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Abstract
In the two-alternative forced-choice (2AFC) paradigm, 
manual responses such as pointing have been widely used 
as measures to estimate cognitive abilities. While point-
ing measurements can be easily collected, coded, analyzed, 
and interpreted, absent responses are often observed par-
ticularly when adopting these measures for toddler studies, 
which leads to an increase of missing data. Although look-
ing responses such as preferential looking can be available 
as alternative measures in such cases, it is unknown how 
well looking measurements can be interpreted as equivalent 
to manual ones. This study aimed to answer this question 
by investigating how accurately pointing responses (i.e., 
left or right) could be predicted from concurrent prefer-
ential looking. Using pre-existing videos of toddlers aged 
18–23 months engaged in an intermodal word comprehen-
sion task, we developed models predicting manual from 
looking responses. Results showed substantial prediction 
accuracy for both the Simple Majority Vote and Machine 
Learning-Based classifiers, which indicates that looking 
responses would be reasonable alternative measures of 
manual ones. However, the further exploratory analysis 
revealed that when applying the created models for data 
of toddlers who did not produce clear pointing responses, 
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1  |   INTRODUCTION

The two-alternative forced-choice (2AFC) paradigm has been leveraged for a long time in various 
researches on cognitive development such as numeric skills, false-belief understanding, and prosocial 
characters (Fantz, 1964; Hamlin et al., 2010, Onishi & Baillargeon, 2005; Southgate, Senju, & Chibra, 
2007; Starkey et al., 1983; Wagner & Johnson, 2011). As measures to estimate cognitive abilities, 
manual responses such as pointing, touching, or reaching have been widely utilized.

Especially in the field of language development, well-known examples of the 2AFC tasks using 
children's arm responses are the Forced-Choice Pointing (FCP) paradigm (Fernandes et al., 2006; 
Fisher, 1996; Maguire et al., 2008; Noble et al., 2011) or the Computerized Comprehension Task 
(Friend & Keplinger, 2003, 2008). In these methods, children watch two juxtaposed pictures or 
video clips and are asked to choose one of them that matches auditory instruction by manual re-
sponses. These methods have various advantages (Noble et al., 2011). First, methods using manual 
measures require no expensive specialized equipment, so it can be administered easily. Second, 
such measures can be easily coded even when manual (not automated) coding is adopted since 
children produce an overt, volitional response. Third, this method provides direct, unambiguous, 
and less noisy indices that are analyzed and interpreted easily. This characteristic of indices is also 
advantageous since there is less room for analytical arbitrariness such as conducting statistical 
analysis in haphazard manners or summarizing data in a self-serving manner. Fourth, manual mea-
sures are applicable to a broader age group of children and adults, hence long-term developmental 
differences can be investigated.

Methods using manual responses are generally suitable for children older than two years (Ambridge 
& Rowland, 2013), yet some studies adopted this method to toddlers from around 18 months (Friend 
& Keplinger, 2003, 2008; Gurteen et al., 2011; Hagihara & Sakagami, 2020). However, since methods 
using manual measures require a volitional response of arm movement, it is often uncertain how to ad-
dress absent responses if observed, particularly when applying these methods to toddlers (Hendrickson 
et al., 2015). For example, Hendrickson et al. (2017) reported that, in a familiar word comprehen-
sion task, absent touching responses were seen for roughly one-third of trials in 16-month-olds and 
10% in 22-month-olds. Hagihara and Sakagami (2020) also reported that from 52 participants aged 
19–35 months, 9 toddlers (17%) were excluded due to the difficulty in coding pointing responses. As 

JP20H05002, and Topic-Setting Program 
to Advance Cutting-Edge Humanities and 
Social Sciences Research. 

the estimation agreement of missing pointing between 
the models and the human coders slightly dropped. This 
indicates that looking responses without pointing were 
qualitatively different from those with pointing. Bridging 
two measurements in forced-choice tasks would help re-
searchers avoid wasting collected data due to the absence 
of manual responses and interpret results from different 
modalities comprehensively.

K E Y W O R D S

language development, machine learning, pointing, preferential 
looking, two-alternative forced-choice task
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long as strictly adopting manual measures, absent responses are treated as missing values. However, 
are there any possibilities to avoid wasting the collected data?

In such cases, looking responses such as preferential looking can be available as alternative mea-
sures, if they are extractable and codable (e.g., from video recordings). In fact, there are many infant 
studies that use looking responses as measures of 2AFC tasks, such as the Intermodal Preferential 
Looking (IPL) paradigm (Bailey & Plunkett, 2002; Golinkoff et al., 1987, 2013; Yuan & Fisher, 
2009) or the Looking-While-Listening paradigm (Fernald et al., 1998, 2008). For example, preferen-
tial looking paradigm leverages young children's tendency to look significantly longer at a stimulus 
that matches linguistic input than a distracter presented side-by-side (Tafreshi et al., 2014), and this 
method has been used to verify whether children can identify the correct referent of novel words (Chan 
et al., 2010; Gurteen et al., 2011; Horváth et al., 2015) or familiar words (Durrant et al., 2015; Mani 
& Plunkett, 2011; Valleau et al., 2018). These methods using looking responses are advantageous as 
they are applicable even for infants under 18 months (Imai et al., 2015; Mani & Plunkett, 2010; Smith 
& Yu, 2008) since they do not need children's volitional manual responses but only spontaneous look-
ing ones. However, if looking responses are used as a dependent variable instead of manual ones to 
reduce the exclusion rate or missing data, how well can we treat the results of looking measurements 
as equivalent to those of manual ones?

Few studies have investigated children's looking and concurrent manual responses within the 
same 2AFC task because most infant and toddler studies used either of these measures selectively 
(Hendrickson et al., 2015). Moreover, some researchers remain skeptical about looking time as an ap-
propriate index reflecting higher-order cognitive abilities (Haith, 1998) and it has often been reported 
that there were dissociations of results between modalities in research not only on language but also on 
other cognitive development (Abbot-Smith et al., 2017; Ahmed & Ruffman, 1998; Charles & Rivera, 
2009; Gurteen et al., 2011; Ruffman et al., 2001; Winters et al., 2015). Hence, it is unknown to what 
extent looking and manual measurements can be interpreted analogously.

To our knowledge, Hendrickson and colleagues are the only researchers who conducted the FCP 
and the IPL paradigms simultaneously to toddlers (Hendrickson & Friend, 2013; Hendrickson et al., 
2015, 2017). In Hendrickson and Friend (2013), 16- to 18-month-olds participated in the familiar 
word comprehension task. Toddlers’ looking and manual responses were recorded via HD video 
cameras and were coded manually. Looking responses were categorized frame-by-frame into three 
(i.e., left fixation, right fixation, or away look), whereas manual responses were categorized into 
three for each trial (i.e., target touch, distractor touch, no touch). The results showed that toddlers 
looked significantly longer at the stimulus to which they subsequently reached regardless of stimuli 
type (i.e., target or distractor). Furthermore, on trials where reaching responses were not observed, 
toddlers looked at the target stimulus significantly longer than chance. Referring to recent con-
nectionist studies (Munakata, 2001; Munakata & McClelland, 2003), Hendrickson and colleagues 
interpreted these findings as looking and manual responses reflect different levels of understanding 
for the word-referent association, that is, preferential looking can be observed even when repre-
sentations of words are fragile, whereas reaching can be demonstrated for only robust representa-
tions. Their subsequent studies enhanced this view and further explored the way to detect children's 
knowledge status on a certain word by leveraging both looking and manual measures (Hendrickson 
et al., 2015, 2017). However, since they have mostly focused on the different interpretability be-
tween two modalities, the question of how well each measure can be interpreted as equivalent is 
still unexplored.

As the first step to directly address this question, this study investigated how accurately toddlers’ 
volitional pointing (i.e., left or right) could be predicted from preferential looking. If pointing were 
accurately predictable from preferential looking, then it can be claimed that these two measurements 

 15327078, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/infa.12377 by C

ochrane Japan, W
iley O

nline L
ibrary on [21/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



      |  151HAGIHARA et al.

are related to each other and looking responses are, to some extent, reasonably used as alternative 
measures of manual ones. If the prediction accuracy were low, then this indicates that these two in-
dices reflect different cognitive processes or have different robustness to noise irrelevant to choice. 
We utilized pre-existing video data where both looking and pointing measures could be coded for this 
study (Hagihara et al., 2020). In this data, 18- to 23-month-old toddlers participated in a 2AFC task 
evaluating whether the meanings of object words were affected by object-specific actions. Here, we 
particularly focused on exploring the temporal features of frame-by-frame coded preferential looking 
that would predict binary pointing responses most adequately. This study consisted of three phases 
(see Figure 1 for the schematic flow). In Phase 1, we created two types of models for the prediction of 
pointing from preferential looking: the Simple Majority Vote (SMV) and the Machine Learning-Based 
(MLB) models. In the former model, the proportion of total looks to juxtaposed stimuli (left or right) 
for each trial was calculated while changing the target time window and the dominant side was used 
as a prediction index. In the latter model, we adopted the decision-tree-based algorithm LightGBM 
(Ke et al., 2017). We chose this algorithm for several reasons such as the fact that it is known to be a 
state-of-the-art option for a relatively small number of input variables. We used this machine learning 
method because it was expected that certain particular time ranges and/or their combinations would 
yield higher prediction accuracy than would merely use the proportion of looks to either stimulus. In 
Phase 2, we conducted the validation test of the created models by putting another dataset that was not 
used in Phase 1 into each model. If it turned out that pointing and preferential looking were closely 
related, are features of looking with clear pointing the same as those without pointing? In Phase 3, 
we exploratorily applied the created models to data of toddlers who did not produce clear pointing 
to preliminarily investigate this question. Since there were no absolute correct answers (i.e., absent 
pointing responses), we adopted manual estimations of pointing responses from looking behavior as 
a pseudo-correct index in order to evaluate the applicability of the created models. If the agreement 
of pointing estimations between human coders and the models were equivalent to the prediction ac-
curacy calculated in Phases 1 and 2, then it would be indicated that looking responses were similar 
regardless of executing manual responses or not. If the agreement dropped, then it would be suggested 
that looking responses without manual ones were qualitatively different from those with manual ones.

F I G U R E  1   Schematic view of the flow of the present study.
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2  |   PHASE 1:  MODEL CONSTRUCTION

2.1  |  Methods

2.1.1  |  Video recordings

For this study, we utilized pre-existing videos in which toddlers’ familiar word comprehension was 
investigated using the FCP paradigm (Hagihara et al., 2020). Inter-rater reliability of pointing re-
sponses (left or right) was confirmed with 97.8% of agreement (kappa = 0.96). Of the participants 
who showed explicit pointing responses for 75% or more in all 16 experiment trials, 36 toddlers were 
selected and allocated to model construction (n = 24) and validation (n = 12) in this study so that age 
and gender were not biased. For Phase 1, we used videos of 369 trials with 24 monolingual Japanese 
toddlers aged 18–23 months (12 girls; M = 21.1, SD = 1.7). Fifteen trials (8 toddlers) were excluded 
for lack of explicit pointing responses. Each remaining participant responded clearly in 12–16 trials 
(M = 15.4, SD = 1.1).

In the experimental task, toddlers sat on a small chair or the lap of a nursery school teacher and 
looked at the 21.5-in touch screen (490 × 243 mm) with a viewing distance of approximately 30 cm. 
Toddlers’ preferential looking and pointing responses were recorded via a webcam at the center of the 
top of the screen (30 frames/s). Toddlers completed the forced-choice task modified from Hagihara 
and Sakagami (2020). This task aimed to investigate whether the meanings of object words were 
affected by object-specific actions. This task consisted of 16 trials in which four different conditions 
were included, which varied in terms of how much participants had to depend on object-specific 
actions to make judgments about referents of familiar object words. For example, in one condition, 
immediately after watching two juxtaposed videos—“putting on shoes” (the target stimulus) and “rub-
bing two baskets in front of one's chest” (the foil stimulus)—participants were prompted to choose 
one of them by pointing to answer “Kutsu wa docchi?” [Which are shoes?]. In another condition, they 
watched video stimuli located side-by-side—"rubbing shoes in front of one's chest" (the target stimu-
lus) and "putting on two baskets as if they were shoes” (the foil stimulus)—then were asked to choose 
one that matched the question of which is shoes. Before performing tasks, participants were prompted 
to look at icons on the screen's center and each corner for later calculation of angle compensation; they 
also engaged in warm-up trials to understand the task rule. This research was conducted according to 
guidelines laid down in the Declaration of Helsinki, with written informed consent obtained from the 
parents of all participants before data collection. All procedures involving human subjects in this re-
search were approved by the ethics committee for human and animal research of the Graduate School 
of Human and Environmental Studies at Kyoto University.

2.1.2  |  Face/gaze detection and pre-processing

The video for each trial was cropped with a time window from when the question ended to 2,000 ms 
thereafter since, at a later time, looking behavior is no longer considered to be related to the stimulus 
(Delle Luche et al., 2015). We set the starting point of the potential time window not at the onset or 
offset of the target word but at the end of the question sentence because, in Japanese, a listener can-
not determine if a sentence is a question unless they hear the sentence through to the end due to the 
grammatical difference in word order from English. For example, in the sentence “Kutsu wa docchi?” 
[Which are shoes?], “kutsu” refers to the target word “shoes,” “wa” refers to a postpositional parti-
cle indicating that the preceding word is the subject, and “docchi” refers to the interrogative marker 
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      |  153HAGIHARA et al.

“which.” Note that Japanese allows for a dropping of the verb “are” in the sentence and does not 
distinguish between singular and plural forms of nouns.

In line with recent vigorous studies on automatic gaze estimation using webcam-based data (Chouinard 
et al., 2019; Papoutsaki et al., 2016), we used an open-source library, OpenFace 2.2.0 (Baltrušaitis et al., 
2018) for automatic face and gaze estimation. We adopted this toolkit because it provides rich informa-
tion such as facial landmarks, gaze directions, and three-dimensional head positions and angles, because 
it is freely available for research purposes, and works in the local environments, which reduces ethical 
concerns. Although this toolkit requires only an RGB camera to estimate gaze direction using machine 
learning techniques, the precision is far less than eye trackers (Higuchi et al., 2018). However, facial de-
tection is more robust than gaze detection. Hence, we used horizontal face angles as well as gaze angles 
as measurements indicating whether a participant looked right or left side of the screen. Additionally, 
although complete preferential looking coding requires annotation not only whether a child is looking 
left or right but also whether a child is looking at or away from the screen, we began with the simplified 
coding to distinguish whether a child was looking right or left relative to the center of the monitor.

After estimating face and gaze angles using OpenFace 2.2.0, we calculated angle compensation so 
that the indices were always zero when a participant looked at the center of the monitor regardless of 
changing their head position (Figure 2). First, we calculated xfc which was the head position when a 
child looked at the center icon on the screen as follows:

where xcal, zcal, and �fcal represent the average of 30 frames of each variable when a child looked at the 
center icon of the screen. The variable x stands for the horizontal distance between the webcam and par-
ticipants’ head along with the screen, z for the distance between the webcam and participants’ head, and 
�f  for the raw horizontal face angle, respectively. The compensated face angle ��

f
(n) in frame n was then 

calculated as follows:

xfc = xcal−zcal× tan
(

�fcal

)

,

F I G U R E  2   The pre-processing flow for estimating preferential looking.
Note. (a) Using video data recorded by a webcam located at the center of the top of the screen, head positions, and raw 
face/gaze angles were estimated by OpenFace 2.2.0. (b) The head position when a participant looked at the center icon 
of the screen was calculated in order to compensate face/gaze angles so that these indices were always zero when a 
participant looked at the center of the screen regardless of changing head position. (c) Compensated face/gaze angles 
were calculated so that the indices were positive when looking right relative to the center of the screen.
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Thus, when ��
f
(n) is greater than 0, it indicates that the toddler is looking right. Note that the 

expression calculating the compensated gaze angle ��
g
(n) needs slight changes because the plus and 

minus of its angle are inverted from the face angle in the use of OpenFace 2.2.0 as follows:

As in the face direction, �g (n) stands for the raw horizontal gaze angle and �gcal for the averaged 
angle of looking at the center of the screen. For each frame, OpenFace 2.2.0 provides the "Confidence" 
value, which indicates how precisely a face can be detected, ranging from 0 to 1 (a higher value indi-
cates successful face detection). When the face detection failed (i.e., the Confidence value was low), 
the temporal linear interpolation was conducted for estimated variables.

To confirm how reliable face and gaze angle estimations in OpenFace 2.2.0 were, we verified the 
agreement between the estimation and frame-by-frame manual coding of preferential looking (left or 
right). A trained coder manually annotated toddlers’ preferential looking for approximately 25% of 
the data in Phase 1, in which four of each participant's trials were pseudo-randomly extracted (4 trials 
× 24 participants = 96 trials).

2.1.3  |  Creating models for predicting pointing responses from 
preferential looking

Using time-series data of face and gaze horizontal angles as an input, we created two types of classi-
fiers, which predict pointing responses from preferential looking. We regarded the pre-existing human 
annotation of pointing responses as the correct answer.

Simple Majority Vote (SMV) model
In the IPL paradigm, researchers have conventionally compared the proportion of looks to the 
target stimulus to the proportion to the foil stimulus within a certain time window (Ambridge & 
Rowland, 2013). In line with this procedure, we converted the compensated face and gaze angles 
into a binary index (left or right), and regarded the dominant side of looks as a prediction for point-
ing. One major difference of the SMV model from the conventional approach was that the pointing 
prediction was calculated while changing the target time window in order to reflect the temporal 
features of looking responses in the optimization of the prediction accuracy of pointing responses 
(Figure 3). We calculated a variable Pi,j modeled for this method, where NRi,j and NLi,j stand for the 
number of frames that a participant looked right and left side, respectively. The variable Pi,j was 
computed while changing the starting time point i and the ending time point j of the target time 
window as follows:

�
�

f
(n)=�f (n)−arctan

(

x (n)−xfc

z (n)

)

.

�
�

g
(n)=−�g (n)−arctan

(

x (n)−xgc

z (n)

)

.

xgc = xcal+zcal× tan(�gcal).

Pi,j =0.5×
NRi,j−NLi,j

NRi,j+NLi,j

+0.5.
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Pi,j ranged between 0 and 1 (indicated a participant completely looked left or right, respectively) 
and when Pi,j was greater than 0.5, it was predicted that the participant pointed right. If Pi,j was equal 
to 0.5, we defaulted the prediction to the right side.

Machine Learning-Based (MLB) model
In addition to the SMV model, we used the decision-tree-based algorithm LightGBM (Ke et al., 
2017) as a classifier since we expected that certain time ranges and/or their combinations would 
yield a higher prediction accuracy than simply using the proportion of looks to the target stimulus. 
We adopted this algorithm because it is known to be a state-of-the-art option for a relatively small 
number of input variables, it is one of the most popular methods in recent machine learning com-
petitions, and the contribution of each input variable to the prediction, called “importance,” can be 
easily quantified and visualized using LightGBM. First, we standardized the compensated face and 
gaze angles, respectively. We then determined the hyperparameters of the MLB model using the grid 
search optimization procedure, where all combinations of parameters were used to attempt to ex-
plore the optimal values of each parameter. LightGBM has several hyperparameters that are related 
to prediction accuracy such as the number of trees and the learning rate. For example, the number of 
trees refers to how many decision trees are combined; these are the sub-elements that make up the 
model. The learning rate refers to how much information about the learning error at a certain step is 
propagated to the next step. The prediction accuracy of each parameter was calculated with 10-fold 
cross-validation to avoid overfitting to the specific data. In 10-fold cross-validation, the given data 
were split into training (90%) and validation (10%), repeated training 10 times for each partition, 
and evaluated the model performance by averaging the obtained results. We adopted the parameters 
that produced the highest accuracy and the final prediction model was created using all the data. The 
prediction variable produced by LightGBM was continuous ranged from 0 to 1, where a value >0.5 
indicated the prediction that a participant pointed right. As in the SMV model, a value that equaled 
to 0.5 was defaulted to pointing right.

F I G U R E  3   The schematic view of the SMV model.
Note. The number of frames where a participant looked right or left was calculated from the compensated face 
and gaze angles within a certain time window (from 0.4 to 1.0 s in this case). The dominant side was regarded as a 
prediction of pointing responses. The target time window was moved between 0.0 and 2.0 s after the completion of the 
question to optimize the prediction accuracy.
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156  |      HAGIHARA et al.

2.1.4  |  Evaluation of created models

To evaluate the prediction accuracy of the created SMV and MLB models, the predicted side of 
pointing responses (right or left) produced by each model was compared with previously obtained 
manual coding for all trials. As indices, we used the area under the curve (AUC) of receiver operating 
characteristic (ROC) curve, accuracy rate, and kappa coefficient. AUC is a measurement reflecting 
how much the model has the discriminative ability, where 1.0 indicates the model can perfectly pre-
dict the correct results whereas 0.5 indicates chance level. According to the rule of thumb (Akobeng, 
2007; Swets, 1988), an AUC greater than 0.9 has high, 0.7–0.9 has moderate, and 0.5–0.7 has low 
accuracy. Kappa coefficient is also a well-used measurement, where the higher value indicates higher 
accuracy. Based on the criterion by Landis and Koch (1977), kappa of 0.81–1.00 has almost perfect, 
0.61–0.80 has substantial, and 0.41–0.60 has moderate strength of accuracy.

2.2  |  Results

2.2.1  |  The agreement of preferential looking between the estimation in 
OpenFace 2.2.0 and manual coding

For 96 trials randomly extracted from Phase 1 data, preferential looking estimated using OpenFace 
2.2.0 demonstrated almost perfect reliability with frame-by-frame human coding both in the face 
(kappa = 0.85, 92.7% of agreement) and gaze (kappa = 0.82, 91.2% of agreement) directions. Therefore, 
we continued to use the automated face and gaze angle estimations produced by OpenFace 2.2.0.

2.2.2  |  To what extent preferential-looking reflected pointing responses?

The indices reflecting prediction accuracy for the best models of the SMV and the MLB were shown 
in Table 1. In the SMV model, we explored the optimal time window that predicted toddlers’ pointing 

T A B L E  1   Evaluation of the created models of predicting pointing responses with highest accuracy and their 
robustness

Phase 1. Model 
construction (369 trials)

Phase 2. Model 
validation (183 trials)

Phase 3. Model 
application to no-pointing 
trials (176 trials)

SMV model
MLB 
model SMV model

MLB 
model SMV model

MLB 
model

Face angles as input

AUC 0.945 0.941 0.934 0.938 0.908 0.877

Accuracy rate 0.892 0.897 0.858 0.869 0.818 0.795

kappa 0.781 0.793 0.703 0.727 0.637 0.590

Gaze angles as input

AUC 0.941 0.942 0.933 0.952 0.897 0.864

Accuracy rate 0.892 0.892 0.858 0.869 0.818 0.778

kappa 0.781 0.781 0.703 0.726 0.637 0.557
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      |  157HAGIHARA et al.

responses using all data in Phase 1. The best time window was found to be from 0.0 to 2.0 s immediately 
after the question ended in both models using face and gaze angle trajectories, while the narrow time 
windows including the very beginning or the end of all the potential time range showed lower prediction 
accuracy (Figure 4). The SMV model with the best time window demonstrated the highest accuracy in 
both models using face and gaze direction (89.2%), with high AUC and substantial kappa. The MLB 
model also showed high prediction rates in AUC, accuracy rate, and kappa coefficient, which were 
equivalent to the best SMV models. The temporal feature reflecting the prediction of pointing responses 
were visualized using "importance," the contribution probability of each input frame to the prediction 
(Figure 5). Approximately, among all 2.0 s of the potential time range, the first 1.0 s and the last 0.4 s 
were relatively critical to the classification for both face and gaze angle trajectories.

F I G U R E  4   Prediction accuracy of the SMV model in each time window and ROC curves of models in the best 
time window.
Note. For the heatmaps, the y-axis indicates the starting point of the target time window, whereas the x-axis the ending 
time point. The redder the color, the more accurate the prediction was. (a) The heatmap of the accuracy rate in models 
using face angle trajectories. The highest accuracy was seen when the time window was set from 0.0 to 2.0 s. The 
ROC curve with this time window was shown on the right side. (b) The heatmap of the accuracy rate in models using 
gaze angle trajectories. The best time window was the same as in the model using face direction. The ROC curve with 
this time window was shown on the right side.
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158  |      HAGIHARA et al.

3  |   PHASE 2:  MODEL VALIDATION

3.1  |  Methods

3.1.1  |  Video recordings

To evaluate the robustness of the created best models, another dataset that was not used in Phase 1 
was utilized to conduct the model validation. As described previously, we used pre-existing webcam-
based data (Hagihara et al., 2020). For Phase 2, we used videos of 183 trials with 12 monolingual 
Japanese toddlers aged 18–23 months (6 girls; M = 20.7, SD = 1.8). Nine trials (5 toddlers) were ex-
cluded for lack of explicit pointing responses. Each remaining participant responded clearly in 13–16 
trials (M = 15.3, SD = 1.1). The experimental task was the same as in Phase 1.

3.1.2  |  Face/gaze detection, pre-processing, and model validation

All video recordings were pre-processed as in Phase 1. Namely, we estimated face and gaze angle 
using OpenFace 2.2.0, identified the head position when a participant looked at the center of the 
screen, and compensated angles so that the values were always zero when a participant looked at the 
center of the screen regardless of changing their head position. To predict pointing responses, the 
pre-processed data were then put into the SMV and the MLB models, which showed the highest ac-
curacy in Phase 1 with fixed parameters. We evaluated these models’ prediction accuracy using AUC, 
accuracy rate, and kappa coefficient.

F I G U R E  5   Contribution value of each time window to the prediction in the MLB model.
Note. The y-axis indicates the probability of contribution of each input to the classification prediction, called 
"importance," produced by LightGBM. The x-axis indicates the time after the completion of the question summarized 
every 0.2 seconds (i.e., 6 frames). The error bar indicates standard error. (a) “Importance” using face angles, (b) 
“Importance” using gaze angles.
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      |  159HAGIHARA et al.

3.2  |  Results

3.2.1  |  How much robust the created models were?

Using a new dataset that was not used in Phase 1 as input, both the SMV and the MLB models still 
demonstrated high performance (Table 1). In all models, the prediction accuracy of pointing responses 
was around 86%. AUC showed high accuracy and kappa was substantial.

4  |   PHASE 3:  MODEL APPLICATION TO DATA WITH NO-
POINTING RESPONSES

In this phase, we exploratorily applied the created models to data lacking overt pointing responses in 
order to preliminarily investigate whether features of preferential looking with clear pointing were 
equivalent to those without pointing. Indeed, there were no absolute correct answers; however, by 
calculating the agreement of pointing estimations from looking behavior between human coders and 
the created models, and comparing this agreement to the prediction accuracy obtained in Phases 1 and 
2, we tried to see if there were qualitative differences between looking responses with and without 
manual ones. If the agreement in Phase 3 were equivalently high to the prediction accuracy in Phases 
1 and 2, it would indicate that looking responses were similar to some extent regardless of pointing 
execution. However, if the agreement dropped, it would suggest that looking responses without arm 
movement had some different qualitative features compared to those with clear arm movement.

4.1  |  Methods

4.1.1  |  Video recordings

For Phase 3, we used videos of 176 trials with 12 monolingual Japanese toddlers aged 18–22 months 
(6 girls; M = 19.25, SD = 1.5) from the same pre-existing data as in Phases 1 and 2 (Hagihara et al., 
2020). This sample was extracted from the participants who lacked clear pointing responses for two 
thirds or more in all 16 trials so that age and gender were not biased. Another 16 trials with five partic-
ipants were excluded because they showed explicit pointing behavior. The final data used for analysis 
included between 11 and 16 trials with each participant (M = 14.7, SD = 1.8). The experimental task 
was the same as in Phase 1.

Since there were no absolute correct answers in the videos in Phase 3 (i.e., absent pointing re-
sponses), we preliminarily adopted manual annotation for estimating toddlers’ volitional choice from 
looking behavior as a pseudo-correct index. A trained and a naive rater independently evaluated which 
side the participant seemed to choose for all videos based on toddlers’ preferential looking behavior. 
For discrepancies in raters’ coding, a third rater annotated participants’ choosing; the annotations 
with agreement by two of the three raters were used. To verify how accurately the human raters can 
estimate pointing responses based only on preferential looking without seeing the exact pointing, the 
raters also manually annotated approximately 25% of the data in Phase 1 while participants’ pointing 
responses were masked in the video. Four of each participant's trials from data in Phase 1 were pseu-
do-randomly extracted (4 trials × 24 participants = 96 trials) and annotated as in Phase 3. For all man-
ual annotations in Phases 1 and 3, raters also evaluated their degree of confidence in their estimation 
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160  |      HAGIHARA et al.

of pointing using a five-point Likert scale, where 5 indicated highest confidence. These confidence 
values were calculated by averaging their ratings.

4.1.2  |  Face/gaze detection, pre-processing, and model application

All video recordings were pre-processed as in Phase 1 using OpenFace 2.2.0. The pre-processed data 
were then put into the SMV and the MLB models to predict pointing responses. Note that the param-
eters in these models were the same as those in Phase 2, which means that the models used in Phase 
3 were identical to the best models constructed in Phase 1. The agreement of pointing predictions 
(left or right) between the created models and human rater was evaluated using AUC, accuracy rate, 
and kappa coefficient. In addition, we defined the confidence value of pointing predictions for each 
model. For the SMV and the MLB models, the final variable for the prediction ranged from 0 to 1, 
where 0 indicated left while 1 indicated right, the distance of the value to 0.5 (e.g., |Pi,j − 0.5| for the 
SMV model) was treated as the confidence value. The correlation of confidence values between each 
model and manual annotation was analyzed using Spearman's rank correlation coefficient.

4.2  |  Results

4.2.1  |  Manual estimation of pointing responses based only on 
preferential looking

For 96 trials randomly extracted from Phase 1 data, inter-rater reliability was substantial (kappa = 0.77, 
88.5% of agreement). Eleven of the trials were coded differently between raters, requiring the third 
rater to produce a majority opinion. The adopted manual annotation demonstrated almost perfect reli-
ability of correct responses (kappa = 0.92, 95.8% of agreement). Therefore, it indicated that human 
raters could reliably estimate pointing responses based only on preferential looking behavior, not on 
the exact pointing responses. For all 176 trials in Phase 3, inter-rater reliability was also substantial 
(kappa = 0.62, 81.2% of agreement).

4.2.2  |  Agreement between the created models and manual annotation for no-
pointing trials

The SMV and the MLB models were applied to the data lacking clear pointing responses (176 trials 
in Phase 3). When focusing on AUC, the agreement between model and manual-based estimation 
demonstrated high accuracy only in the SMV model using face directions as input, whereas other 
models showed moderate accuracy despite close values (Table 1). The reliability between the SMV 
model and manual annotation was substantial both when using face and gaze directions, while the 
MLB model was moderate (kappa < 0.6).

4.2.3  |  Correlation of confidence between created models and manual annotation

For 96 trials with clear pointing responses randomly extracted from Phase 1 data, confidence value in 
the SMV and the MLB models showed a significant positive correlation with the manually annotated 
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      |  161HAGIHARA et al.

one, and the correlation in the SMV model was slightly higher than in the MLB model (Table 2). For 
176 trials with no-pointing responses, confidence value in all created models were still significantly 
positive despite being relatively weaker than the value from Phase 1, which ranged from 0.202 to 0.261.

5  |   DISCUSSION

To address the question of how well looking measurements can be interpreted as equivalent to manual 
ones in 2AFC tasks, this study investigated how accurately pointing responses (i.e., left or right) could 
be predicted from concurrent preferential looking. Using pre-existing webcam-based data, we created 
the SVM and the MLB models and tested their prediction abilities. Results showed that toddlers’ 
preferential looking substantially predicted pointing responses, even though looking was only roughly 
quantified by face or gaze using a webcam.

From Phases 1 and 2 using data with clear pointing responses, we found that both the SMV and 
MLB models showed equivalently high prediction accuracy. This indicates that preferential looking 
can be interpreted as equivalent to concurrent pointing responses at least to some extent, which is 
compatible with previous findings that toddlers looked longer at the stimulus that matched their subse-
quent reaching (Hendrickson & Friend, 2013). Regarding the temporal features of looking responses, 
we explored the most appropriate time window for the prediction and found that it was from 0.0 to 
2.0 s after the completion of the question through the SMV model construction. The result that it was 
necessary to investigate at least 2 s as a potential time range is compatible with the conventional and 
empirical method where, in the IPL paradigm, the time window of approximately 2-s duration has 
been utilized for analysis (Delle Luche et al., 2015). The fact that the best time window of our results 
and conventional one were consistent provides supporting evidence that traditional naïve setting of 
time window was a reasonable way of delimiting and summarizing time-series data to reflect toddlers’ 
volitional response to a question. However, the more appropriate time window might be found outside 
of the 2-s duration since the best time window was explored only within this time interval in this study. 
Future studies will reveal this by applying the models to other experimental tasks.

According to the "importance" visualization produced through the MLB construction, the contribu-
tion rate of each input for the prediction showed roughly an inversed U shape in accordance with elapsed 
time, which indicates there was no critical narrow time window reflecting toddlers’ volitional choice in 
general. This importance visualization showed that the best time-bin contributed to the prediction was 

T A B L E  2   Correlation of confidence value between created models and manual annotation

For trials of clear pointing responses (96 
trials randomly extracted from data in 
Phase 1)

For trials of no-pointing 
responses (All 176 trials from 
data in Phase 3)

SMV model
MLB 
model SMV model

MLB 
model

Face angles as input

rs 0.445 0.348 0.202 0.228

p-value <0.0001 0.0005 0.0072 0.0023

Gaze angles as input

rs 0.433 0.361 0.261 0.213

p-value <0.0001 0.0003 0.0005 0.0045
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162  |      HAGIHARA et al.

0–200 ms in the MLB model, especially when using face angles. This might be attributed to some meth-
odological errors (e.g., overfitting), or the adjusted starting point of the potential time window to match 
Japanese grammar. We set the starting point of the potential time window at the end of the question 
because, as mentioned above, in Japanese, a listener cannot find that the sentence is a question unless 
hearing the sentence through the end. The grammatical characteristics of Japanese, in which the target 
word is positioned at the beginning of the sentence and the interrogative marker comes at the end of the 
sentence, might have resulted in the highest probability of the contribution of the 0–200-ms time-bin, 
such that participants were able to start looking at the stimulus during the period of utterances between 
the target word and the interrogative marker. Besides, in this study using LightGBM (Ke et al., 2017), 
a similar prediction accuracy was obtained from both the SMV and the MLB models. Paradoxically, 
this fact showed the effectiveness of the traditional method for analysis in which the proportion of total 
looks to the target stimuli within a certain time window was regarded as a dependent variable. If devising 
input data, the accuracy of the MLB model might be improved such as adding angular velocity or facial 
expression variables, or converting raw time-series data to different ones.

The results from no-pointing trials (Phase 3) revealed that only the SMV model showed high accuracy 
and substantial agreement to manual estimations of volitional choices although each prediction index of 
the SMV model was close to one of the MLB model. Note that in Phase 3, manual estimation was regarded 
as a pseudo-correct index of pointing; however, some may be skeptical of the validity of the index itself. 
Indeed, there were no absolute correct answers, but considering human raters could estimate toddlers’ 
choices from data in Phase 1 as almost perfect accuracy without seeing the exact arm movement, manual 
annotation seemed practically reasonable to use as a pseudo-correct index at a certain level. Overall, the 
substantial agreement of pointing between manual and model-based estimations indicated that toddlers 
possibly demonstrated their volitional choices by looking responses even when manual responses were 
absent. Hence, it would be practically reasonable, to some extent, to use preferential looking as alternative 
measures of pointing in order to avoid wasting collected data due to missing manual responses, at least for 
children aged 18–23 months. However, considering the prediction indices in Phase 3 dropped compared 
to ones in Phases 1 and 2, preferential looking without pointing would be qualitatively different from that 
with overt pointing. Hendrickson and Friend (2013) claimed that looking and manual responses reflect 
different levels of word understanding, based on connectionist studies (Munakata, 2001; Munakata & 
McClelland, 2003). Hendrickson et al. (2017) further revealed that, in the familiar word comprehension 
task, words for which toddlers did not execute reaching at 16 months were still unknown at 22 months, 
whereas words for which 16-month-olds reached to distracter rather than target stimulus were more likely 
to be known six months later. These findings indicate that the absence of manual responses itself has 
insightful information on early word knowledge (e.g., fragility or uncertainty).

For both the SMV and the MLB models, the correlation of confidence value between the created 
models and human raters remained moderate or weak, which indicated that human raters likely con-
ducted confidence evaluation based not only on mere time-series data of face and gaze angles but also 
other richer information that could be obtained from videos. Extracting other variables such as facial 
expression might be beneficial to a more precise prediction of confidence for pointing estimation. 
Reliable confidence prediction can be utilized practically when estimating children's choices based 
only on preferential looking behavior automatically. For example, data with high confidence values 
may be used for subsequent analysis, whereas data with low confidence values may need manual 
inspection or elimination. Such techniques might be useful in a situation where arm responses are 
accidentally lost in webcam-based videos during the FCP paradigm due to the narrow viewing angle 
of a camera. Further research on confidence quantification is needed.

Although this was not the main objective of this study, we could confirm the reliability and the use-
fulness of OpenFace 2.2.0 (Baltrušaitis et al., 2018), which was quite important and necessary to judge 
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if we could rely on time-series data of face and gaze angles produced by this tool. As far as a webcam 
is positioned at the center of the top of the screen, the screen size is relatively large, and very rough data 
of preferential looking is enough for analysis, OpenFace 2.2.0 may be a useful and powerful tool for the 
automatic coding. At this point, it is not clear whether this remains powerful when a webcam is located in 
a different position, but generally, it seems robust in more challenging conditions (Higuchi et al., 2018). 
To confirm the availability of these automated coding algorithms is quite beneficial for researchers who 
have limited resources or are in restricted situations to reduce the burden of data collection. Although eye 
trackers can collect and annotate looking responses easily (Ambridge & Rowland, 2013; Delle Luche 
et al., 2015) with high temporal and spatial resolution, situations where eye trackers are available are still 
restricted because these devices are still expensive and many of them are not handy enough to conduct 
experiments outside a laboratory setting (e.g., nursery schools or online experiments). In contrast, frame-
by-frame manual coding is labor-intensive and time-consuming (Friend & Keplinger, 2008). High-cost 
data collection regarding time and money can be an obstacle to the promotion of open science, such that 
researchers who have fewer resources cannot collect each data sample or participate in larger international 
projects (Frank, 2019). The usefulness of OpenFace 2.2.0 shown in this study would be helpful to over-
come such obstacles just like recent vigorous studies on webcam-based data collection (Chouinard et al., 
2019; Papoutsaki et al., 2016; Scott & Schulz, 2017; Semmelmann et al., 2017; Tran et al., 2017).

Taken together, this study revealed that looking and manual measurements could be interpreted anal-
ogously. Hence, it would be practically reasonable to use preferential looking in the FCP tasks as a de-
pendent variable instead of manual ones when the unpredicted or unignorable amount of trials lacking 
pointing responses is observed. However, looking measurements with and without manual ones may 
have different features that reflect different language abilities. Therefore, it may be recommended and 
beneficial that both results from pointing and looking measures, and the proportion of absent pointing 
responses should be reported to interpret obtained data in more detail. In fact, some researchers con-
ducted a similar task using both modalities as dependent variables and compared differences between 
them (Abbot-Smith et al., 2017; Gurteen et al., 2011; Hendrickson & Friend, 2013; Hendrickson et al., 
2015, 2017). Future research is needed to investigate a more nuanced relationship between looking and 
manual measurements. For adults or older children, this relationship has been scrutinized using more 
sophisticated models such as drift-diffusion models (Ratcliff et al., 2012; Thomas et al., 2019). However, 
since model fitting using drift-diffusion models requires numerous trials per participant (Lerche et al., 
2017), there is only one study, to our knowledge, that applied them to toddlers (Leckey et al., 2020). A 
methodological improvement would be needed to apply these models to young children.

Another practical strategy would be to estimate and interpolate missing pointing responses (i.e., 
left or right) from preferential looking, leveraging the findings that both manual and looking mea-
surements have overlapping underlying information on toddlers’ volitional choice and the former 
measures are substantially predicted from the latter ones regardless of the execution of pointing or 
reaching. This strategy will help researchers prevent from wasting or excluding the collected data. 
However, researchers adopting this option should confirm that the results from manual measures with 
and without their interpolation from looking measures are compatible with each other. Researchers 
may have to consider what is implied by absent manual responses since such absences themselves may 
reflect toddlers’ knowledge states about word comprehension. For future study, it would be necessary 
to verify directly which interpolation method reflects the true result between the created models in this 
study and usual statistic techniques estimating missing data, by making artificial missing data in order 
to evaluate how the models proposed here are useful for missing data interpolation.

At this point, it is not obvious whether the created models in this study can be applied intact to other 
studies using the IPL or the FCP paradigm due to a single experiment used for analysis. Additionally, 
although we found that preferential looking while executing pointing responses were closely related to 
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pointing itself, it remained unclear whether this relationship could be generalized to preferential look-
ing irrelevant to the execution of arm movements. To directly address it, an experimental design that 
allows separating looking and manual responses would be needed such as asking toddlers to just look at 
the target stimulus (e.g., "Look! There are shoes!") then asking them to point at it at least two seconds 
later (e.g., "Which are shoes? Point them!"). Also, it will be necessary to explore if there is a change in 
prediction accuracy or visualized importance tendency as a result of extending the range of the potential 
time window. For instance, comparing the differences between setting a starting point at the onset of the 
target word and at the end of the question would be beneficial to determine which is more important in 
choosing action: listening to the target word while understanding that the sentence is a question or merely 
listening to the target word. Another limitation is there were some prediction errors despite the substantial 
accuracy of created models. Roughly speaking, the trials in which the predictions were incorrect had any 
of the following features: face and gaze direction mostly remained around the center of the monitor for 
the target time window; pointing responses occurred within first 1 s and then the participant looked at 
the other stimulus; or, right up to pointing, participants looked at the side of a stimulus opposite the one 
chosen (some examples were described in Figure S1). Since some of these features can be dealt with by 
predicting the timing of pointing responses, we plan to explore the possibility of estimating reaction times 
for each trial. Future study is also necessary to develop software that can easily create models from other 
datasets using the method proposed in this study as in previous work (Kominsky, 2019).

Despite these limitations, we believe that this study plays an important role to bridge two 
different measurements (i.e., looking and manual) in 2AFC tasks practically and theoretically. 
Since 2AFC tasks have been widely used in research not only on early language development 
but also on other cognitive domains, the findings obtained in this study would help researchers 
avoid wasting collected data and interpret results from different modalities more comprehen-
sively. Additionally, in terms of webcam-based data collection, this study will contribute to 
conducting online experiments as in related studies (Papoutsaki et al., 2016; Chouinard et al., 
2019; Semmelmann et al., 2017; Tran et al., 2017), or further promotion of open science move-
ment (Frank, 2019).
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