.008 0.00526 −0.00214 0.0191 1.62 40 0.114

SD, standard deviation; SEM, standard error of mean; DF, degree of freedom.

Calibration of NIRS model

A calibration set is generally referred to as training set

providing learning and training to build the model. Regression

algorithms like MPLS, PLS, and PCR can be used for model

development, but as compared to the PLS algorithm, MPLS is

supposed to be more stable and accurate (24) and thus was

employed in the present study. Both spectra and reference

composition were used in the MPLS technique for generating

equations, decreasing the effect of irrelevant large spectroscopic

variations. Absorption levels are generally altered due to the

variation in the scattering of light and path length variation

caused by intervention in sample particles and light. Linear

calibration and spectral interpretation of NIR spectra becomes

very complex and difficult due to the alterations (13). Spectral

pre-processing was employed to diminish the multiplicative

effect of particles size and scattering including scatter correction

and derivatization techniques (22). SNV works by removing

the mean from each spectrum, followed by dividing the value

of each signal by the SD of the entire spectrum to center it

around zero. Along with SNV, detrend is another approach to

correct behavior shift. SNV with detrend (DT) in the present

study was employed to avoid any noise in the NIRS signal

baseline. Table 2 summarizes the calibration models by MPLS

for protein, starch, TDF, phenols, and phytates in homogenized

cowpea flour. For the development of calibration equations

for various parameters, several mathematical treatments like

“2,4,4,1”, “2,4,6,1”, “2,8,8,1”, and “3,4,4,1” were finalized. Our

calibration equation was based on the highest 1-VR and

RSQinternal, lowest SEC(V) values. Resolution of spectra can

be improved by using derivatives 2 and 3, which eliminates

baseline shifts and superimposed peaks. The signal-to-noise

ratio in the spectral region caused due to erratic high-frequency

perturbations can be improved by using gaps 4 and 8 and

smoothening (S1, S2). Calibration equations were generated

by removing a few outliers (<10), which occurred due to

scanning or analytical errors and were removed. As given in

the Table 1, RSQinternal for different traits was obtained for

protein (0.800), starch (0.997), TDF (0.934), phenols (0.719) and

phytates (0.985) for the given mathematical treatments “2,4,6,1”,

“2,8,8,1”, “2,4,4,1”, “3,4,4,1”, and “2,8,8,1” respectively.

Validation of the NIRS model

The external validation statistics for the given traits, protein,

starch, TDF, phenols, and phytates of 40 samples are shown

in Table 3. No outliers were removed in external validation to

show higher prediction power and ensure the robustness of

developed models. The best fit models were chosen based on

higher RSQexternal, RPD, and low SEP, SD, slope, and bias values.

To authenticate the model’s validity, RPD value was used, which

considers both SEP and variation in values and is more precise

than SEP(C) (45). Towett et al. (14) found an RSQexternal of

0.93 for crude protein in cowpea leaves, whereas Pande and

Mishra (18) found an RSQexternal of 0.97 for phytates in green

gram seeds using FT-NIRS. The regression plot of predicted

values versus reference values for protein, starch, TDF, phenol

and phytic acid are described in Figure 3 respectively. These

plots of predicted values versus reference values were developed

throughWin ISI III project manager V 1.50.Models for proteins,

starch, TDF, phenols, and phytates displayed RPD values of 2.80,

5.32, 3.28, 1.78, and 4.45, respectively, denoting the model’s

excellent prediction power. Our RPD values for protein are in
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TABLE 5 Prediction and wet chemical values of selected cowpea accessions.

Acc no. %TDF %Phytates %Phenol %Protein %Starch

Pred Val Pred Val Pred Val Pred Val Pred Val

NIC23093 21.0 20.6 1.51 1.54 0.251 0.354 24.3 25.3 32.0 30.9

IC52099 21.9 22.2 1.28 1.31 0.215 0.345 23.7 24.6 30.9 31.1

IC140239 24.6 25.1 1.60 1.63 0.157 0.134 21.4 21.7 36.7 40.1

IC209139 20.4 21.3 1.33 1.26 0.204 0.311 24.1 25.0 32.4 35.7

EC240841 17.8 18.8 1.34 1.45 0.288 0.263 24.0 24.6 31.6 32.4

EC241015 20.9 21.0 1.44 1.34 0.228 0.211 23.4 24.1 32.3 33.4

IC257430 18.7 19.4 1.27 1.22 0.259 0.288 24.4 25.3 31.2 32.1

IC265570 19.6 18.5 1.44 1.40 0.274 0.3 25.6 26.1 30.0 30.1

IC326996 18.4 18.7 1.46 1.62 0.24 0.23 23.4 24.2 34.1 33.9

IC341244 21.0 21.7 1.55 1.88 0.246 0.248 22.7 23.5 34.0 34.1

IC372718 19.2 19.2 1.35 1.23 0.262 0.258 23.9 24.6 30.5 31.2

IC397907 18.2 18.7 1.46 1.34 0.276 0.287 26.0 27.3 30.1 30.1

IC426824 17.5 18.1 1.47 1.45 0.297 0.32 23.1 24.2 33.5 33.6

IC488259 19.9 20.0 1.33 1.39 0.282 0.313 24.9 25.3 29.7 30.0

IC546253 20.0 20.1 1.49 1.45 0.275 0.266 23.5 24.4 32.9 33.2

EC724421 20.2 20.2 1.59 1.62 0.24 0.288 24.4 25.5 31.9 31.7

IC91521A 20.9 21.5 1.53 1.56 0.284 0.301 24.6 25.6 31.1 31.6

EC240917 21.4 22.5 1.75 1.66 0.20 0.244 22.8 23.5 35.2 36.9

IC724382 21.5 22.6 1.45 1.40 0.194 0.228 21.5 21 35.7 39.0

% MEAN 20.2 20.5 1.5 1.5 0.2 0.3 23.8 24.5 32.4 33.2

STDEV 1.64 1.75 0.12 0.17 0.04 0.05 1.14 1.40 1.95 2.82

ACC, accession; TDF, total dietary fiber; PRED, predicted values; VAL, validated values; STDEV, standard deviation.

TABLE 6 Reliability analysis between predicted and laboratory validated values using strict parallel method.

MEANS STDEV

Trait N Pred Lab val Pred Lab val Reliability

of scale

Correlation

(pred/lab val)

Protein 19 23.7 24.5 1.18 1.43 0.91 0.97***

Starch 19 32.4 33.2 2.00 2.91 0.92 0.93***

TDF 19 20.1 20.5 1.69 1.79 0.97 0.95***

Phenols 19 0.24 0.27 0.037 0.051 0.64 0.55**

Phytic acid 19 1.45 1.46 0.121 0.171 0.87 0.77***

N, number of samples; PRED, predicted values; LAB VAL, laboratory validation; STDEV, standard deviation; ***p < 0.001; **p < 0.01

agreement with Ishikawa et al. (2.88) in cowpea (12). RPD value

for phenolics (1.78) which shows that the model can distinguish

between higher and lower values. Slope denotes the change in

predicted values with a unit change in reference values. The ideal

value of the slope is 1, and any value close to 1 would indicate an

accurate model. The values of slope in our study for different

traits were protein (1.12), starch (1.03), TDF (0.954), phenols

(1.18), and phytates (0.929). In determining the model accuracy,

bias is an important indicator of similarity between reference

and predicted values of the model (23). When the reference

and predicted values are the same, the bias would be equal

to zero, which is the ideal value for bias. An underestimating

model will be signified by negative bias, and overestimating

model will be signified by positive bias (46). The values of bias

for different traits were 0.197 (protein), 0.029 (starch), −0.026

(TDF), phenols 0.003 (phenols), and 0.009 (phytates), where all

the developed models were found to be overestimating except

TDF which is found to be underestimating.

To determine whether the mean of a dependent variable is

the same as the analytical and predicted values for the examined

biochemical parameters, a paired t-test with a 95% confidence

interval was performed. In our study, the p-value came out more
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than 0.05, indicating the accuracy and reliability of the models

(Table 4). The p-values of protein, starch, TDF, phenols, and

phytates are 0.158, 0.512, 0.637, 0.639, and 0.114 respectively.

Hence no statistically significant differences came out between

the means in the NIRS method and standard methods used to

analyze the traits.

Applicability of the developed models

The validated models were used to predict a sample set

of 202 cowpea accessions for use in screening germplasm

resources. To ensure the reliability of developed equations, 10%

of samples were analyzed by standard methods. The predicted

data were arranged in ascending order, and every 11th sample

was selected for wet chemistry analysis. The result of predicted

and laboratory values are given in Table 5. Correlation studies

between the datasets show high correlation for protein (r= 0.97,

p < 0.001), starch (r = 0.93, p < 0.001), TDF (r = 0.95, p <

0.001) while slightly low correlation was observed for phenols (r

= 0.55, p < 0.01) and phytic acid (r = 0.77, p < 0.01) (Table 6).

Strict parallel analysis is used to determine the difference in the

means and standard deviations of two datasets where in our

study there was agreement in the consistency of results, showing

high reliability scores (unbiased) for protein (0.91), 0.92 (starch),

0.97 (TDF), 0.87 (phytic acid) and comparatively low reliability

for phenols (0.64) (Table 6).

Conclusion

In our study for the rapid prediction of protein, starch,

TDF, phenols, and phytates, NIRS was found to be a potential

tool. The present work is the first report on the development of

prediction models of protein, starch, TDF, phenols, and phytates

in cowpea through the MPLS regression method based on the

NIR spectroscopymethod.MPLS regression was used to develop

models which have shown suitability for all the traits. Good

RSQexternal and RPD values have been found for multi-trait

parameters. Model applicability studies confirmed that these

models could predict the traits of diverse cowpea germplasm

with excellent accuracy and precision. The use of NIR models

substantially reduced the cost and time for analyzing multiple

traits in cowpea germplasm without compromising on data

quality. Thus, these developed models will facilitate high

throughput screening of large cowpea germplasm present in the

national and international gene banks throughout the world,

for identifying traits specific germplasm and selecting desirable

chemotypes in any genetic background with huge application in

cowpea crop improvement program across the world. However,

these prediction models have been developed in the flour of

cowpea but predictionmodels should also be developed in grain,

as it will facilitate the screening of cowpea germplasm in a

completely non-destructive way.
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