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A B S T R A C T   

Climate variability affects crop production in multiple and often complex ways. The development and use hybrid 
crops with greater productivity and tolerance to climate shocks is one of the approaches to climate adaptation 
and agricultural intensification. Since hybrid crops are more expensive for the producer, risk management is of 
paramount importance. Here, we pose that there is high potential for the Colombian maize sector to use crop- 
specific climate services for risk reduction. We used the CERES-Maize crop model connected to seasonal 
climate forecasts developed via Canonical Correlation Analysis (CCA) across key maize growing areas in 
Colombia to assess the performance of a maize-specific agroclimatic forecast to inform two key decisions, 
namely, the choice of sowing dates and genotypes. We find that the agroclimatic models perform well at 
discriminating yield categories (above, below, and normal) with discrimination capacity of up to 70–80 % for the 
‘below normal’ and ‘above + below normal’ categories. Consistent with this, agroclimatic forecasts typically 
predict the optimal planting date with an error of 3 pentads or less. They also predict the optimal choice of 
genotype correctly around 50–70 % of the time depending on the site or season of interest. Notably, we identify 
specific cases in which the agroclimatic forecast is misleading but argue that the overall value of the forecasts 
outweighs these cases. Future work should focus on expanding the scope of the agroclimatic prediction to include 
other relevant farming decisions that are influenced by climate, and on the improvement of climate forecast 
performance.   

Practical implications  

The current study develops an approach for assessing the perfor
mance of agroclimatic forecasts as a climate service for hybrid 
maize across Colombia –where maize is one of the most important 
staple crops for food security and farmer incomes. The use of 
climate forecasts as part of decision support systems for agricul
ture has been evaluated previously (Capa-Morocho et al., 2016; 

Han et al., 2019). Here, we go a step further and assess the per
formance of locally tailored and crop-specific seasonal agro
climatic forecasts toward specific farming decisions, namely, 
planting date and genotype choice. We used field experiments to 
calibrate the DSSAT-CERES-Maize crop model and then integrate 
the calibrated crop model with retrospective seasonal climate 
forecasts. The combination of historical climate data and a well- 
calibrated crop model then allowed us to evaluate the overall 
quality of the forecasts and the responses of the target varieties to 
the local climate conditions. 
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Our paper demonstrates that, while not perfect, these agroclimatic 
forecasts have adequate skill for identifying, ahead of season, the 
most likely yield outcome (above normal or top tercile, around 
normal or middle tercile, and below normal or bottom tercile) 
with an accuracy of up to 80 % in some cases. Perhaps more 
importantly, our analyses show that, in many instances, these 
forecasts also allow selecting the best performing planting dates 
and varieties. Three main practical implications stem from our 
work: 

Agroclimatic forecasts can indeed support decision-making. In 
Colombia and other parts of the world, where climate risk is high 
and rainfed agriculture is prevalent, substantial supply of climate 
information services and products exists (Bouroncle et al., 2019; 
Chiputwa et al., 2022; Haigh et al., 2018; Vaughan et al., 2019). 
Many of such products and services remain underused in part 
because their value and performance are unclear to users or has 
not been assessed at all. Our study identifies specific situations 
(sites, seasons) in which the forecasts work best, which may be 
used by practitioners to guide future implementations and scaling 
of climate services in the country. Our approach can also 
contribute to output quality assessment and reporting of existing 
services such as the Pronosticos AClimateColombia forecast system 
(Sotelo et al., 2020). 

Crop simulation models can act as ‘translators’ in the climate services 
value chain. Climate services encompass the process of generation, 
translation, transfer, and use. Many climate services and products 
limit the information generated to probabilistic outlooks of pre
cipitation and temperatures, which can be difficult to interpret for 
farmers in developing country contexts (Alfaro et al., 2018; 
McCrea et al., 2005). This effectively means that further trans
lation of the probabilistic information is needed. Our study con
nects climate forecasts to crop models, which effectively translates 
the climate forecast probabilities into local- and crop-specific 
predictions of optimal planting dates and genotypes. These pre
dictions are more actionable and hence more likely to be under
stood and used by farmers (Guido et al., 2020; Sotelo et al., 2020). 

Lastly, we contribute to advancing the area of climate services evalu
ation (Tall et al., 2018; Vogel et al., 2017). Our approach assesses 
four aspects of agroclimatic forecast performance, namely, (i) 
climate forecast skill; (ii) crop model skill; (iii) agroclimatic 
forecast ability to predict yield; and (iv) agroclimatic forecast 
ability to predict decisions. Especially for the forecast ability to 
predict decisions, we provide a comprehensive picture of forecast 
performance across sites, planting seasons, and years. For 
instance, while Section 3.4 provides a general overview of yield 
forecast performance, Section 3.5 provides a detailed account of 
the predictive accuracy of the forecasts for identifying optimal 
planting dates. Section 3.6 then shows the accuracy for identifying 
the best-performing genotypes, but also looks at how it varies 
across planting dates. In a practical situation, this combined in
formation would help the user get a rapid but comprehensive 
picture of where forecasts have the greatest potential value. 
Though clearly forecast skill is not the only dimension of impor
tance in evaluating climate services, we believe our method, an
alyses, and results provide a solid basis for climate services 
evaluation. Future research and practice may connect our bio
physical models with decision models (e.g., agent-based models) 
or surveys to explore farmer choices and their livelihood benefits. 

Data availability 

Data will be made available on request.   

1. Introduction 

Climate variability affects crop production in multiple ways, ranging 
from changes in the duration of the growing cycle due to temperature 
through to variations in soil water availability and total loss of 

agricultural production (Anderson et al., 2019; Iizumi et al., 2014). This 
is especially true for small-scale farming areas in the tropics, where 
adaptive capacity can be low, and farmers lack basic information, 
extension, and resources and skills to address climate risk (Dayamba 
et al., 2018; Xue et al., 2008). In many of these areas, and especially so 
throughout Latin America, Sub-Saharan Africa, and Asia, climatic vari
ation can explain as much as 75 % of the productivity of maize crops 
(Ray et al., 2015). In Colombia, the focus of the present study, around 
two-thirds of the rainfed maize yield variation are reportedly explained 
by climate and management, with rainfall and runoff being key climate- 
related determinants of crop productivity (Jiménez et al., 2019). 

Throughout the tropics, one of the approaches to adaptation is the 
development and use hybrid crops that have greater productivity and 
are more resilient to climate shocks (Govaerts et al., 2019; Masuka et al., 
2017). Since hybrid crops are more expensive for the producer, risk 
management is of paramount importance. A season with low produc
tivity and thus poor economic return can result from a variety of factors, 
including the selection of an inappropriate variety given the expected 
seasonal conditions, inadequately informed decisions regarding 
planting dates and agronomic practices (Hammer et al., 1996; Hansen 
et al., 2009; Klemm and McPherson, 2017). In Colombia, the confluence 
of these factors leads to low maize yields (1.8 ton ha− 1 below the Latin 
American average) and significant interannual variations, resulting in 
high levels of import dependency (Govaerts et al., 2019). 

We pose that there is high potential for the Colombian maize sector 
to use crop-specific climate services to contribute to closing the maize 
yield gaps and enhancing climate risk management. Realizing such po
tential requires a strategy spanning the use of seasonal climate infor
mation; understanding of potential agroclimatic influences; availability 
of high-yielding, resilient and marketable genotypes; and good agro
nomic practice (Govaerts et al., 2019). Implementing climate services, 
however, requires a series of interconnected components including 
reliable seasonal climate forecasts, tools to link climate forecasts with 
agronomic decisions, and delivery mechanisms (Fraisse et al., 2006; 
Guido et al., 2020; Roel and Baethgen, 2007). These components facil
itate the production and translation of climate information into agri
cultural terms as well as the construction of the social capital (including 
institutional and individual capacities) to transfer and use climate in
formation at the farm level (Dayamba et al., 2018; Loboguerrero et al., 
2018). 

At the core of many climate services in agriculture is the ‘agro
climatic forecast’. That is, the integration of three aspects: (i) a reliable 
seasonal climate forecast, (ii) a well-calibrated crop simulation model, 
and (iii) the verification of the corresponding combined forecasts. These 
aspects have not been holistically considered nor systematically assessed 
for hybrid maize cultivation in the Colombian context. Here, we develop 
and evaluate seasonal agroclimatic forecasts for hybrid maize produc
tion in Colombia. More specifically, we,  

(i) Calibrate model parameters of the DSSAT-CERES-Maize model 
and evaluate maize crop yield simulations using experimental 
information from three maize-producing areas in Colombia;  

(ii) Assess historical (1980–2013) maize yield variability, its causes, 
and the role of management choices (i.e., planting dates and 
genotypes); 

(iii) Evaluate the integration between the seasonal climate pre
dictions and the crop model with a focus on the correct identifi
cation of the highest-yielding planting dates and genotypes. 

In the following sections we present the above approach and illus
trate how better understanding of the crop-climate interface under 
conditions of climate variability can be used to better inform variety 
selection and planting date decisions for hybrid maize. 
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2. Materials and methods 

2.1. Study areas 

In Colombia, maize is a staple crop sown in virtually every depart
ment (state), with the Andean and Caribbean regions housing the largest 
commercial production (FENALCE, 2017; Govaerts et al., 2019). We 
focused on the departments of Cordoba (Caribbean region), and Tolima 
and Valle del Cauca (Andean region) (Fig. 1), which together hold a 
quarter the total commercial maize growing area (Colombia grew 130 
thousand hectares of maize in 2021) (MADR, 2021). In collaboration 
with the National Maize Federation (FENALCE), we selected one locality 
per department: Cereté (Córdoba), El Espinal (Tolima) and La Union 
(Valle del Cauca), as representative sites for our analyses. 

Cereté has a unimodal rainfall regime that runs from April to 
November, with warm temperatures (maximum in the range 31–34 ◦C 
and minimum 21–22 ◦C). Soils in Cereté often have high contents of fine 
clays and fine sands, with a high-water table, therefore making them 
susceptible to flooding. In some regions of Cereté, moderate maize yields 
(ca. 5 ton ha− 1) can be observed, even in the absence of rain, since the 
underground water can supply the crop needs. La Unión and El Espinal 
both have a bimodal rainfall regime, with the March–May and Sep
tember–November periods representing the peak rainy periods (Fig. 1). 
With maximum temperatures well above 32 ◦C and minimum temper
atures around 22 ◦C, El Espinal is warmer than La Unión, which is about 
1.5–2 ◦C degree cooler, and has greater diurnal range. Both localities are 
characterized by soils of volcanic origin (andisols, vertisols) that are well 
drained and with high fertility and high clay content. In all three lo
calities, maize is grown in two cropping seasons (herein referred to as A 
and B). Season A corresponds to planting dates during the first semester 
of the year (Jan–June), whereas Season B corresponds to planting dates 

during the second semester of the year (July–December). Table 1 shows 
the physical soil properties (from on-site soil sampling) and the maize 
growing seasons in the three localities. 

2.2. Experimental crop data 

We performed field experiments to generate the necessary data for 
calibration and evaluation of the crop model. These experiments 
included four hybrid varieties (two yellow-, two white-seeded) priori
tized by FENALCE. These hybrids represent a range of abiotic and biotic 
stress resistance levels and a relatively wide genetic range, which was 
deemed critical by FENALCE in their efforts to support adaptation of the 
maize sector to better handle climate variability. All required informa
tion (crop and environment) was recorded for these four maize hybrids 
for the purposes of model calibration and evaluation. For logistical 
reasons (i.e., availability of sampling, laboratory equipment and 
personnel), experiments were not feasible at La Union. Hence, we con
ducted experiments in the nearby locality of Buga, which is 100 km 
away but has with very similar edapho-climatic conditions. Buga had all 
the necessary equipment for reliable field sampling. Conversely, La 
Unión had reliable long-term meteorological station data needed for 
generating the seasonal climate forecasts. 

In each experiment, we recorded the agronomic and physiological 
performance of the genotypes, as well as the daily temperature, solar 
radiation, and precipitation throughout the crop cycles. The four hy
brids, named P30F35, FNC3056, DK234 and DK7088, were planted in 
2013 and 2014 (one experiment per year, per site) at the three sites 
under a randomized complete block design, with rows of 15 m long, 0.2 
m between plants and 0.8 m between rows. Not all hybrids were grown 
or had data of sufficient quality at all sites. Each experimental plot was 
composed of 12 rows, evenly distributed for edge, growth, and 

Fig. 1. Study areas in Colombia. The bar plots show the climatological means (1980–2013) for monthly total precipitation, whereas the red and blue lines show the 
monthly climatological means of maximum and minimum temperature. Polygons with thick borders within each department indicate localities where crop modeling 
was conducted. 
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phenology sampling. Weekly samples of the biomass gain of the aerial 
organs (leaves, steam, grains, cobs), as well as the number of grains and 
leaves, harvest, and leaf area indices, and phenology, were recorded and 
then used as input into the model calibration and evaluation process 
(Sect. 2.4). We also input into the model all relevant agronomic man
agement information, namely, sowing date, and quantities and fre
quencies of fertilization and irrigation applications. Experimental 
details are shown in Supplementary Table S1. 

2.3. Meteorological information. 

Two types of meteorological data were needed in this study. Firstly, 
fitting and evaluating the seasonal climate forecast models (see Section 
2.6) required monthly precipitation data for all available meteorological 
stations in the three departments (Cordoba, Tolima, and Valle del 
Cauca). Secondly, understanding historical yield variability (see Section 
2.5) and generating site-specific agroclimatic forecasts in the three select 
localities (Cereté, Espinal, La Unión) required daily data for crop model 
variables (i.e., precipitation, maximum temperature, minimum tem
perature, and solar radiation) at each locality. 

We gathered observed daily meteorological data from the Institute of 
Hydrology, Meteorology and Environmental Studies (IDEAM) –the 
Colombian Meteorological Service. For each of the three departments of 
study, we gathered 34 years (1980–2013) of daily precipitation data for 
a total of 34 (Cordoba), 34 (Tolima), and 27 (Valle del Cauca) meteo
rological stations. For three of these meteorological stations (one at each 
of Cereté, Espinal, and La Unión), we also gathered daily minimum, 
maximum temperature, and solar radiation data. 

We then performed quality control for these data. For precipitation, 
quality control followed Esquivel et al. (2018) by using the RClimTool 
software (Llanos-Herrera, 2014). Three filters were applied to eliminate 
any incorrect values: (i) precipitation below zero or above 350 mm 
day− 1; (ii) outlying values (beyond five times the inter-quartile range); 
and (iii) >3 non-zero equal consecutive values. The amount of missing 
data was very low: 7 % (Cordoba), 6 % (Tolima), and 5 % (Valle del 
Cauca). We then aggregated daily data for all weather stations to 
monthly, and then gap filled any months with missing data following 
Esquivel et al. (2018) by using a linear regression model that combines 
the Climate Hazards Infrared Precipitation with Stations (CHIRPS) 
(Funk et al., 2015) and the observed weather data from IDEAM. 

Quality control for temperatures used the same filters as for precip
itation, with the only difference that for filter (i) we removed values 
above 45 ◦C (28 ◦C) and below 20 ◦C (15 ◦C) for maximum (minimum) 
temperatures. The three weather stations reported sunshine hours, 

rather than solar radiation directly; hence, a conversion using the 
Angstrom-Prescott equation was necessary (parameters A = 0.29, B =
0.50 for the Angstrom-Prescott equation). Gap filling at the daily scale 
was performed using a multi-site auto-regressive weather generator as 
implemented in the R package RMAWGEN (Cordano and Eccel, 2012) 
for temperatures and through a Random Forest model (using tempera
ture as predictor) for solar radiation (Breiman, 2001). Daily data of the 
four meteorological variables for the three select localities (Cereté, 
Espinal, La Unión) were transformed into model-ready files for crop 
simulation (Sections 2.5 and 2.6). 

2.4. Crop model description, calibration, and evaluation 

We used the CERES-Maize to simulate crop growth and development. 
CERES-Maize is a daily timestep deterministic model that simulates the 
accumulation of biomass based on the interception of light and the 
partitioning of that biomass to plant organs through source-sink dy
namics. Individual genotype behavior is simulated through the specifi
cation of six cultivar coefficients. Four of these coefficients relate to the 
accumulation of thermal time: from emergence to the end of the juvenile 
stage ’P1′ (vegetative growth), from flowering to physiological maturity 
’P5′ (grain filling window), the successive appearance interval of leaf 
tips ’PHINT’ (the phyllochron interval), and the delay in vegetative 
stage development cause by increase in photoperiod ‘P2′. Two param
eters control crop yield potential, namely, the maximum number of 
grains per plant (’G2′), and the grain filling rate under optimal condi
tions ’G3′ (mg day− 1 during the linear grain filling stage). In addition to 
cultivar coefficients, the model uses ecotype and species coefficients, 
which are typically not calibrated individually. Ecotype coefficients 
prescribe cardinal temperatures for crop development, photoperiod 
sensitivity, the duration of the anthesis silking interval, and photosyn
thesis parameters (radiation use efficiency and canopy extinction coef
ficient). Species parameters, on the other hand, are all the same for all 
cultivars of the species, and include seed growth parameters, tempera
ture effects on photosynthesis, initial seed conditions, amongst others. 
For a complete description of the model the reader is referred to Jones 
et al. (1986) and Basso et al. (2016). 

Model calibration consisted of determining values for each of the six 
cultivar coefficients (i.e., P1, P5, PHINT, P2, G2, G3) that allow the 
model to simulate in a successful way the behavior of each of the hybrids 
evaluated under experimental field conditions. Given the relatively low 
number of parameters to calibrate (six), in this study, we calibrated the 
crop model by exploring all possible combinations of the parameters. We 
developed and implemented an algorithm to determine and simulate all 

Table 1 
Physical properties of soils, and cropping seasons in the three selected localities in Colombia.  

Site Sowing window Depth 
(cm) 

Bulk density (g 
cm¡3) 

Clay 
(%) 

Silt 
(%) 

Organic carbon 
(%) 

θLL* θUL* θSAT* USDA texture 
class 

A B 

La Unión / 
Buga** 

Apr 2 - Jul 16 Oct 15 - Dec 
15 

0–20  1.63  28.6 35.6  0.89  0.297  0.35  0.453 SC 
20–40  1.63  28.6 35.6  0.89  0.297  0.35  0.453 SC 
40–60  1.57  14.5 25.3  0.59  0.226  0.337  0.454 L 
60–80  1.39  19.8 57  0.08  0.31  0.408  0.505 SL 
80–100  1.39  19.8 57  0.08  0.31  0.408  0.505 SL 

Cereté Mar 18 - 
May18 

Oct 2 - Dec 
31 

0–20  1.38  48.7 44.2  2.5  0.320  0.424  0.536 SiC 
20–40  1.38  48.7 44.2  2.5  0.320  0.424  0.536 SiC 
40–60  1.38  37.2 50.3  2.5  0.320  0.424  0.536 SiC 
60–80  1.44  37.2 50.3  1.5  0.266  0.384  0.538 SiC 
80–100  1.44  37.2 50.3  0.7  0.256  0.364  0.538 SiC 

Espinal May 2 - Aug 
1 

Sep 1 - Nov 
1 

0–20  1.42  13.3 32.3  0.98  0.16  0.252  0.376 SL 
20–40  1.42  13.3 32.3  0.98  0.16  0.252  0.376 SL 
40–60  1.42  13.3 32.3  0.98  0.16  0.252  0.376 SL 
60–80  1.42  13.3 32.3  0.98  0.16  0.252  0.376 SL 
80–100  1.2  13.3 22.6  0.1  0.12  0.2  0.44 SL 

* Soil hydrological properties: moisture content (by volume) at wilting point (θLL), field capacity (θUL) and saturation (θSAT). 
** Note that the soil samples correspond to Buga (crop experiment location), although they are also representative of La Unión. The sowing window for both season A 
and B is the same at both localities. 
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cultivar coefficient permutations. Using the R statistical software, for 
each hybrid, we then selected the set of cultivar coefficients that best 
described the data recorded in the field. We first calibrated all pheno
logical coefficients (P1, P5, PHINT, and P2) based on the flowering and 
maturity dates, cycle length and total number of leaves, and then cali
brated growth parameters (G2 and G3) based on the total and organ- 
specific biomass accumulation. We used the means for observations 
and simulations, root-mean-squared error (RMSE) and the Willmott 
agreement index (d-statistic) (Willmott et al., 1985) to evaluate the 
performance of the model. For all hybrids, calibration was performed 
with experiments from year 2013, whereas experiments from 2014 were 
used for model evaluation. We note that experiments from Buga could 
not be used for calibration or evaluation due to the low quality of the 
weather station data. 

2.5. Assessment of the crop response to climate variability 

The historical evaluation of crop yield behavior over time facilitates 
improved understanding the levels of climate risk to which farmers are 
exposed. In this study, we assessed the historical yield response of the 
four calibrated hybrids using the historical (1980–2013) daily meteo
rological information provided by IDEAM at each of the three sites 
(Cereté, Espinal, and La Unión). Simulations were performed for each 
cultivar and site, a total of twelve planting dates, separated every-five 
days in two growing cycles (as reported in Table 1), for a total of 
9,792 simulations (i.e., 12 planting dates × 2 cycles × 34 years × 4 
hybrids × 3 sites). We used descriptive and inferential statistical ana
lyses to understand yield variation in recent history as a response to 
climate, across the three study sites. 

2.6. Seasonal climate forecast 

For the seasonal forecast, we used Canonical Correlation Analysis 
(CCA) (Glahn, 1968; Goddard et al., 2001; Hotelling, 1936), imple
mented via the Climate Predictability Tool (CPT) software package 
(Mason and Tippett, 2017). CCA determines patterns between the pre
dictand and predictor to develop probabilistic forecasts, expressed in 
three categories (terciles): below normal, near normal, and above 
normal. Here, we develop all climate predictions using the National 
Centers for Environmental Prediction (NCEP) Climate Forecast System 
version 2 (CFSv2) Sea Surface Temperature (SST) forecast (Saha et al., 
2014) as the predictor variable, and seasonal precipitation from the set 
of weather stations as the predictand. The predictor domain used was 
the wide global tropics (30◦S–30◦N) as this ensures covering all major 
modes of variability and regions of the ocean that have influence in 
Colombia. The main performance metric used to assess forecast skill was 
the Kendall’s tau correlation coefficient. All forecasts are produced for 
an aggregated period of 3 months, as is standard in seasonal climate 
prediction using CCA (Alfaro et al., 2018; Esquivel et al., 2018). All 
forecasts were generated considering the scenario where the forecast is 
made in the month before the season of interest. For instance, if the 
beginning of the sowing window is April then the season of interest will 
be March-April-May (so that April is the middle month of the 3-month 
period) and the forecast will be released in February (the month 
before the start of the 3-month period); hence, the CCA run must be 
made with the outputs of the CFSv2 model with a 2-month lead time. 

Our objective is to be able to input the climate forecast in the crop 
model (see Sect. 2.7). The length of crop cycle for the four hybrids 
analyzed ranges between 90 and 120 days, and we simulate a total of 12 
planting dates (spaced at a 5-day time interval, see Sect. 2.7) per 
growing cycle (cycles A, B as shown in Table 1). This necessitated 
forecasted data for a total of 180 days (6 months) after the start of the 
planting date. We ran six seasonal climate forecasts for the 6-month 
cropping season. Each run included a forecast for a 3-month period 
centered at each of the six months of the cropping season. These fore
casts were generated retrospectively for the period 2005–2013 and for 

each growing cycle (A, B as in Table 1), which produces forecast in
formation for a total of 9 years. 

Next, we converted the 9 years of 6-months probabilistic forecasts for 
cycles A and B, for the three localities into daily data for use into the crop 
model (see Sect. 2.7) via a forecast resampler (Capa-Morocho et al., 
2016). The first step consists in resampling the observed record for the 
middle month of the 3-month period of interest (e.g., January for 
December-January-February), with replacement, following the proba
bilities specified by the precipitation forecast for each tercile category. 
For example, if January has a tercile forecast of 40 % above normal (top 
tercile), 35 % around normal (middle tercile), and 25 % below normal 
(bottom tercile), this means that 40 % of the samples drawn will be from 
the lowest tercile (below normal) of the January observations, 35 % 
from the middle tercile (normal), and 25 % from the highest tercile 
(above normal). We then repeat this procedure for all other middle 
months, after which we concatenate the daily data of all relevant months 
into a 6-month weather time series. The resampling is repeated 99 times 
to explicitly capture uncertainty in the resampling process and the 
probabilistic nature of the seasonal climate forecasts. As a result of the 
resampling process, a total of 99 weather realizations with 180 days of 
weather are produced for each site and forecast year, for use in the crop 
models. We generated crop model simulations for each of these (see 
below). 

2.7. Agroclimatic forecast generation and evaluation 

We used the 9 years of 6-month seasonal climate forecasts for each of 
the seasons generated in Sect. 2.6 into the CERES-maize crop model. 
Planting windows were defined as specified in Table 1. We performed 
simulations for a total of 12 planting dates for each of the two cycles (A, 
B, as in Table 1), distributed in pentads, for all the 9 forecast years (2005 
to 2013), sites, and for all 99 resampled weather realizations. As a 
benchmark against which to evaluate forecasts, we conducted simula
tions for the same planting dates using historical meteorological ob
servations for the same years, planting dates, and sites. All simulations 
were rainfed and assumed no nutrient limitations. 

We then used observation- and forecast-based simulations to produce 
an evaluation of forecast skill focused on three aspects: (i) simulated 
yield; (ii) highest-yielding planting date; and (iii) highest- and lowest- 
yielding hybrid. For (i), we used the area under the ROC (Receiving 
Operating Characteristic) curve averaged across yield tercile categories, 
which we refer here as the GROC. For (ii) and (iii) we used the frequency 
of correctly identified planting dates and hybrids across sites, seasons, 
and years. 

3. Results 

3.1. Performance of the DSSAT-CERES-Maize model 

Model calibration and evaluation indicates that the CERES-maize 
model adequately captured the development (phenology) and growth 
(biomass, LAI, harvest index and yield) dynamics during the growing 
season in both calibration and evaluation experiments (see Table 2 for 
performance, and Table 3 for cultivar coefficients). Performance metrics 
indicated high model accuracy in relation to biomass, harvest index and 
yield for all hybrids in both calibration and evaluation experiments, 
except for FNC3056 season B 2013 and DK7088 season A 2014 were the 
model over and under-estimated grain weight respectively. Leaf area 
index (LAI) was generally underestimated. We observed a low RMSE for 
all the variables (biomass, harvest index, LAI, and yield) except for LAI 
in the calibration experiments for DK234 and DK7088. Likewise, the 
Wilmott d-statistic was generally high (>0.88 in most cases). The 
growth dynamics for each experiment can be visualized more clearly in 
Supplementary Figs. S1–S8. We conclude that the model is useful to 
perform crop growth predictions in these sites, and, due to its deter
ministic nature, likely in other areas of Colombia. 
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Genotype performance in the field was consistent across hybrids. For 
example, in Córdoba, P30F35 and DK234 presented the same flowering 
and physiological maturity dates. Little variation was also observed in 
the phenology response of the hybrids in Tolima and Valle del Cauca. 

Consistent with that, the model parameters did not vary significantly 
among the calibrated hybrids with respect to phenology, with P1 be
tween 210 and 249 and P5 between 911 and 1000 (see Table 3). The 
maximum number of grains possible (G2) varied between 900 and 1000. 
The coefficients that generated most differentiation between hybrids 
were the grain filling rate (G3) and the thermal time required for leaf 
emission (PHINT). The higher yielding hybrids (P30F35 and DK234) 
showed greater values of G3 and lower values of PHINT. 

3.2. Interannual yield variability and its causes 

Based on crop yield simulations, we analyzed the historical yield 
response to climate variation of rainfed hybrid maize cultivation in the 
three study sites (Fig. 2). The analysis shows greater yield variation in La 

Table 2 
Summary of model performance for four hybrids across all localities where the model was calibrated and evaluated.   

Biomass Leaf area index 

Hybrid* Mean obs Mean sim RMSE d-Stat Mean obs Mean sim RMSE d-Stat 

P30F35 (C) 9,235 8,649 2,037 0.976 3.79 3.33 1.02 0.614 
P30F35 (E) 8,703 8,712 1,005 0.992 3.18 3.14 0.47 0.949 
DK234 (C) 11,027 9,178 2,572 0.970 4.41 3.40 1.36 0.652 
DK234 (E) 10,499 9,234 2,266 0.972 3.17 3.44 0.44 0.962 
DK7088 (C) 7,816 7,576 1,594 0.979 3.61 2.34 1.41 0.652 
DK7088 (E) 6,519 7,245 1,464 0.978 2.85 2.22 0.96 0.839 
DK7088 (E) 7,666 6,838 1,266 0.984 2.94 2.15 1.01 0.812 
FNC3056 (C) 8,508 7,697 1,997 0.973 3.51 2.54 1.09 0.807 
FNC3056 (E) 6,592 8,155 2,032 0.960 2.72 2.49 0.66 0.914 
FNC3056 (E) 6,477 7,015 1,051 0.987 2.85 2.49 0.76 0.885   

Harvest index Yield 
Hybrid* Mean obs Mean sim RMSE d-Stat Mean obs Mean sim RMSE d-Stat 
P30F35 (C) 0.29 0.32 0.05 0.980 4,795 4,550 1,049 0.976 
P30F35 (E) 0.33 0.37 0.05 0.976 4,631 4,948 682 0.984 
DK234 (C) 0.25 0.27 0.05 0.975 4,972 4,580 605 0.992 
DK234 (E) 0.26 0.27 0.04 0.980 4,876 4,426 749 0.984 
DK7088 (C) 0.18 0.24 0.09 0.893 2,646 3,229 988 0.953 
DK7088 (E) 0.22 0.26 0.05 0.972 2,710 3,588 1,046 0.957 
DK7088 (E) 0.30 0.23 0.08 0.937 4,107 2,764 1,698 0.883 
FNC3056 (C) 0.22 0.25 0.08 0.914 3,675 3,557 823 0.972 
FNC3056 (E) 0.24 0.32 0.09 0.883 3,035 4,552 1,581 0.882 
FNC3056 (E) 0.21 0.22 0.07 0.925 2,661 2,601 1,180 0.904 

* Results for calibration (C) and evaluation (E) are shown separately. 

Table 3 
Calibrated crop model parameters for the four hybrids used in this study.  

Genotype P1 (◦C 
day) 

P2 
(days) 

P5 (◦C 
day) 

G2 
(#) 

G3 (mg 
day− 1) 

PHINT (◦C 
day) 

P30F35 210  0.5 1000 1000  8.6  30.0 
DK234 220  0.5 920 900  8.3  37.0 
DK7088 249  0.5 911 957  7.8  55.0 
FNC3056 233  0.5 1000 900  7.0  50.6  

Fig. 2. Simulated yield for four hybrids across the three localities for the period 1980–2013.  
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Union (Valle del Cauca) and Espinal (Tolima), whereas Cereté (Córdoba) 
presents greater yield stability due to better environmental supply. In 
Cereté, interannual variability is larger in season B (end of rainy season) 
as compared to season A (first rainy season) (Fig. 3). The other two lo
calities show more consistent results across both growing seasons. 

In general, there are larger yield variations across localities and 
planting dates as compared to genotypes (Supplementary Fig. S9). Our 
analysis suggests that early planting dates produce greater yields in 
virtually all locations and seasons. Favoring earlier planting dates also 
has the benefit of lower variability across years (Fig. 3). 

Low seasonal rainfall can affect maize at any moment during the crop 
cycle, but the greatest yield reductions are often associated to water 
deficiencies in seedling, pollination, and grain filling stages. Excep
tionally dry years (e.g., 1982, 1997, 2002 and 2009) could have caused 
substantial crop yield losses for all localities and seasons. Because maize 
genotypes perform differently across planting dates, some degree of 
yield loss can always be avoided by adjusting these two management 
factors. The average yield advantage between the best and the worst 
choices of planting date and genotype can be up to 100 % in dry years, 
and up to 300 % in other (wetter) years (Supplementary Fig. S9). 

3.3. Seasonal precipitation forecast performance 

The skill of seasonal climate forecasts and the sources of predict
ability are well documented for Colombia (Córdoba-Machado et al., 
2015; Esquivel et al., 2018; Fernandes et al., 2020). Hence, here we 
provide a general overview of forecast skill to the extent that is useful to 
contextualize the agroclimatic forecast results shown in Sect. 3.4 and 
3.5. In general, consistent with previous work (Esquivel et al., 2018), 
seasonal climate forecast skill (measured by Kendall’s tau) varies in the 
range –0.05 and 0.5 (Fig. 4). Results are presented as averages across 
each department as is customary for CCA models. The greatest seasonal 
climate forecast skill occurs in Valle del Cauca (where La Unión is 
located) during the middle months of both seasons, when the rains are 
fully established. Forecast skill is moderate to high in Tolima (where 
Espinal is located) toward the end of season A, and in Cordoba (where 
Cereté is located) in the middle of season B. Season A in Cordoba and 
season B in Tolima show the lowest forecast skill. 

3.4. Ability of the agroclimatic forecast to discriminate yield categories 

For agroclimatic forecasts to be useful they need to at the very least 
be able to discriminate low yield situations (especially from high 
yielding outcomes), since managing these will be most critical for 
farmers. We find that the agro-climatic forecast performs better than a 
random prediction (GROC > 0.5 in virtually all sites and seasons) at 
discriminating yield categories (above, below, and near normal), with 
especially high (ROC > 0.8) for the ‘below normal’ and combined 
‘above-below normal’ categories for Cereté season B (Fig. 5). In fact, 
except for Cereté season A, the ability to discriminate yield categories 
below normal (crosses in Fig. 5) and jointly above-below normal (tri
angles in Fig. 5) was consistently high (ROC > 0.7). Furthermore, the 
below normal category also shows consistently greater ROC as 
compared to above normal. 

In Cereté season A, high yield stability causes the above and below 
normal categories to be close together and hence the discrimination 
power is reduced. In Espinal season B, yield forecast skill is low due to 
limited seasonal climate forecast skill (see Fig. 4). 

3.5. Ability of the agroclimatic forecast to produce planting date 
recommendations 

An optimal planting date makes the best use of the available seasonal 
rainfall and soil moisture, thus optimizing the use of environmental 
resources to maximize yield (Comas et al., 2019; DeJonge et al., 2012). 
Consistent with the capacity of the crop and climate model to predict 
yield categories, we find that generally, agro-climatic forecasts can 
predict the optimal planting date, with an error of 3 pentads or less 
(Fig. 6), except in Cereté for season A. Consequently, we observe 
consistent trends in forecast and observations for average predicted 
yield across planting dates (Fig. 7). 

In Espinal (season A and B), Cereté (season B), and La Unión (season 
B), the agroclimatic forecast predicted the ‘optimal planting date’ less 
than 2 pentads (10 days) of error for multiple years. In roughly 20 % of 
year-by-site combinations, ‘optimal planting dates’ were predicted with 
less than 2 pentads of error in >90 % (50 %) of the weather scenarios 
and cultivars. In 2009, for instance, 95 % or more of the simulations 
show the same error range (less than 2 pentads) for various sites or 

Fig. 3. Variation of 33-year coefficient of variation across planting dates for both seasons. Shaded area encompasses the maximum and minimum values across the 
four hybrids being simulated. Planting dates are ordered from 1 to 12 by date for each season and correspond to evenly spaced dates within the planting windows 
specified in Table 1. 
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seasons (La Unión season A and B, and Cereté season B). A small error in 
the prediction of planting date means that the risk of yield loss is 
reduced substantially, especially in years of low rainfall when abiotic 
stress is high. 

We note that in Cereté (season A) the value of the planting date 
forecast is limited, with forecast error uniformly distributed. This is 
because interannual yield variation across planting dates is very low in 
simulation with weather observations (Fig. 3). This means that farmers 
can use any planting date and they will achieve more or less the same 
yield (Fig. 7). In Cereté, genotype selection may be a more important 
decision to maximize yield (see Sect. 3.6). Beyond season A in Cereté, 
there are other situations in which most of the forecasted planting dates 
are far from those simulated with weather observations. In some of these 
the prediction is opposite to the observed optimal sowing date such as in 
El Espinal (2008, season B). The latter highlights a potential danger, as it 
could constitute a form of maladaptation; however, we highlight that it 
does not occur in many years and locations. 

3.6. Ability of the agroclimatic forecast to produce hybrid selection 
recommendations 

Fig. 8 shows the frequency of correct prediction of the highest 
yielding genotype across planting dates, sites, and seasons. Colors are 
used to show the distribution of correct predictions across genotypes. 
We find that seasonal agro-climatic forecasts correctly identified the best 
performing genotype in at least 50 % of the cases in most sites. This was 
especially true for early planting dates in Cereté season B, Espinal season 
A, and La Unión season A. Cereté season A shows the highest accuracy in 
forecasting the highest yielding genotype. This is consistent across 
planting dates and years, primarily due to low interannual variation. 

Several additional findings become apparent. Firstly, in some sites 
regardless of genotype if farmers choose a sub-optimal planting date 
yield will be low (e.g., La Unión season B). Secondly, the consistency in 

hybrid performance is greater when average cross-hybrid yield is lower 
and decreases as average cross-hybrid yield increases. This means that in 
years with favorable weather conditions the choice of hybrid is key to 
maximizing yield, whereas in less favorable years the choice of hybrid 
carries less weight and yield is most dependent on the correct choice of 
planting date. Third, despite the dominance of P30F35 as the highest 
yielding genotype, there are several instances in which other genotypes 
are correctly forecasted to perform better (e.g., early planting dates in 
season B for La Unión). This means that the high forecast performance 
found here is not biased by genotype choice. Lastly, it is important to 
note that forecasts also accurately predicted the genotype with lowest 
yield (Supplementary Fig. S10). In many circumstances, identifying and 
avoiding worst-performing choices may be enough to orient farmer 
decisions. 

4. Discussion. 

4.1. Performance of the agroclimatic forecast 

The DSSAT-CERES-Maize crop model is one of the most frequently 
used in agricultural research because of its consistent performance 
across a number of contexts (Basso et al., 2016), but also because of its 
versatility and the ease use of the DSSAT interface (Jones et al., 2003; 
White et al., 2011). Here, we assessed the predictive capacity of CERES- 
Maize to reproduce field-scale growth and development dynamics for 
various hybrid maize genotypes. We also measured combined climate- 
crop model performance for yield and decision support. While the 
crop model performed very well at predicting maize growth and 
development, the combination of climate forecast and crop model 
(agroclimatic forecast) performed less well, partly due to the skill of the 
seasonal climate forecast. Despite that, the agroclimatic forecasts proved 
to be of value for predicting yield outcomes, as well as to identify the 
best planting dates and genotypes in at least 50–60 % of the situations 

Fig. 4. Variation in goodness index (Kendall’s tau) across months for cropping seasons A and season B across the three departments of interest. For reference, season 
A is May–October (Cordoba), Oct–Mar (Tolima), and Apr–Sept (Valle del Cauca); and season B is Sept–Feb (Cordoba), Mar–Aug (Tolima), Oct–Mar (Valle del Cauca). 
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Fig. 5. Generalized area under the Receiver Operating Characteristic curve (GROC) for predicted yield categories the three sites and both growing seasons. The size 
of the bar is the GROC, and the symbols indicate ROC values for different tercile combinations. The square is the ROC of the above normal category; the cross 
indicates the ROC of the below normal category; the circle is the average of the square and the cross; and the triangle is a ROC calculated after excluding the ‘normal’ 
category from the prediction. 

Fig. 6. Frequency of correct prediction of planting date. The x-axis shows error ranges (in days), plotted against all retrospective forecast years (y-axis). The values in 
each cell correspond to the percentage of simulations (considering all four cultivars and weather realizations) for each site, season and year that are in each 
error range. 

L. Ordoñez et al.                                                                                                                                                                                                                                



Climate Services 28 (2022) 100333

10

analyzed (sites × years × seasons). 
Seasonal climate forecasts in Colombia have been assessed by 

Esquivel et al. (2018), who conclude that forecasts have largely suitable 
skill, but could benefit from improvement especially targeted at wet 
periods in the inter-Andean valleys. Fernandes et al. (2020) explore 
ways to improve seasonal predictions. The latter study shows that 
alternative predictands (e.g., the number of wet days) to the total 

seasonal precipitation can offer greater predictive skill and be more 
meaningful for agricultural productivity. Forecast results reported here 
are largely consistent with those and other earlier results in Colombia 
and elsewhere (Alfaro et al., 2018; Córdoba-Machado et al., 2015; 
Recalde-Coronel et al., 2014). These studies highlight the opportunities 
that lie in skillful seasonal climate forecasts, but also the limited pre
dictability often associated with peak rainy periods. 

Fig. 7. Average simulated yield across planting dates for forecast (grey line and shading) and observations (green line and shading). Shading shows variation across 
cultivars and, in the case of forecast, also of weather realizations. 

Fig. 8. Frequency of correct prediction of the highest yielding genotype across planting dates. Colors show the distribution of correct predictions across genotypes.  
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One important aspect of our study is that it translates seasonal 
climate forecasts not only into yield forecasts, but also into key specific 
agricultural decisions. Both the choice of planting date and the choice of 
genotype are crucial in Colombia (Sotelo et al., 2020) and elsewhere as 
strategies to respond to climate variability and climate change (Heine
mann et al., 2020; Waha et al., 2013). Generally, in the absence of 
suitable and trustable information, farmers often use misleading and 
inaccurate heuristics based on past cropping seasons (Blundo Canto 
et al., 2016; Guido et al., 2020). Our results suggest that, while not 
perfect, agroclimatic predictions do offer significant potential value to 
support farmers in identifying positive and negative yield outcomes, as 
well as in selecting adequate planting dates and best-performing geno
types ahead of the cropping season. Using a similar approach to ours, 
Hammer et al. (1996) estimate that Australian wheat farmers could 
reduce risk by 35 % and increase profit by 20 % if they made manage
ment (fertilizer and genotype choice) decisions using seasonal forecasts. 
Likewise, Soler et al. (2007) conclude that accurate yield forecasts can 
be made with up to 45 days lead time for maize in Brazil. We find low 
predictive skill in instances where yield was stable either across planting 
dates or genotypes, but also when climate forecast skill was low. While 
the latter situations create potential risks if these agroclimatic forecasts 
were to be used by farmers, we argue that the value of the forecasts 
outweighs these risks. This is due to the insight that forecasts offer 
compared to the benchmark of little to no information access or use by 
farmers (Guido et al., 2020; Hansen et al., 2011). 

Several avenues exist for the improvement of the agroclimatic fore
casts presented here, which are applicable for Colombia and other 
tropical regions. Foremost, our results indicate that the performance of 
the agroclimatic forecast model is most limited by the climate compo
nent. Thus, any improvements in climate forecast capabilities will 
directly translate into better agroclimatic forecasts. Since we use CCA- 
based forecasts with a single climate model (CFSv2) as the source of 
SST predictions, improvements could be made for instance by using 
alternative predictands to total rainfall (Fernandes et al., 2020) or by 
using a multi-model ensemble approach (Muñoz et al., 2020). Funda
mental changes in the modeling approach toward high-resolution 
dynamical models can also potentially result in gains in climate fore
cast skill (Coelho et al., 2006; Semenov and Doblas-Reyes, 2007; 
Weisheimer and Palmer, 2014). Artificial intelligence and machine 
learning also show promise toward the improvement of climate forecasts 
(Ham et al., 2019; Lubkov et al., 2019). While crop model skill was high 
in our study, improvements in crop models for example to enable better 
consideration of drought and high temperature interactions would allow 
use of agroclimatic forecasts in a wider range of environments. 

Additionally, model parameters (and especially G2 and G3) prescribe 
the individual genetic advantages of each genetic material. These pa
rameters are calibrated using field data (see Sect. 2.4), and consequently 
both the quality and quantity of the field data are likely to affect model 
performance in predicting optimal planting dates, best-performing cul
tivars, and yield. It is therefore possible that greater data availability 
and/or quality can improve model parameterization and hence reduce 
prediction error for planting date, genotype, and yield. We note, how
ever, that this is only one of various potential sources of error in the 
seasonal agroclimatic predictions presented here, and that our model 
evaluation results suggests that crop model performance is high (see 
Sect. 3.1). Furthermore, many factors not currently considered by the 
model can affect hybrid performance for a given site and season (e.g., 
soil fertility, pest and diseases, waterlogging). This may lead to sys
tematically placing hybrids P30F35 and DK234 (the highest yielding 
under controlled experimental conditions) as superior in most of the 
available environmental conditions, whereas in reality they may be 
outperformed by other hybrids in some situations. Model improvement 
is warranted to fully account for the set of conditions that constrain 
genotype performance to adequately inform farmer decision making. 
Similarly, more comprehensive models that allow accurately simulating 
practices such as intercropping, tillage, and soil macro- and micro- 

nutrient inputs would allow expanding the set of decisions considered 
here. Finally, improvements are also possible to the input data used 
(meteorological, soil, and crop management) as well as in the forecast 
resampling process through for instance the use of weather generators 
specifically designed for the tropics (Capa-Morocho et al., 2016; Jones 
and Thornton, 2000). 

4.2. Provision of climate services for agricultural decision making 

The development and evaluation of decision support tools has been 
one of the most important drivers of scientific model development for 
both climate and crops. The CERES-Maize model, and DSSAT more 
generally have been used as decision support tools for agronomic 
management (MacCarthy et al., 2017), precision agriculture (Thorp 
et al., 2008), and agroclimatic prediction (Fraisse et al., 2006; Han et al., 
2019). In Colombia, a recent study integrated CERES-Maize and the 
ORYZAv3 rice crop models into a decision support system (Pronosticos 
AClimateColombia) employing the same methods and data we use here (i. 
e., weather station data, and CCA-based climate forecast models and a 
forecast resampler) (Sotelo et al., 2020). The system is currently in 
operation and use by various organizations and users across the country. 
Our study provides clear, compelling evidence of the value of the 
agroclimatic forecasts provided in AClimateColombia, as well as a 
framework and methodology to evaluate agroclimatic predictions for 
other crops and regions. 

But demonstrating the value of agroclimatic forecasts and supplying 
them through an online system may not be sufficient to achieve success 
in climate services for agriculture (Vaughan et al., 2019). The climate 
services value chain encompasses the generation, translation, transfer 
and use of climate information (Trenberth et al., 2016; Vaughan et al., 
2018). Agroclimatic forecasts constitute one important technical 
ingredient for climate services for agriculture, as they contribute to the 
generation and the translation parts of the climate services value chain. 
But success in climate services is also contingent on (i) the identification, 
characterization and monitoring of prioritized areas due their impor
tance and interest, (ii) the translation and integration of model-based 
climate and crop information into understandable and useful lan
guage, and (iii) the design and dissemination of content and recom
mendations tailored to local needs, along with effective agro-technology 
extension and transfer programs (Bernardi, 2013; Dayamba et al., 2018; 
Vaughan et al., 2016). Several endeavors have been or are being carried 
out in Colombia that connect model-based forecasts with farmers 
ensuring use and benefit from climate information. 

Foremost, a sector-level plan has been drawn that will facilitate the 
transformation of the maize sector toward sustainable intensification 
and risk reduction, with the overarching goal of achieving national 
maize self-sufficiency, and contribute toward food security and nutri
tional outcomes (Govaerts et al., 2019). Several other initiatives have 
been or are being carried out led by the Ministry of Agriculture (CIAT- 
MADR, 2015) as well as international and national research organiza
tions (CIAT, 2020; CORPOICA, 2017; Ramirez-Villegas et al., 2018), and 
have resulted in substantial institutional capital in support of climate 
risk management for food security (Pazos et al., 2018). As a result of 
these initiatives, participatory approaches including the Local Technical 
Agroclimatic Committees (LTACs) (Loboguerrero et al., 2018) and the 
Participatory Integrated Climate Services for Agriculture (PICSA) 
(Ortega Fernández et al., 2018) have been implemented throughout the 
country, with significant development outcomes and impact (Giraldo 
et al., 2020). These initiatives play a central role in building institutional 
networks around the climate services value chain, but also in building 
institutional and stakeholder (extension agent, farmer) capacities to use 
agroclimatic information. Furthermore, participatory approaches also 
create two-way user feedback loops to improve information provision, 
or to expand the scope of the service (Vaughan and Dessai, 2014; Vogel 
et al., 2017). 

Finally, we highlight the complexity in the decision-making 

L. Ordoñez et al.                                                                                                                                                                                                                                



Climate Services 28 (2022) 100333

12

processes at the farm scale and the challenges that exist regarding the 
use of agroclimatic forecasts, especially where investment in farming is 
substantial and agroecological landscapes are so diverse (as is the case of 
hybrid maize production). Farming involves many decisions including 
the choice of crop(s) and crop rotations; method and time for land 
preparation; planting density; sowing dates; genotype(s); irrigation and 
fertilization methods, amounts and timing; harvesting time and method; 
and financial resources. Each of these decisions carries a risk and may be 
influenced by climate as well as other factors such as the availability of 
labor and machinery, market price, amongst others. Thus, to fully 
exploit the potential of climate services for agriculture, we pose that 
integrated information services that support the variety of decisions 
farmers make but also take account of farmer adaptive capacity do have 
the potential to contribute to enhancing food security and resilience 
(Dayamba et al., 2018; Tall et al., 2018). 

5. Conclusions 

The development and evaluation of decision support tools has been 
one of the most important drivers of scientific model development for 
both climate and crops. We assessed the predictive capacity of CERES- 
Maize to reproduce field-scale growth and development dynamics, but 
also its performance in combination with a seasonal climate forecast for 
yield prediction and decision support for planting date and genotype 
choice. Three conclusions become clear from our work. First, the model 
performed well at predicting crop development and yield at a series of 
representative sites in Colombia. Secondly, the combination of climate 
forecast and crop model (termed here agroclimatic forecast) performs 
well with regards to predicting yield outcomes. Of special importance is 
the fact that the identification of negative outcomes (lowest yield ter
cile) is the most skillful, reaching a predictive accuracy upwards of 80 % 
in some cases. Finally, we conclude that despite limitations agroclimatic 
forecasts offer value for informing the selection of sowing dates and 
genotype for farmers in Colombia. Future work should focus on 
expanding the scope of the agroclimatic prediction to include other 
relevant farming decisions that are influenced by climate, and on the 
improvement of the climate forecast via different methods including 
dynamical modeling and artificial intelligence. 
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Fernandes, K., Muñoz, A.G., Ramirez-Villegas, J., Agudelo, D., Llanos-Herrera, L., 
Esquivel, A., Rodriguez-Espinoza, J., Prager, S.D., 2020. Improving Seasonal 
Precipitation Forecasts for Agriculture in the Orinoquía Region of Colombia. 
Weather Forecast. 35, 437–449. https://doi.org/10.1175/WAF-D-19-0122.1. 

Fraisse, C.W., Breuer, N.E., Zierden, D., Bellow, J.G., Paz, J., Cabrera, V.E., Garcia y 
Garcia, C., Ingram, K.T., Hatch, U., Hoogenboom, G., Jones, J.W., O’Brien, J.J., 
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