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ABSTRACT 
 

Assessment of Phytophthora infestans’ incidence and severity are frequently performed 

based on visual crop inspection, which is a labor-intensive task prone to errors associated with 

its subjectivity. Therefore, alternative methods to relate disease incidence and severity with 

changes in crop traits are of great interest. Optical imagery in the visible and near-infrared (Vis-

NIR) can detect changes in crop traits caused by pathogen development. In addition, Unmanned 

Aerial Vehicles (UAV) with cameras on board have flexible data collection capabilities allowing 

adjustments considering the trade-off between data throughput and its resolution. 

 

This work presents a quantitative prediction of the severity of the disease caused by 

Phytophthora infestans in potato crops using image processing and machine learning (ML) 

algorithms such as Random Forests (RF) and Extreme Gradient Boost (XGBoost). The ML 

algorithms were trained using datasets from multispectral data captured at the canopy level 

with a UAV carrying a multispectral camera. The results indicate that RF and XGBoost using 11 

classes with 18 bands, including vegetation indexes and band features, can predict late blight 

severity on potato crops with an acceptable accuracy of 81.02% for RF and 74.19% for RF 

XGBoost. 

 

Keywords: Late blight, multispectral images, Machine Learning, Random Forest, XGBoost.  
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I. INTRODUCTION  
 

Late blight of potato (Solanum tuberosum L.), caused by the Phytophthora infestans oomycete, 

is one of the most devastating diseases to control sustainably and effectively (Gold et al., 2020; 

Hwang et al., 2014). Late blight appears first as water-soaked irregular pale green lesions, mainly 

near the tip and margin of leaves. These lesions rapidly grow into large brown to purplish-black 

necrotic spots. Under favorable-disease conditions, the entire crop has a blackened blighted 

appearance and may be killed within a week (Ray et al., 2011). Although worldwide crop losses 

have more recently been averted through disease management strategies and preventative 

fungicide treatments, economic losses are still estimated at several billion dollars per annum 

(Haverkort et al., 2008; Guenthner et al., 2001). The severity of late blight in potatoes is assessed 

according to the percentage of damaged leaf areas. For that, crop scientists evaluate the disease 

severity almost exclusively by visual assessment at the field level (Forbes et al., 2014; Yuen & 

Forbes, 2009). This assessment method is time-consuming and laborious if many cultivars and 

lines of interest are planted in a field, and it is entirely subjective. Therefore, an alternative 

approach that provides a prompt and objective evaluation of disease severity as plant 

phenotypic data is desired in plant breeding and crop science (Sugiura et al., 2016). 

 

Remote and proximal sensing in the optical domain can be used in the non-destructive retrieval 

of crop traits or detect stress over the growing season. For instance, vegetation indices 

application based on physical or statistical relations between vegetation properties and its 

spectral response may provide a viable alternative to assess crop disease severity. Machine 

learning (ML) is the scientific field that allows machines to learn without being strictly 

programmed (Liakos et al., 2018). ML uses advanced mathematical techniques to find complex 

hidden patterns within data. Random Forest and XGBoost are two such complex models for 

complex models frequently used in data science models and display excellent performance in 

capturing complicated patterns within data. Random Forests (RF) are a random combination of 

decision trees. Therefore, it is considered an ensemble method. The prediction of a class using 

RF is obtained through a majority of votes in each decision tree (Breiman, 2001). RF introduces 

extra randomness when growing trees and estimates what feature is the most important when 

splitting a tree node. As a result, it reduces the variance of the model by increasing the bias. 

Moreover, RF runs efficiently on large databases, is an effective method for estimating missing 

data and maintains accuracy when a large proportion of the data are missing. Since RF provides 

good accuracy, it has been successfully used for various applications and has considerable 

popularity in several disciplines (Cutler et al., 2012). Lately, RF has been applied in agriculture 



7 
 

and forest application (Karasiak & Perbet, 2018) and, more specifically, in the detection of the 

severity of late blight disease in potato crops (Duarte-Carvajalino et al., 2018). Extreme Gradient 

Boost (XGBoost) implements gradient-boosted decision trees. Gradient boosting is an ensemble 

method that predicts sequentially, improving its predecessor. In other words, gradient boosting 

tries to fit the new predictor to the residual errors generated by the previous predictor (Aurelien 

Geron, 2019). XGBoost allows the user to work with a tree-boosting system, which is faster and 

has shown good performance in different ML problems. Besides, it has been tested in other ML 

competitions (Tianqi Chen & Carlos Guestrin, 2016). Recently, XGBoost has been used in 

agricultural applications (Babaie Sarijaloo et al., 2021), (Kesavulu Poola & P Hema Sekhar, 2021). 

 

Recently, some review articles have been published on ML and its applications in the agricultural 

sector, particularly pest and disease control in arable farming (Durgabai et al., 2018). State-of-

the-art supervised machine-learning algorithms have been used to detect crop diseases (David 

Camilo Corrales et al., 2020). Supervised methods allow learning models for regression and 

classification using examples, i.e., images of healthy and diseased plants. In this sense, when 

multispectral images acquired from UAV are combined with ML approaches, they become a 

powerful tool for performing classification, segmentation, and detection in agricultural 

applications (Madiwalar & Wyawahare, 2017; Duarte-Carvajalino et al., 2018). In this study, an 

uncrewed aerial vehicle (UAV) was used as a platform for a multispectral camera to surveillance 

potato trials with different late blight treatments. The aims of this work were: i) To develop a 

methodology based on image processing to analyze and estimate late blight severity in potato 

crops using multispectral images, ii) To apply supervised methods to detect late blight severity 

on potato crops using multispectral UAV images and machine learning methods such as RF and 

XGBoost, and iii) To compute the relationship between traditional field measures of late blight 

severity done by experts vs. remote sensing applications and ML methods. 
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II. MATERIALS AND METHODS 
 

2.1 Study site 
 

This study was conducted in Oxapampa, Pasco, Peru (10°36’14.8’’ S, 75°24’55.4’’ W) and 1827 

m.a.sl. Oxapampa has a tropical savannah climate. It is hot every month, both in the dry and wet 

seasons. The average annual temperature is 26 °C, the average yearly rainfall is 459 mm, and 

the average humidity is 65%. 

 

2.2 Plant material and experimental design  
 

Two potato trials were performed to evaluate late blight severity:  

1) Genomic selection for resistance to late blight assessing 2745 advanced clones with two 

repetitions: Trial 1; described in Loayza et al., 2020. 

2) Discovery of novel traits for late blight resistance in a gene bank core collection studied in 492 

accessions with three repetitions: Trial 2; described in (Loayza, Silva, Aponte, et al., 2021). 
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Figure 1. Trial 1. (A) RGB High-resolution image taken to 50 meters of height (66 DAP). (B) Grids by plot and their two replications designed in QGIS 3.16.  

 

B A 
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Figure 2. Trial 2. (A) RGB High-resolution image was taken at 50 meters of height (39 DAP). (B) Grids by plot and their 03 replications designed in QGIS 3.16.

A B 
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2.3 Data acquisition 
 

2.3.1 Field assessment of late blight severity 

The intensity of late blight attack is commonly estimated visually based on the proportion 

(percent) of leaf area affected. This task was performed by experienced experts trained by 

International Potato Center (CIP) specialists to detect the late blight severity on plants (Adolf et 

al., 2020, Forbes et al., 2014). They visually estimate the percentage of late blight infection at 

the canopy level from potato crops ranging from 0 to 100% and with steps of 5%. Trial 1 was 

evaluated in seven opportunities; the fourth and seventh evaluations coincided with the aerial 

measurements. While Trial 2 was assessed five times, the first and fourth evaluations coincided 

with the aerial assessments. 

 

2.3.2 Image acquisition and processing  

 

Image acquisition 

The multispectral images were taken 66 and 85 days after planting (DAP) for Trial 1 to 50 height 

meters with a spatial resolution of 3.4x3.4 cm. While Trial 2 was acquired at 39 and 58 DAP to 

40 height meters with a spatial resolution of 2.9x2.9 cm using a multispectral camera (RedEdge 

M, MicaSense, Seattle EEUU) of five bands assembled to a UAV (Inspire 2, DJI, Shenzhen China), 

see Figure 3. 

 

Figure 3. (A) Multispectral bands, central wavelengths, and RedEdge – M camera bandwidths. 

(B) Inspire 2 DJI and RedEdge – M multispectral camera ready to fly. 

 

A B 
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Photogrammetric processing 

The images were corrected and aligned using Pix4DMapper software (Pix4D SA, Switzerland), 

the ortho mosaics were analyzed in the free and open-source Geographic Information system 

QGIS 3.16, and the pixel data per plot was recovered using Matlab software. While the statistical 

analysis was performed using GraphPad Prism version 5.0.0 for Windows, GraphPad Software, 

San Diego, California, USA, www.graphpad.com. 

 

2.4 Data analysis 
 

2.4.1 Image processing algorithms 

 

The images were segmented using the soil-adjusted vegetation index (SAVI, Huete, 1988), 

discriminating the soil of vegetation. The next step was classifying each plot through QGIS 3.16 

software (QGIS Development Team, 2019. QGIS Geographic Information System. Open-Source 

Geospatial Foundation Project. https://qgis.org) in a semi-automatic way generating grids for 

each replication. These grids, corresponding to Trial 1 and Trial 2, and their images are shown in 

Figures 1 – B and – B, respectively. The following vegetation indexes were computed: 

 

• Normalized Difference Vegetation Index (NDVI, Rouse et al., 1974),  

• Normalized Difference Red Edge Index (NDRE, Barnes et al., 2000),  

• Red Edge reflected band (RE),  

• Optimized Soil Adjusted Vegetation Index (OSAVI, Rondeaux et al., 1996) and  

• Green Normalized Difference Vegetation Index (GNDVI, Gitelson et al., 1996). 

The mean values per plot by each vegetation index were compared with their respective late 

blight severity evaluations at the field level. An example of this study performed on Trial 2 is 

shown in Table 1. OSAVI, NDVI, and NDRE indices provided higher Pearson correlations. 

 

Table 1. Pearson's correlation between the percentage of foliage affected by late blight at 66 

and 85 days after planting and vegetation indices. In red: values > |0.5|. 

Evaluation (DAP) GNDVI RE OSAVI NDVI NDRE 

66 -0.37 -0.42 -0.41 -0.45 -0.40 

85 -0.15 -0.26 -0.64 -0.63 -0.66 

 

https://qgis.org/
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The better vegetation indexes for this study were defined from this first analysis. More in-depth 

pixel-level analysis was applied to compute the frequency distribution of NDVI values per plot. 

For Trials 1 and 2, an algorithm developed in Matlab software (MathWorks, Natick, USA) allowed 

the detection of each of the stories of the multispectral images to recover the information per 

pixel of each plot. Next, the pixels with NDVI values ranging from 0 – 1 and steps of 0.1 were 

grouped and correlated with the late blight severity evaluations done by experts in the field 

(Loayza, 2022). 

 

2.4.2 Machine Learning algorithms 
 

This work tested two methods to detect late blight severity on potato crops using multispectral 

UAV images and Machine Learning methods: Random Forest and Extreme Gradient boosting 

(XGBoost); these two ensemble learning methods have shown promising results in classification 

applications. The RF algorithm for training and prediction was written in python using the Scikit 

learn library (Sklearn.Ensemble.RandomForestClassifier, 2023). A grid of search parameters was 

used to tune the parameters for training the model. This grid considers parameter combinations 

to find the best hyper-parameter for tuning. Moreover, stratified cross-validation was applied 

to reduce overfitting. Like the previous method, XGBoost was implemented in python for 

training and prediction. The open-source package XGBoost was used to implement the 

algorithm (XGBoost Python Package — xgboost 1.7.3 documentation, 2022). A grid of search 

hyperparameters was used to tune the parameters for training the model, and stratified cross-

validation was applied. 

 

Classes definition 

Table 2 shows 21 classes, where 20 are related to the percentage of late blight severity in each 

plot. Class 21 is assigned to soil and not classified pixels. For each category, a pixel value was set 

in the image. On the other hand, Table 3 shows a reduction of classes to compare the 

performance of the classification models. 

 

Table 2. Defined classes according to affected leaf area. 

Classes Affected leaf area Pixel value Number of pixels 

Class 1 0-5 % 1 14076 

Class 2 5-10 % 2 11470 
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Class 3 10-15 % 3 10946 

Class 4 15-20 % 4 9863 

Class 5 20-25 % 5 15379 

Class 6 25-30 % 6 11193 

Class 7 30-35 % 7 7562 

Class 8 35-40 % 8 10254 

Class 9 40-45 % 9 8739 

Class 10 45-50 % 10 14119 

Class 11 50-55 % 11 6761 

Class 12 55-60 % 12 16012 

Class 13 60-65 % 13 13435 

Class 14 65-70 % 14 16495 

Class 15 70-75 % 15 11711 

Class 16 75-80 % 16 10445 

Class 17 80-85 % 17 5641 

Class 18 85-90 % 18 5583 

Class 19 90-95 % 19 3607 

Class 20 95-100 % 20 12728 

Class 21 Soil 21 14429 

 

Table 3. Reduction of defined classes according to affected leaf area. 

Classes Affected leaf area Pixel value Number of pixels 

Class 1 0-10 % 1 25546 

Class 2 10-20 % 2 20809 

Class 3 20-30 % 3 26572 

Class 4 30-40 % 4 17816 

Class 5 40-50 % 5 22858 

Class 6 50-60 % 6 22773 

Class 7 60-70 % 7 29930 

Class 8 70-80 % 8 22156 

Class 9 80-90 % 9 11224 
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Class 10 90-100 % 10 11224 

Class 11 Soil 11 14429 

 

Ground truth data 

The ground truth data were collected the same day a field expert conducted the image 

acquisition. Later, plot segmentation was performed in each image using the plot_seg_cip 

python script (Loayza & Silva, 2021). As a result, polygons for each plot were created. Therefore, 

an expert labeled each image plot with the corresponding class severity using QGIS 3.16 (Figure 

4). Table 2 and Table 3 indicate the number of labeled pixels per class. It is necessary to remark 

that to conduct a reasonable classification, the number of pixels per class must be the same or 

almost the same. Therefore, we tried to balance the amount of data per class. 

 

 

Figure 4. Examples of plots are labeled in Trial 2 (A) and 1 (B). 

 

Tools and software 

The algorithms to classify the images were developed in Python. The Google Colab platform in 

the cloud was used to write and execute the Python scripts. This platform does not require user 

installation of the Python packages since the platform provides an environment ready to use. 

The packages used during the development of the scripts are numpy, gdal, sklearn, xgboost, and 

pandas. 

 

Methodology 

Figure 5 shows the workflow of the methodology used in the scripts. It can be observed that the 

multispectral orthorectified image and the ground truth data are the input of the algorithms. 

The following stages are the calculation of vegetation indexes and the extraction of statistical 

textures. These two stages allow us to complement the original bands to create more robust 

A B 
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feature data. The following stages apply two supervised methods: Random Forest (RF) and 

Extreme Gradient Boost (XGBoost). On the other hand, the ground truth data was divided into 

three sets: training, validation, and test sets. The first two sets were used to train and validate 

the model of each classification method. The test data was used to assess the performance of 

the final models. 

 

 

Figure 5. Methodology workflow for RF and XGBoost. 

 

Feature textures 

Eleven Haralick (Haralick et al., 1973) feature textures were calculated, five of them were 

obtained using the NDVI band (Table 4), and the left ones were calculated using the NIR band 

(Table 5). These textures provide information on the spatial context of the pixel through 

statistics evaluation in the pixel neighborhood (Bharati et al., 2004). Moreover, these textures 

have been used to diagnose plant diseases on leaf images (Tutygin et al., 2019). The surfaces 

were calculated using the library Orfeo Toolbox in QGIS (HaralickTextureExtraction — Orfeo 

ToolBox 8.1.0 documentation, 2023). All the textures and the vegetation indexes were merged 

to increase the feature robustness. 
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Table 4. Statistical Textures are calculated as extra layers for the NDVI. 

Texture Texture Definition 

Energy Texture uniformity 

Entropy 
The measure of randomness of the intensity 

image 

Correlation. How correlated a pixel is to its neighborhood 

Inverse difference moment Measures the texture homogeneity 

Inertia 
Intensity contrast between a pixel and its 

neighborhood 

 

Table 5. Statistical Textures are calculated as extra layers for the NIR band. 

Texture Definition Texture Definition 

Mean - 

Variance Measures the texture heterogeneity. 

Difference variance - 

Difference entropy - 

IC1 Information Measures of Correlation 

IC2 Information Measures of Correlation 

 

Train, Test, and Validation Samples 

The ground truth data for each class was divided into 2/3rd for training and 1/3rd for testing. 

Since Scikit Learn’s K-fold cross-validation algorithm was used, we split the training set into five 

random subsets named folds. Then, the classification algorithm (RF and XGBoost) was trained 

and evaluated five times, picking a different fold for evaluation every time and training on the 

other four-folds. 
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III. RESULTS AND DISCUSSIONS 
 

3.1 Image processing 
 

For Trials 1 and 2, multiple correlations analysis was performed between the number of pixels 

with NDVI values less than several thresholds ranging from 0 to 1 versus their respective late 

blight evaluations by each plot. For Trial 1, a linear function was fitted using a regression analysis 

between the plots with the percentage of pixels with NDVI values ranging from 0 to 0.6 vs. their 

respective rate of late blight infection, resulting in a determination coefficient of 0.51 and 0.64 

corresponding to repetitions 1 and 2 (see Figure 6), respectively. These datasets were published 

by Loayza et al., 2021. While for Trial 2, the linear function was fitted by plot using a regression 

analysis between the percentage of pixels with NDVI values ranging from 0 to 0.65 vs. their 

respective rate of late blight infection, resulting in a determination coefficient of 0.82, 0.84 (see 

Figure 7) and 0.82 corresponding to replications 1, 2, and 3 respectively. This dataset was 

published by (Loayza, Silva, Gastelo, et al., 2021).
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Figure 6. Pixels percentage with NDVI values less than 0.6 vs. late blight field evaluation for 1st and 2nd replication from Trial 1. 

 

Figure 7. Pixels percentage with NDVI values less than 0.55 vs. late blight field evaluation for 1st and 2nd replication from Trial 2.
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3.2 Machine Learning 
 

3.2.1 Random Forest classification 

 The accuracy and Kappa coefficient were used as performance metrics to choose the best 

model. A comparison between the accuracy and Kappa coefficient was obtained using different 

data sets, and different classes were performed. 

 

Classification using NDVI, NDRE, and images textures 

To improve the number of features, vegetation indices that gives healthy crop information were 

calculated. In addition, texture information was added to improve the classification. Table 6 

indicates the best measure of performance. To reach this high accuracy, 18 feature bands: Red 

(R), Green (G), Blue (B), NIR, Red Edge (RE), NDVI, NDRE, five NDVI textures, and six NIR textured, 

were merged. It can be noticed that the difference in the accuracy between using 21 classes and 

11 classes is concise. 

 

Table 6. Summary of RF classification accuracy and Kappa coefficient using R, G, B, NIR, RE, 

NDVI, NDRE, and NDVI and NIR textured (18 bands) 

Number of bands Number of classes Accuracy Kappa 

18 21 78.87% 0.7766 

18 11 81.02% 0.7734 

 

Classification report 

The confusion matrix was calculated for the best classifier in Table 6 using Trial 1 and Trial 2 data 

sets. The confusion matrix allows us to evaluate the performance classifier in each class. The 

general idea is to count the number of times pixels of a specific class are classified as the correct 

class and other classes. Each row in the confusion matrix represents a true class, while each 

column represents a predicted class. Figure 8 shows the confusion matrix of 21 classes with the 

classification percentages for each class. As can be seen, the diagonal for classes from 1 to 8 

reported high classification rates, meaning that most of the predicted pixels correspond to the 

true class. On the other hand, we can observe that the percentage value decreases until class 

19. A smooth decrease is detected from class 1 to 14 while starting class 15 until class 19; there 

is a high drop. The confusion matrix indicates that from class 16, the class prediction tends to 

confuse with class 20. Specifically, we can see that more of the pixels in class 19 were predicted 

as class 20. The confusion matrix evidence that class 21 has a good percentage prediction. 
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Figure 8. Confusion matrix with percentages of M. Ponte and M. Gastelo datasets using 21 

classes and RF method. 

 

The confusion matrix for 11 classes is illustrated in Figure 9. Similar to the previous confusion 

matrix, there is a smooth decrease in the percentage value from class 1 to class 10. In addition, 

it can be identified that class 9 has a low percentage in the classification, and the prediction 

tends to confuse the prediction to classes 8 and 10. 
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Figure 9. Confusion matrix with percentages of Trial 1 and Trial 2 datasets using 11 classes and 

RF method 

 

3.2.2 XGBoost Classification 

 

Classification using NDVI, NDRE, and images textures 

Table 7 indicates the results of the XGBoost method using 18 bands. Like Table 6, the method 

using 11 classes presents the best accuracy. However, overall, the accuracy values are not high, 

like the RF method’s accuracy. 
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Table 7. Summary of XGBoost classification accuracy and Kappa coefficient using R, G, B, NIR, 

RE, NDVI, NDRE, and NDVI and NIR textured (18 bands). 

Number of bands Number of classes Accuracy Kappa 

18 21 72.17% 0.7057 

21 11 74.19% 0.7137 

 

Classification Report 

The confusion matrix for 21 classes is shown in Figure 10. Like the confusion matrix using RF 

from class 16 to class 19, the predicted pixels tend to confuse with class 20. Therefore, we have 

a low prediction of the true class. In contrast to Figure 8, we have less percentage of correct 

prediction in all categories. Consequently, we need more accuracy than using RF. 
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Figure 10. Confusion matrix with percentages of Trial 1 and Trial 2 datasets using 21 classes and 

the XGBoost method. 

 

The confusion matrix for 11 classes using XGBoost is shown in Figure 11. Like the result shown 

in Figure 9, class 9 presents a low percentage in the classification, and the prediction tends to 

need to be clearer to classes 8 and 10. 
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Figure 11. Confusion matrix with percentages of Trial 1 and Trial 2 datasets using 11 classes and 

the XGBoost method. 

 

Image prediction 

Figure 12 and Figure 13 show the image prediction using the RF method with 21 classes. On the 

other hand, Figure 14 and Figure 15 show the image prediction with 11 classes. There is an 

improvement in the plot classification using 11 classes to the examples using 21 classes. Mainly, 

a maximum percentage of 40% of affectation is observed in the predicted images for the first 

assessment in both experiments. While for the second assessment in both experiments show a 

maximum of 100%.
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Figure 12. Classification results for the multispectral image from the first (A) and second (B) assessment of the Trial 1 experiment using the RF method with 

20 classes. 

 

 

A B 
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Figure 13. Classification results for the multispectral image from the first (A) and second (B) assessment of the Trial 2 experiment using the RF method with 

20 classes. 

 

 

A B 



27 
 

 

 

Figure 14. Classification results for the multispectral image from the first (A) and second (B) assessment of the Trial 1 experiment using the RF method with 

11 classes. 

 

A B 
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Figure 15. Classification results for the multispectral image from the first (A) and second (B) assessment of the Trial 2 experiment using the RF method with 

11 classes.

A B 
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IV. CONCLUSSIONS  
 

Since the agricultural proximal sensors are more accurate in distinguishing color tonalities than 

the human eye, and the sensors installed on UAV platforms surveillance crops in a few minutes, 

while the traditional evaluations can take days, the presented results in this work evidence both 

the potential of remote sensing and spatial analysis as powerful tools to evaluate the late blight 

severity in potato crops, emulating visual inspection and reducing the execution times. A 

straightforward methodology is presented to estimate the severity of late blight in potato crops 

using image processing. To analyze the data, the first step was to segment the potato plots. 

Then, an algorithm developed in Matlab software took advantage of the pixel data to detect the 

vegetation with late blight symptoms and, in this way, to emulate the procedure performed by 

field experts with their eyes trained. Such an approach allowed for transforming the spatial data 

and finding highly significant correlations with the late blight evaluations at the field level. A 

linear regression analysis between data obtained from remote sensing and the late blight 

evaluations at the field level gave R2 ranging from 51% to 84%. 

 

Two methods (RF and XGBoost) were tested to detect late blight disease in potato crops 

since both methods have a good reputation for classification. The RF method shows better 

results than XGBoost. An accuracy of 78.87% was reached using RF, while a 72.17% accuracy was 

obtained using XGBoost. In both cases, the classification considered 21 classes. It was necessary 

to increase the band features with vegetation indexes (NDVI and NDRE) and texture extraction 

to reach an acceptable accuracy value in the classification. In addition, we increased the 

accuracy of 81.02% for RF and 74.19% for XGBoost by reducing the number of classes. It was 

observed that classes with a low percentage of prediction are related to the few pixel numbers 

for training and testing data. Therefore, having the same number of pixels per class is necessary. 

We suggest increasing the number of pixels per class to improve the classification. Moreover, it 

is recommended to increase the image resolution because it can help to identify easily high 

affected classes.  
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