Effective and innovative approaches to phenotypic evaluation

Jill Cairns & Mainassara ZA

Global Maize Program

ICIMMYT

Outline

- 1. The role of phenotyping
- 2. Conceptual scheme

3. Phenotyping for cultivar development – shift from "physiologist preferred traits" to "breeder preferred traits"

- 4. Devising an effective "screen" for a trait of interest
- 5. Phenotyping technologies
- 6. Data collection, data management, data analysis
- 7. Phenotyping in the context of genetic gain
- 8. Phenotyping and product profiles

Role of Phenotyping

Role of Phenotyping

Conceptual Scheme

Trait Characterization

Trait Characterization

Drought tolerance

Trait Characterization

Drought tolerance

GY = [W x Ptrans x WUE] x HI

where

W = water available to the plant Ptrans= proportion of water transpired by the crop WUE = water use efficiency HI = harvest index

Trait Characterization

Low nitrogen tolerance

Trait Characterization

Nitrogen use efficiency

GY = [NA x Nuptake x NUE] x HI

where

NA = soil N available to the plant Nuptake= proportion of N taken up by the crop NUE = nitrogen use efficiency HI = harvest index

Trait Characterization

Yield potential

Trait Characterization

Yield potential

GY = RAD x %RI x GLD x RUE x HI

where

RAD = incident radiation per day %RI = fraction of incident radiation intercepted by green leaves GLD = green leaf duration, or number of days leaves remain green RUE = radiation use efficiency HI = harvest index

Precision and accuracy in phenotyping

Precision and accuracy in phenotyping

Precision

Precision and accuracy in phenotyping

Accuracy

Testing environments: specialized vs non-specialized

Basic requirements

Site selection criteria

Testing environments: specialized vs non-specialized

Basic requirements

Mapping spatial variability

Testing environments: specialized vs non-specialized

Uniformity trials

Uniformity trial can significantly improve characterization of germplasm:

- reduce the risk of failure
- plot error control
- accurate stress management
- improve data quality

Testing environments: specialized vs non-specialized

Uniformity trials

Uniformity trial can significantly improve characterization of germplasm:

- reduce the risk of failure
- plot error control
- accurate stress management
- improve data quality

Testing environments: specialized vs non-specialized

Specialized Vs Non-Specialized

Testing environments: specialized vs non-specialized

Specialized Vs Non-Specialized

ICIMMYT.

P.H. Zaidi, M.T. Vinayan and K. Sostharam ICIMMYT.

IMMYT.

http://excellenceinbreeding.org/sites/default/files/manual/58000 4.pdf

I.E. Calms and M.T. Vinayan

Platforms and tools

Classical phenotyping methods were:

- labor intensive/slow with associated cost and precision/accuracy implications
- limited by their throughput which impacted the number of traits that can be evaluated.

Platforms and tools

Phenomics is going through a phase of rapid development

Next Generation **Digital Phenotyping**

Robotic measurements

Remote sensing

Platforms and tools

Platforms and tools

UCIMMYT.

Platforms and tools

IYT.

Platforms and tools

Platforms and tools

		Canopy		Total		Grain	
	Yellow	Dry	Green	Cover	RGC	Yield (Mg ha ^{_1})	
Heritability	0.526	0.766	0.544	0.602	0.547	0.547	
Mean	1.625	0.376	2.379	0.660	0.358	1.670	
Genetic correlation (ρ _g)	0.602**	-0.301*	0.616***	0.792***	0.650***	-	
n Trials	10	10	10	10	10	10	

Platforms and tools

Male flowering

- Tassel development detection
- Actual anthesis date requires integration of machine learning

Platforms and tools

SENSORS	APPLICATIONS
Thermal Imaging	Leaf and canopy temperature
RGB and Morphometric Imaging	Shoot biomass, growth dynamics, shoot shape, color index,
3D Scanning	Shoot structure, leaf angle distribution, shoot biomass
Kinetic Chlorophyll Fluorescence Imaging	Photosynthetic status, quantum yield, non- photochemical quenching, electron transport rate,
Hyperspectral Imaging	Pigment composition, biochemical compounds, nitrogen content, leaf water status,
Near-InfraRed (NIR) Imaging	Leaf and canopy water status

Platforms and tools

DIST

Plant height measurement using data transfer-enabled laser distance meter ICIMMYT.

Platforms and tools

Plant Count

Tassel count CIMMYT.

Platforms and tools

Yield Components

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	478 497
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	497
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
540 543 541 535 523 567 574 566 568 563 601 610 596 612 611 16 632 643 544 566 568 601 610 525 612 611 650 644 544 640 638	515
567 574 586 561 658 801 610 596 612 611 113 632 624 644 640 638	542
674 688 583 601 610 696 612 611 15 632 623 640 638	568
801 810 812 811 632 844 850 844 847	597
632 650 644 647 640 638	833
650 644	
667 668 666	870
685 688 695	78
694 701 000 F	99 05
728 729 729 729 742	26
743 754 774	and the second se

ICIMMYT

Platforms and tools

Yield Components

Platforms and tools

Yield Components

	Broad-sense heritability											
	Kernel attributes								Ear attributes			
Grain yield (Mg ha ⁻¹)	Visible Kernel Number	Mean width (cm)	Mean length (cm)	Total area (cm²)	Mean area (cm)	Mean perimeter (cm)	Total Number per plot	Total Weight (g plot ⁻¹)		Number per plot	Mean length (cm)	Mean width (cm)
0.477	0.537	0.750	0.783	0.483	0.744	0.794	0.534	0.456		0.601	0.605	0.504

Makanza et al. Plant Methods

Platforms and tools

Value of Sensing Technology

Reduces time required for measurements by 50 to 90%

High Throughput

Reduces cost related to data collection by 25 to 75%

Cost Effective

Enables short revisit periods

Time Series Data

Platforms and tools

UAV regulations challenges/options

Proximal Sensing Cart

Robotics for the Benefit of All

Flying Labs

Service provision by private companies

Thank you for your interest!