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ARTICLE

Uncovering hidden network architecture from
spiking activities using an exact statistical
input-output relation of neurons
Safura Rashid Shomali 1✉, Seyyed Nader Rasuli2,3, Majid Nili Ahmadabadi4 & Hideaki Shimazaki 5,6✉

Identifying network architecture from observed neural activities is crucial in neuroscience

studies. A key requirement is knowledge of the statistical input-output relation of single

neurons in vivo. By utilizing an exact analytical solution of the spike-timing for leaky

integrate-and-fire neurons under noisy inputs balanced near the threshold, we construct a

framework that links synaptic type, strength, and spiking nonlinearity with the statistics of

neuronal population activity. The framework explains structured pairwise and higher-order

interactions of neurons receiving common inputs under different architectures. We compared

the theoretical predictions with the activity of monkey and mouse V1 neurons and found that

excitatory inputs given to pairs explained the observed sparse activity characterized by strong

negative triple-wise interactions, thereby ruling out the alternative explanation by shared

inhibition. Moreover, we showed that the strong interactions are a signature of excitatory

rather than inhibitory inputs whenever the spontaneous rate is low. We present a guide map

of neural interactions that help researchers to specify the hidden neuronal motifs underlying

observed interactions found in empirical data.
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One goal of neuroscience is to expose in vivo neural cir-
cuitries by using recorded neuronal activities. The recent
technological advances in connectome projects have

revealed complete wiring diagrams of model animals1,2. None-
theless, to determine what computations certain neural circuitry
performs in living systems, it is still important to identify the
network architecture from in vivo recordings of multiple
neurons3. Simultaneous intracellular recordings are the most
reliable way to identify physical connections in vivo4–8. Here, one
should simultaneously record neurons and all their presynaptic
inputs by using the patch-clamp technique to find influential
synapses. However, as this technique can only be applied to a very
small subset of neurons, it can identify a few connections. An
alternative approach to find connections is to use extracellular
recordings and imaging methods to acquire simultaneous neu-
ronal spiking activities of a large number of neurons9. Cross-
correlograms10,11 or constructing point-process network models
are classical ways of inferring connectivity from spiking data12–14.
However, these methods aim to discover connections among the
recorded neurons, whereas the majority of synaptic inputs come
from unobserved neurons. Therefore, it remains a challenge to
reveal the hidden neuronal circuitries by using the activity sta-
tistics of a limited number of neurons in vivo.

The hallmark of cortical spiking activity in vivo is its
variability15,16. It has been suggested that the variability of spiking
activity is the result of balanced inputs from excitatory and
inhibitory neurons fluctuating near the spiking threshold16–18.
Such balanced inputs have been confirmed by intracellular
recordings of the sensory-evoked activities of in vivo neurons in
rats19 and monkeys20. Under such conditions, even a moderate
synaptic input can cause a spike in the postsynaptic neuron.
However, as the distribution of the synaptic strengths in cortical
and hippocampal neurons follows a log-normal distribution21, it
was suggested that fewer strong synaptic connections constitute
the backbone of the microcircuit, with the aid of inputs from a
large number of weak synapses22–26.

Given this common picture of cortical variability, we need to
discover the architecture of the influential synapses in order to
reveal the basic motifs of microcircuits operating in vivo. The
current models that link architecture to the statistics of neural
activity assume weak synapses and linear responses to the
synaptic input27–33 (but see refs. 34,35). However, the nonlinearity
of input-output relation means that we cannot use linear-
response methods to identify the influential inputs. Here, we can
instead use the recent analytical solution for the leaky integrate-
and-fire (LIF) neuron model that includes the dependency of
output spikes on arbitrary synaptic inputs of interest, whereas the
effects of many weak synapses accumulate as noisy background
inputs, balancing neuron’s voltage near the spiking threshold. It
predicts that a strong synaptic input results in a nontrivial
response different from the weak/moderate inputs36.

To reveal the hidden neuronal motifs, we need a framework for
judging how the hidden network of input neurons shapes the
complex joint activity of postsynaptic neurons, possibly char-
acterized by their higher-order interactions37,38. This framework,
in turn, could be used as a tool to infer the hidden architecture
from population statistics of observed postsynaptic neurons. Here
we aim to gain insight into the underlying architecture from
higher-order neuronal interactions, i.e., interactions among three
or more neurons, because occurrence of significant higher-order
interactions have been found ubiquitously in vitro39–41 and
in vivo42–45, and predicted by theoretical studies46–50. Further-
more, it has been reported that the higher-order interactions
encode stimulus information43,51 (see also refs. 52,53 for a simu-
lation study) and relate to animals cognitive functions such as
expectation54, perceptual accuracy55, and prediction56. Thus, they

potentially provide important clues on the architecture of cortical
circuitries functioning in living systems.

In this study, we used the aforementioned analytic solution36 to
construct a framework of network identification from observed
pairwise and higher-order interactions in spiking activities of
neurons. We looked at the simplest scenario and tried to answer
the following questions: the experimentalist records spiking
activities of three neurons in vivo (e.g., ref. 43) while s/he cannot
directly reveal any synaptic connectivity. Do the three neurons
spike independently or show correlations due to possible shared
inputs? In the latter case, are such inputs shared between each
individual pair or among all three? Are the shared inputs exci-
tatory or inhibitory? And finally, does any of the three observed
neurons make a direct synaptic connection to another of trio?
Using the biophysical LIF model, we show that it is possible to
determine the architectures of hidden shared inputs by carefully
examining pairwise and triple-wise interactions of the three
neurons. Moreover, we determine model-free boundaries that
each architecture occupies in the space of neuronal interactions,
with which one can unambiguously identify the underlying motif,
if the interactions are significant. The predicted analytical regions
were validated using the blue brain multicompartmental neuron
model3,57.

We compared the theoretical predictions with experimentally
observed neuronal interactions in the V1 areas of monkeys and
mice. Here, Ohiorhenuan et al. found significant positive pairwise
and negative triple-wise interactions for spatially close neurons in
V1 area of monkeys43,58, and our analysis of awake mouse V1
neurons59 showed similar results. The negative triple-wise inter-
actions, observed in cortical and hippocampal neurons41–43,
indicate a significantly higher probability of simultaneous silence
among the three neurons than would be expected from their rates
and pairwise correlations. Intuitively, common inhibitory inputs
should induce an excess of simultaneous silence by suppressing
neurons. However, by superimposing the data on the plane of
pairwise and triple-wise interactions with analytic boundaries for
motifs, we quantitatively ruled out shared inhibition as the motif
underlying the observed strong negative triple-wise interactions.
Rather, the data supported a non-intuitive architecture of com-
mon excitatory inputs, shared by pairs of neurons (excitatory
inputs to pairs). We investigated how our conclusions are affected
by the presence of directional/recurrent connections among
observed neurons, and by considering adaptive neurons. We
confirmed that many of these results, particularly the significance
of the motif of excitatory inputs to pairs, remain valid.

Overall, our framework can be used as a quantitative tool to
reveal hidden neuronal microcircuits. In particular, we have
summarized all of results into a unified guide map in which each
motif occupies its own region in the space of neuronal interac-
tions. This guide map will help experimentalists identify hidden
motifs underlying the correlated neuronal activities observed in
their experiments.

Results
Spike density of in vivo LIF neurons for modeling population
activity driven by common inputs. A shared input to two
postsynaptic neurons marks its presence in their correlated
activity, and neurophysiologists often record the activity pattern
of pairs of neurons, in the hope of determining the existence of
possible shared input, the input’s type and strength. This requires
a mathematical framework to answer the questions (a) how a
presynaptic input, weak or strong, modifies the activity of a
postsynaptic neuron, and (b) how correlated activity
among postsynaptic neurons emerges when they do share such
an input.
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Here, to predict how a presynaptic input affects the activity of
postsynaptic neurons (the question a), we devised a framework
for computing the statistical properties of the activity of LIF
neurons (Methods). Then, to see how correlated activity emerges
(the question b), we studied interactions between two (in this
section) and among three postsynaptic neurons (in the next
section). In particular, we investigated how a common excitatory
or inhibitory input with an arbitrary strength on top of
independent noisy background inputs causes the spiking activities
of the postsynaptic neurons to be correlated.

Figure 1a shows a schematic image of the in vivo neuron model
we used. The neuron receives signaling inputs with arbitrary
efficacy (strength), on top of noise composed of many weak
synaptic inputs that brings the neuron’s equilibrium membrane
potential close to the threshold. Each postsynaptic neuron is
modeled using the LIF model with a threshold potential of Vθ and
membrane time constant τm (Methods: Effect of presynaptic
spike-timing on leaky integrate-and-fire neuron receiving noisy
inputs balanced near threshold). The noisy background inputs are

approximated by a Gaussian distribution with a mean drive of �I
and the variance of 2D/τm, where D [mV2ms] is the diffusion
coefficient. In addition, the neuron receives a transient signaling
input of arbitrary amplitude A. Figure 1b illustrates the time
course of membrane potential, confronted with signal arrival time
and postsynaptic neuron’s spike time. We split the question of an
individual neuron’s response, i.e., the question a, into two parts:
first, what is the probability density of a spike occurrence at time
τ after signal arrival, fA(τ)? And second, what is FA(Δ), the
probability of observing one or more spikes in a time window of
Δ, after the occurrence of presynaptic signal with strength A?
Here, FA(Δ) is a quantity that predicts the observed spiking
activity of neurons from the model. Using FA(Δ), one can find the
probability of various spiking patterns for multiple neurons
receiving common signaling inputs. We used the solution of the
spiking density36 (Methods: Spiking density of leaky integrate-
and-fire neuron receiving signaling input in the threshold regime)
to calculate FA(Δ) analytically (Methods: Spiking density of LIF
neuron after signaling input arrival).

∆
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Fig. 1 Analysis of a postsynaptic neuron receiving signaling input on top of background noise. a Schematic model of postsynaptic neuron driven by
background Gaussian noise and signaling input. The postsynaptic neuron has a threshold potential of Vθ= 20mV, membrane time constant τm= 20 ms,
and it receives a signal of amplitude A= 5mVms; the background input fluctuations are quantified as D= 0.74mV2ms (Methods). The values of the
parameters are chosen from physiologically plausible ranges106. b Timing of postsynaptic spikes and arrival time of signaling input. The postsynaptic
neuron generates a spike (blue tick); then, its membrane potential resets. While the potential is rising, a signaling input (red tick) arrives at τb after the last
spike, which changes the trajectory of the membrane potential. The postsynaptic spike occurs at time τ after the arrival of the signaling input. The gray
shaded area of width Δ indicates the observation time window during which the probability of postsynaptic activity pattern is computed. c, d Probability
densities of the first spike occurring at τ after arrival (Eq. (12), Methods) of excitatory (c) and inhibitory (d) signaling input. The simulation results
illustrated as red dots, and the analytical solutions (Eq. (12)) are shown as dashed black lines. The densities for a signaling input with zero amplitude are
plotted as light blue dots (simulation) and dashed blue lines (analytical solution). Inset: Probability of spiking within Δ after signaling input arrival (Eq. (13)).
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The dashed black curves in Fig. 1c (or d) show the spiking
density at time τ after signaling input arrival, fA(τ), for square-
shaped inputs of the excitatory (or inhibitory) type (Eq. (10) in
Methods). Compared with the no signaling input case (analyti-
cally), it is more (or less) probable that a spike will occur at small
τ after arrival of an excitatory (or inhibitory) input. At sufficiently
large τ, however, the spiking densities with and without the
signaling input are virtually identical, indicating the brief effect of
the signaling input. Accordingly, the cumulative distribution
functions, FA(Δ), (Fig. 1c and d insets) with and without the
signaling input differ for small Δ, but are indistinguishable for
large Δ. This result implies that we cannot discern the presence of
a signaling input if we use a large time window. Note that these
analytic results were confirmed by numerical simulation of the
LIF equation (blue and red symbols).

With the above analytical knowledge about FA(Δ) verified by
the simulation, we investigated the question b: emergence of
correlations among neurons receiving shared input. In this
section, we first consider two postsynaptic neurons for simplicity;
in the next section we extend the framework to three neurons.
Suppose that the two postsynaptic neurons receive a random
common signaling input, in addition to independent background
noise. We assume that the firing rate of the common input λ is
not large so that we can safely consider it to be a sparse input.
Figure 2a illustrates the timing of the postsynaptic spikes before
and after the common input arrival. We segment the spike
sequences by using time window of size Δ. For simplicity,
we assume that the onsets of the common input are aligned at the

bins. To label various spiking patterns, we use a binary variable
xi∈ {0, 1}, where i= 1, 2 indexes the two postsynaptic neurons.
xi= 1 means that the ith neuron emitted one or more spikes in
the bin, while xi= 0 means that it remained silent. Accordingly,
PA(x1, x2) measures the probability of the spiking pattern, defined
by x1 and x2, due to onset of a common input of strength A. For
instance, PA(1, 0) is the probability that one postsynaptic neuron
has spiked and the second remained silent, in the time window Δ
after onset of a common input of strength A.

Apart from the common input, the rest of the two postsynaptic
neurons’ inputs are independent; i.e., they are driven indepen-
dently by background noisy inputs. Thus, the probability of an
activity pattern occurring is given by:

PAðx1; x2Þ ¼ PAðx1Þ ´ PAðx2Þ ¼
Y2
i¼1

FAðΔÞxi ð1� FAðΔÞÞ1�xi : ð1Þ

Note that the signal amplitude A is the only common factor
between PA(x1) and PA(x2). The combination of
FAðΔÞxi ð1� FAðΔÞÞ1�xi reduces to FA(Δ) when xi= 1, i.e., the
ith neuron has spiked, and 1− FA(Δ) when the neuron is silent.
The rate of the common input (λ) is applied to λΔ × 100% of the
bins whereas it is absent in (1− λΔ) × 100% of the bins. Here we
assumed sparse signaling inputs so that the probability of more
than one signaling input in a single bin is small.

We modeled the spike sequences of two postsynaptic neurons
as a mixture of two situations: either two neurons receive
common input (A ≠ 0), or they do not receive it (A= 0).

Fig. 2 Analysis of pairwise interaction of two neurons receiving common signaling input on top of background noise. a Top, left: Schematic model of
two postsynaptic neurons (Neuron 1 and Neuron 2, blue circles) driven by independent noise and common signaling input (pink circle). Top, right: Spike
trains of two postsynaptic neurons (blue spikes) receiving common signaling inputs (red spikes) with rate λ. The gray shaded area of width Δ indicates the
time window during which the probabilities of the postsynaptic activity patterns after the signaling input are computed. Bottom, left: Timing of postsynaptic
spikes relative to the arrival time of the common input. The last spike of Neuron 1 (Neuron 2) occurs τb1 (τb2) before the arrival of the common input, and
the next spike happens at τ1 (τ2). Middle: Conditional spike density after input arrival is calculated using Eq. (11). By marginalizing over the previous spike
(τb), one obtains the probability of spiking after arrival of the input (spike density, Eq. (12)). The next step is to calculate the cumulative distribution
function (Eq. (13)), which is the probability of having one or more spikes within the time window Δ. Bottom: Probability of having a particular pattern of
spikes for two neurons is obtained, based on the cumulative distribution function and the fact that neurons are conditionally independent. Four possible
binary activity patterns (00, 01, 10, 11) of two postsynaptic neurons and their associated probabilities (P(i, j), i, j∈ {0, 1}). `1' denotes the occurrence of at
least one spike within the time window Δ, whereas `0' represents silence of the neuron within this window. b Pairwise interaction (θ12, Eq. (15)) as a
function of time window, Δ. Here we used a physiologically plausible range of parameters, Vθ= 20mV, τm= 20ms, A= 5 mVms, and diffusion coefficient
D= 0.74 (mV)2ms106. Left: Pairwise interaction computed from simulated spike sequences (gray lines: 50 trials each containing about 2500 spike
occurrences of common input; dots and error bars: mean ± standard deviation) compared with the analytic result of the mixture model (red line, Eq. (15))
for common input rate λ= 5 Hz. Right: Analytical value of θ12 as a function of bin size, Δ for different common input rates, λ. c Pairwise interaction as a
function of the scaled diffusion coefficient, D=ðτmV2

θÞ, and shared signal strength, A/(τmVθ), for excitatory (right) and inhibitory (left) common inputs with
rate, λ= 5 Hz and bin size, Δ= 5 ms.
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Consequently, the probability is a combination of two conditions
with weights given by the occurrence probability for each
situation:

Pðx1; x2Þ ¼ λΔ PAðx1; x2Þ þ ð1� λΔÞ P0ðx1; x2Þ ð2Þ
Note that this mixture model gives approximate probabilities of
the activity patterns of the LIF neurons because, if a neuron does
not spike within Δ [ms] after the common input, the effect of the
augmented/reduced membrane potential is carried over to the
next bin, and thus the binary activities are no longer a simple
mixture of the two conditions (Supplementary Fig. 1 and
Supplementary Note 1). Such situations often happen if the bin
size is small compared with the mean postsynaptic inter-spike
interval.

The strength of interaction can be determined by writing the
probability distribution in the form of the exponential
distribution48,60:

Pðx1; x2Þ ¼ expðθ1x1 þ θ2x2 þ θ12x1x2 � ψÞ; ð3Þ
where θ1 and θ2 are the individual parameters of two neurons, ψ
is a normalization factor, and θ12 is the pairwise interaction. For
two neurons, the probabilities of the activity patterns can be
constructed from the probability of spiking in a time window Δ
(Eq. (13), Fig. 2). From this probability mass function, Eq. (2),
one can compute the neuron’s pairwise interaction, denoted as
θ12 (Eq. (15), Methods: Pairwise and triple-wise interactions of
neural populations). To investigate the neuronal correlation, we
used this information-geometric measure of the pairwise
interaction37,61–63 (Eq. (15)). We selected this measure because
it is not correlated with the estimated firing rates, whereas
the classical covariance and correlation coefficient estimations are
(i.e., the pairwise interaction in this method is orthogonal to firing
rates in terms of the Fisher metric; see Supplementary Note 2).

We checked if the approximate mixture model predicts the
interaction in the sequences of the two LIF neurons and
determined appropriate bin sizes. Figure 2b compares the
pairwise interaction predicted by the mixture model with the
simulated spike sequences. It displays the interaction for different
bin sizes when the two neurons receive common excitatory input.
The pairwise interactions predicted by the mixture model are
within the error bars of the simulation except for the smallest bin
(1 ms, left panel, red and gray lines, respectively). The result also
shows θ12 increases with the rate of the common input (Fig. 2b,
Right). However, the probability of having one or more spikes
within Δ increases for larger bin sizes and saturates to 1 (Fig. 1b,
Inset) regardless of the presence or absence of the signaling input.
Thus, FA(Δ)/F0(Δ)→ 1, which means that the pairwise interac-
tions vanish and we cannot use the binary representation to
determine whether there is a common input when the bin size
is large.

We further examined the pairwise interactions by changing
two independent parameters, the scaled amplitude of the
signaling input A/(τmVθ) and the scaled variability of the noisy
background input D=ðτmV2

θÞ (Fig. 2c). As expected, the pairwise
interactions were positive for both common excitatory and
inhibitory inputs. However, the interactions were significantly
weaker in the inhibitory case. This indicates that it is difficult to
observe the effect of a common inhibitory input for this range of
postsynaptic firing rates and that strong pairwise interactions are
indicator of common excitatory inputs. We verified this trend by
simulating two LIF model neurons receiving a shared Poisson
input on top of noisy inputs that balanced the voltage near the
threshold regime (Supplementary Fig. 2a, d, see also Supplemen-
tary Note 1).

Moreover, as shown in Fig. 2c, there exists a critical normalized
amplitude for common excitatory input, A/(τmVθ) ~ 1 for each

value of scaled diffusion coefficient (level of inputs’ noise),
D=ðτmV2

θÞ. Above this critical value, the postsynaptic neuron’s
spiking density, and consequently the pairwise interaction, does
not change anymore (Fig. 2c, right). The saturation value of the
pairwise interaction is inversely correlated with the scaled
diffusion coefficient: since a higher scaled diffusion coefficient
(noise level) disperses the membrane voltage, the probability of
spiking decreases after the common input arrival. In contrast to
the common excitatory input, where the effect of the common
input is stronger for a low scaled diffusion coefficient (low firing
rate), we can see the effect of the common inhibitory input is
stronger for higher scaled diffusion coefficient (Fig. 2c, left). This
observation is discussed in the section titled “Excitation versus
inhibition: which one can produce stronger triple-wise
interactions?”

Higher-order interactions among three neurons depend on
type of common inputs and network architecture. Here, we
extend the above analysis of neural interactions to three neurons.
Our motivation to investigate the interactions among three
neurons comes from the results of experimental studies43,58 that
investigated the simultaneous activities of three neurons (Fig. 3a).
It was shown that for two neurons, there is one possible shared
input architecture: a common input to both; whereas for three
neurons, it can be either (i) a shared input among the three (red
connections in Fig. 3a), or (ii) one or more shared inputs to each
pair among them (green connections). Assuming symmetry, the
former is the star architecture or excitatory (or inhibitory)-to-trio
(Fig. 3b, left) while the latter is the triangle architecture or exci-
tatory (or inhibitory)-to-pairs (Fig. 3b, right).

To quantify the neuronal correlation among three neurons, we
investigated the information-geometric measure of the triple-wise
interaction, θ123, by using the log-linear model37,61,63 (Eq. (17)).
Similar to the pairwise interaction, estimation of the triple-wise
interaction measure is not affected by (i.e., it is orthogonal to) the
estimated individual firing rates or joint firing rates of two
neurons, and therefore it reveals the pure triple-wise effect that
cannot be inferred from the first and second-order statistics of the
neuronal population (Supplementary Note 2). There are two basic
motifs that can induce triple-wise interactions among the three
neurons (Fig. 3b, left and right), as described below.

Common input to three neurons: Star architecture. Three neurons
simultaneously receive a single common signaling input (Fig. 3c).
The conditional probability of the activity patterns when a com-
mon input generates a spike given to all three neurons with
probability λΔ (red lines) is PAðxÞ ¼

Q3
i¼1 FAðΔÞxi ð1� FAðΔÞÞ1�xi ,

where x= (x1, x2, x3) is the spiking activity of three neurons.
Similarly, the probability mass function for three neurons receiving
no common input with probability 1− λΔ (gray dashed lines), is
P0ðxÞ ¼

Q3
i¼1 F0ðΔÞxi ð1� F0ðΔÞÞ1�xi . Thus, we model the spike

occurrence as a mixture of the two conditions in which neurons
receive and do not receive common input:

PðxÞ ¼ λΔPAðxÞ þ ð1� λΔÞP0ðxÞ: ð4Þ
From this probability mass function, we can compute the triple-
wise interaction of three neurons according to Eq. (17) (Methods:
Pairwise and triple-wise interactions of neural populations).

Common inputs to pairs of three neurons: Triangle architecture.
Each pair of neurons among trio receives a common signaling input
from an independent presynaptic neuron with frequency λ
(Fig. 3d). Neurons 1 and 2 share one input in common, as do
neurons 2 and 3 and neurons 1 and 3 (symmetric case). The three
common inputs are independent and occur with equal frequency, λ.
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The mixture models obtained by the occurrence probabilities are
described in Methods (Methods: Mixture model of three neurons
receiving common inputs to their pairs (triangle architecture)),
including the asymmetric common input architecture in which
there are only two common inputs out of three (asymmetric case)
(Fig. 3e). We computed the triple-wise interaction of three neurons
by using these mixture models.

For the two architectures above, we calculated the triple-wise
interaction parameters from the simulated spike sequences of
postsynaptic neurons and compared them with the theoretical
predictions (Fig. 4a and b, left). The activities of neurons that
receive simultaneous common excitatory input (star architec-
ture) are characterized by positive triple-wise interactions
(Fig. 4a, left). In contrast, the activities of neurons that receive
independent common excitatory inputs to pairs (triangular
architecture) are characterized by negative triple-wise interac-
tions (Fig. 4b, left). Figure 4a, b (left) show that the triple-wise
interaction decreases as the bin size increases for the same
reason as in the pairwise interaction (Fig. 2b, right). The
dependence of the triple-wise interaction on the common input
rate is shown in the right panels of Fig. 4a, b.

Figure 4c shows the triple-wise interactions in the star (Top)
and triangular (Bottom) architectures for excitatory (right) and
inhibitory (left) common inputs as a function of the scaled
diffusion coefficient (level of input noise) D=ðτmV2

θÞ and scaled
amplitude A/(τmVθ) (see Supplementary Fig. 2b, c, e, f and
Supplementary Note 1 for the simulation study). A single

common excitatory input in the star architecture (excitatory-to-
trio) significantly increases the probability that all three neurons
spike in the observation time window, P(1, 1, 1), whereas a single
common inhibitory input (inhibitory-to-trio) increases the
probability of the reverse pattern, P(0, 0, 0). The latter simply
changes the sign of θ123 in Eq. (17) (Methods). In the triangular
architecture with common excitatory input (excitatory-to-pairs),
however, each common input causes postsynaptic spikes in two
neurons but not in the other one. This primarily increases
P(1, 1, 0) (or a permutation of it) in the denominator of Eq. (17),
resulting in negative θ123. For common inhibitory input in the
triangular architecture (inhibitory-to-pairs), the probability of the
reversed pattern, P(0, 0, 1) (or a permutation of it) increases; this
results in a larger numerator in Eq. (17) and positive triple-wise
interaction. These results demonstrate that not only the type of
common input (excitation or inhibition) but also the underlying
architecture (star or triangular) determines the sign of the triple-
wise interactions. We also observed that the magnitude of the
negative triple-wise interactions induced by common inhibitory
inputs is much weaker than those induced by common excitatory
inputs. We expect this phenomenon will occur when the
postsynaptic neuron exhibits a low spontaneous firing rate. We
discuss why inhibitory inputs cannot generate strong interactions
at low spontaneous firing rates in the section “Excitation versus
inhibition: which one can produce stronger triple-wise interac-
tions?” (see also Supplementary Fig. 3 and Supplementary
Note 3).

Fig. 3 Schematic illustrations of the mixture models. a Schematic diagram of simultaneous recording of three postsynaptic neurons. The neurons (blue
circles) operate independently in the absence of any common input. The common input (pink circle) is to all three of them (red connections), or to two of
them (green connections). b There are two main families of symmetric architectures: a common input to a trio (star architecture, left) and a common input
to each pair out of three (triangle architecture, right). cMixture model for three neurons in the star architecture where the neurons receive a common input
(red lines) with probability λΔ and do not receive it (gray dashed lines) with probability 1− λΔ. dMixture model for three neurons in the symmetric triangle
architecture with four distinct ways of combining the presence or absence of the common input (see the main text). e For asymmetric triangle architecture,
the number of possible cases reduces to three.
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Network structure and common input type can be determined
from neuronal interactions. The above observations raise a
question: is it possible to determine the type of common input
and the underlying architecture from the event activity of a
neuronal population? Fig. 5a shows the first-order parameter, θt1,
in a star or triangular architecture receiving either common
excitatory or inhibitory inputs. Here, θt1 strongly depends on
D=ðτmV2

θÞ, which measures the level of the noise in background
inputs, but only weakly depends on the signal’s amplitude,
A/(τmVθ). More importantly, it does not show any conclusive
dependence, either on the choice of architecture or type of
common input. Thus, it is impossible to identify the underlying
architecture or the type of common input from the first-order
parameters only.

However, the 2D plane of θ123 versus θ12 does differentiate
motifs (Fig. 5b), as each motif occupies a distinct region. Thus, in
principle, by investigating the interaction parameters, it is
possible to identify the underlying architecture and type of
common input (excitation or inhibition) to the three LIF neurons.
However, within each motif (except for excitatory-to-trio), the
parameters overlap, making it impossible to identify the under-
lying parameters such as the input’s amplitude or diffusion
coefficient from the interaction parameters. In addition, both the
pairwise and triple-wise interactions are considerably weak when
the neurons receive inhibitory inputs.

Each motif’s boundaries in the θ123 versus θ12 plane are shown
in Fig. 6a, right panel. The two inhibitory motifs occupying tiny
areas are shown in the two panels on the left (top and bottom).

The three excitatory motifs cover much wider areas. Asymmetric
excitatory-to-pairs motif is the other simple motif with shared
excitatory inputs that can produce nonzero θ123. All five regions
begin at the origin, θ12= θ123= 0 because both interactions
vanish at zero signal amplitude.

We can explain the behavior of the neuronal interactions in
Fig. 6a for the case of excitatory-to-trio motif as follows (see
Supplementary Note 3 for the other architectures). Consider the
dashed-dotted purple curve for postsynaptic neurons with a fixed
spontaneous rate of μ= 1 Hz; this curve shows how interactions
change as one increases the shared signal’s amplitude from zero
to the highest conceivable value, i.e., A/(τmVθ)≫ 1. The pairwise
interaction monotonically increases with the signal strength and
eventually saturates at its maximum value (the open black circle).
The triple-wise interaction, however, shows non-linear behavior
until it saturates. We can analytically show that, for any choice of
the spontaneous firing rate μ, we reach its corresponding
saturation point at a sufficiently strong input amplitude
(Supplementary Note 3). The saturation points (thick gray curve)
are independent of the neuron model and the near-threshold
assumption of the voltage, forming a universal upper boundary in
the θ123 versus θ12 plane; the corresponding point for any of the
excitatory-to-trio motifs is placed below it. To determine the
lower boundary, we limited the spontaneous rates by μ ≥ 1 Hz.
For any value higher than the background activity (μ > 1 Hz), the
corresponding curve appears above the curve for μ= 1 Hz and
below the universal upper boundary. Thus, the curve for μ= 1 Hz
acts as a practical lower boundary.

Fig. 4 Triple-wise interactions among three neurons in the two leading architectures. a The triple-wise interaction, θ123, in the star architecture: the three
postsynaptic LIF neurons in blue simultaneously receive a common excitatory signal A= 5mVms. The parameters are: τ= 20ms, Vθ= 20mV,
A= 5 mVms, and D= 0.74 (mV)2ms. Left: Triple-wise interaction computed from simulated spike sequences (gray lines: 50 individual trials each
containing about 2500 spike occurrences from common inputs; dots and error bars: mean ± standard deviation) compared with the analytical result of the
mixture model (red line, Eq. (17) in Methods) for λ= 5 Hz. Right: Analytical value of θ123 as a function of bin size, Δ, for different common input rates, λ.
b Triple-wise interactions in the triangular architecture: each pair of postsynaptic neurons in blue shares an independent common excitatory input. All
parameters are as in a. c Triple-wise interactions among three neurons receiving common excitatory or inhibitory inputs in star (top panel) and triangular
(bottom panel) architectures. In each row, the panel on the left is for common inhibitory and the one on the right is for common excitatory inputs. θ123 is a
function of the scaled diffusion coefficient, D=ðτmV2

θÞ, and scaled shared signal strength, A/(τmVθ); the other parameters are Δ= 5 ms and λ= 5 Hz. The
white region in the bottom left panel shows the numerically indeterminate region due to a very small diffusion coefficient (level of noise) and strong
inhibition.
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The stories for the other four motifs are similar to the one
above. Each region contains numerous curves. To obtain each
curve in a corresponding region, we set a certain postsynaptic
spontaneous rate, μ, and then vary the shared signal’s amplitude
from zero to a high value. This procedure yields a curve that
begins at the origin and ends at its saturation point. Each region is
the accumulation of these curves, and has two boundaries, one
that is composed of all saturation points (thick gray boundary)
and the other is the curve with the lowest firing rate μ= 1 Hz
(highest firing rate of μ= 100 Hz), for motifs with excitatory
(inhibitory) shared inputs (Fig. 6a and also Supplementary
Note 4).

Experimentally verifying the analytically predicted regions
(Fig. 6a) is challenging as it would require simultaneous
recordings from the neurons and all their inputs. Instead, we
used a multicompartmental neuron model in layer 5 of rat
somatosensory cortex with a specific morphology from the blue
brain project3,57 to check the above theoretical predictions. We
simulated each motif by adding shared inputs on top of other
synaptic inputs received by three postsynaptic pyramidal neurons
(NEURON simulator, Supplementary Note 5 and Supplementary
Table 1). Figure 6b shows the resulting triple-wise versus pairwise
interactions (mean ± 2 SD) of a simulation of the excitatory-to-
trio (circles) and excitatory-to-pairs (squares) motifs while shared
inputs have different amplitudes or efficacies (color code). The
simulated results for each motif are placed within the predicted
region. Interactions resulting from a shared input amplitude
of 0.1 (dark blue circle and square) for both excitatory-to-trio
and excitatory-to-pairs motifs cannot be distinguished from

interactions of the spontaneous activity (the black diamond at the
origin). However, the excitatory-to-trio and excitatory-to-pairs
motifs can be revealed by larger amplitudes of the shared input
(from 0.2 to 4). As the amplitude of the shared input gets
stronger, triple-wise and pairwise interactions in both motifs
become stronger. In strong amplitudes of shared inputs, the data
reaches the high amplitude line in excitatory-to-pairs motif (the
red square at the bottom right). The simulation result of
multicompartmental neuron for the inhibitory-to-trio and
inhibitory-to-pairs motifs shows small and noisy pairwise and
triple-wise interactions (red and blue, Supplementary Fig. 8) that
could not be easily differentiated from spontaneous interactions
(black circle, in Supplementary Fig. 8). These results confirm that
our theoretical boundaries (regions) predict the architecture
behind the activities of three multicompartmental neuron models.

Here we used the the log-linear model to trace the interactions
and defined the boundaries of the motifs in the triple-wise versus
pairwise interaction plane. To examine if it is a suitable measure,
we investigated how well other measures of correlations, such as
cross-correlation and covariance could distinguish the motifs (the
definitions and calculations are in Supplementary Note 6). In
particular, we found that the cross-correlation method (Supple-
mentary Fig. 12b) produces boundaries for the excitatory inputs
motifs that diverge for some range of spontaneous rate, and
hence, it is not possible to identify motifs in that range
(Supplementary Note 6 and Supplementary Fig. 10). On the
other hand, the boundaries for the covariance measure are too
narrow, and the correlations are too small (Supplementary
Fig. 12c) to reliably distinguish among motifs. By comparison, the

Fig. 5 Natural parameters of population activity of three LIF neurons receiving common inputs in star and triangular architectures. a The natural
parameter for individual neurons, θt1, in star and triangular architectures with common excitatory or inhibitory inputs versus scaled shared signal strength
A/(τmVθ). The symbols correspond to four motifs. The color codes are for four scaled diffusion coefficients. θt1 significantly varies with D=ðτmV2

θÞ, which
determines the postsynaptic spontaneous rate, μ. However, θt1 does not show any significant dependence on the shared signal strength or any conclusive
dependence on the type of architecture. b Triple-wise versus pairwise interactions for star and triangular architectures with common excitatory or
inhibitory inputs as a function of scaled diffusion and scaled shared signal strength. The colors represent the levels of the scaled diffusion coefficient as in
panel a. The black arrows indicate increasing directions of the scaled amplitude parameter (i.e., A/(τmVθ)) from zero. The symbols at the end of the graphs
show the saturation points of the interactions. The top and bottom panels on the left illustrate the interactions in the neighborhood of origin for negative
and positive triple-wise interactions corresponding to inhibitory-to-trio and inhibitory-to-pairs motifs, respectively. The fixed parameters are the bin size,
Δ= 5ms and presynaptic rate, λ= 5 Hz.
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interactions of the log-linear model (see Supplementary Note 6
and Supplementary Fig. 12a) do not have these difficulties, and
the motifs can be distinguished. Therefore, the interaction
parameters of the log-linear model constitute a better tool for
identifying the hidden motifs behind correlations among
neurons.

Finally, we clarify that which boundaries depend on the neuron
model. We show that the high amplitude boundaries (thick gray
curves) are independent of the neuron model, and the near-
threshold assumption of the voltage (Supplementary Note 3).
However, the other boundaries of the low (high) spontaneous rate
for the excitatory (inhibitory) shared inputs show nontrivial
behavior. For the star architectures, they remain independent of
the neuron model, while for the triangle architecture, they depend
on the choice of the neuron model and the near-threshold
assumption (Supplementary Note 4). This dependence is an
example of the nonlinearity of the input-output relation: it
wouldn’t exist if the probability of postsynaptic spike linearly
increases with the strength of the presynaptic signal, i.e., an
assumption for weak signals (technically, FA(Δ)= F0(Δ)+ const ×
A, Supplementary Note 4). In general, the probability of a
postsynaptic spike varies non-linearly with the signal strength
and saturates with strong signals; an accurate description of this
dependence requires full knowledge of the neuronal model
(Supplementary Note 4).

How do more biological neuron models alter the model-
dependent boundaries? We analytically showed that the
boundary curves of the triple-wise and pairwise interactions in
Fig. 6a at high signal amplitude are independent of the neuronal
model and the near threshold assumptions (see Supplementary
Note 3). The universal boundaries also hold for curves of the
excitatory and inhibitory-to-trio motifs. Therefore, a substantial
portion, if not all, of the predictions would remain valid even if
we change the neuron model. However, a more physiologically
plausible model might modify the predicted interactions for
excitatory-to-pairs motifs (i.e., low spontaneous rate boundaries).
It is thus important to ask how much the obtained boundaries
vary by changing the neuronal model or the near-threshold
assumption of the voltage: can one region (area within two
boundaries) entirely displace another, or even two distinct regions
overlap?

First, we investigated how the model-dependent boundaries
change by using more physiological neuron models other than
the standard LIF neuron model. The LIF neuron model has
certain limitations, e.g., in reproducing the variability of the inter-
spike intervals observed in vivo64–68. To make it more biologically
plausible, we added an adaptation term to the LIF neuron
model69–71 and simulated its effect on the pairwise and triple-
wise interactions (see Supplementary Table 2 and Supplementary
Note 7).

Fig. 6 Distinct regions of interactions of three neurons’ activity receiving common inputs of different architectures and synaptic types. a Regions
associated with, from top to bottom, excitatory-to-trio, asymmetric excitatory-to-pairs, and symmetric excitatory-to-pairs motifs. The regions associated
with common inhibitory input are confined to an area near the origin (i.e., small θ123 and θ12), and are shown at higher resolution in the left panels. Each
region is bounded by two analytical boundary lines: one at the high signal amplitude (solid gray lines); the other at the low or high spontaneous rate
(μ= 1 Hz or μ= 100 Hz) for motifs with common excitatory or inhibitory input (the purple and gray dashed lines). The high amplitude limit is given by ∣A∣/
(τmVθ)≫ 1; see Supplementary Note 3. The low (high) spontaneous rate limit corresponds to postsynaptic spontaneous rate of μ= 1 Hz (μ= 100 Hz); see
Supplementary Note 4. We chose these limits to cover a wide range of postsynaptic spontaneous rates while maintaining the assumption of low activity
rates: μΔ≃ F0(Δ) ≤ 0.5; see Supplementary Note 3. For comparison, we added intermediate spontaneous rates: μ= 5, 10, 20 (dashed lines). The colored
solid lines (color code in Fig. 5) are numerical results of the LIF neuron model for different scaled diffusions and signal amplitudes (Fig. 5). The fixed
parameters are the bin size Δ= 5ms, and the presynaptic rate, λ= 5 Hz. b In silico verification of theoretical regions using the multicompartmental neuron
model of blue brain data3,57. The pairwise and triple-wise interactions of three neurons in excitatory-to-trio (circles) and excitatory-to-pairs (squares)
motifs with different amplitudes of a 5 Hz Poissonian shared input (color code) are calculated from extensive simulation of specific pyramidal neurons in
layer 5 of rat somatosensory cortex. Each plot (mean ± 2 SD) is the result of averaging over 5 runs of simulating 3 neurons for a 300s duration (Δ= 5ms;
see Supplementary Note 5). The spontaneous interactions among three neurons without a shared signaling input is plotted as the black diamond near the
origin.
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The simulation results show that adaptation reduces the firing
rate of the postsynaptic neurons (Supplementary Fig. 13 and
Supplementary Fig. 14, Supplementary Note 7) in agreement with
the experimental literature72. In the presence of adaptation, the
common excitatory inputs generate even stronger pairwise and
triple-wise interactions, while common inhibitory inputs induce
weaker interactions (Supplementary Fig. 15).

The model-dependent low spontaneous rate boundaries for
excitatory-to-pairs motif for the adaptive LIF (aLIF, Eq. S.47) and
the adaptive exponential LIF (aEIF)68,71 are shown in Supple-
mentary Fig. 16; see also Supplementary Note 7. The high
amplitude boundary remains the same because it is independent
of neuron models. For the low spontaneous rate boundary in
excitatory-to-pairs motifs, it can be seen that the more

generalized and biologically plausible aLIF and aEIF models
preserve the region for each motif; the regions do not overlap.

Next, we examined whether the assumption of the near-
threshold regime limited the validity of our results. We ran
simulations of LIF neurons under subthreshold and suprathres-
hold regimes. The simulation results showed that common
excitatory inputs produce stronger interactions in the subthres-
hold regime while common inhibitory inputs produce weaker
ones compared with the threshold regime (Supplementary
Note 8). The reverse happened in the suprathreshold regime
(Supplementary Fig. 17). There is evidence that cortical neurons
operate in the subthreshold (or near the threshold) regime16

depending on the state of the animal or stimulus conditions20,
rather than in the suprathreshold regime that results in regular
spiking. Consequently, when neurons are in the subthreshold
regime, the inhibitory-to-trio region would become smaller and
excitatory-to-pairs region would become larger, compared to
Fig. 6a.

Section “Excitation versus inhibition: which one can produce
stronger triple-wise interactions?” explains why the common
excitatory inputs increase the higher-order interactions in the
presence of adaptation or in the subthreshold regime and why
these trends are reversed for common inhibitory inputs.

Comparison of theoretical predictions with experimental data.
Figure 6 makes it possible to identify the underlying architecture
and type of shared input (excitation or inhibition) for three
homogeneous neurons by simply investigating their interaction
parameters. As a practical example, we explored V1 neurons of
anesthetized macaque monkeys studied in Ohiorhenuan et al.43.
This study investigated the relationship between the triple-wise
interaction (Eq. (17), Methods) of three neurons (ordinate) and
the average marginal pairwise interactions (Eq. (15), Methods) of
neuron pairs in the group (abscissa). The authors extracellularly
recorded putative pyramidal neurons and found that many
neurons, with mutual separations less than 300 μm, exhibited
positive pairwise and strong negative triple-wise interactions
(Fig. 7). The triple-wise interactions weakened when the electrode
separation was increased beyond 600 μm. The authors speculated
that the observed strong negative triple-wise interactions of the
more nearby neurons are caused by the hidden activity of
GABAergic inhibitory neurons, which presumably provide shared
input to a large number of excitatory pyramidal cells58. The
activities of V1 neurons were reported within 10–70 Hz43,58,73,
higher than the 1 Hz lower boundary, which we considered for
the excitatory-to-trio motif. Thus, we can safely compare our
theoretical predictions with the empirical observations. Figure 7
shows that the empirical data on most of the nearby neurons
(filled red symbols) coincide with regions associated with the
symmetric and asymmetric excitatory-to-pairs motifs. In contrast,
neither the excitatory-to-trio nor any of the inhibitory motifs can
explain most of the interactions of neurons within 300 μm. This
clearly rules out the intuitive idea that shared inhibition could
have induced the observed strong negative triple-wise
interactions.

To see if the excitatory-to-pairs motif explains neuronal
activity recorded from awake animals, we investigated neurons
in the primary visual cortex of awake mice receiving drifting
grating stimuli (Allen Brain Observatory—Neuropixels
Visual Coding dataset)59. These neurons exhibit time-
dependent firing rates (Fig. 8a). The distribution of firing rates
of individual neurons are shown in Fig. 8b. To resolve the time-
dependent firing rates in estimating their interactions, we fitted
the state-space model of Eq. (16)54,74, where we assumed the first-
order parameters are time-dependent while the pairwise and

Fig. 7 Comparison of theoretical predictions of neural interactions with
V1 neurons of anesthetized monkeys. Ohiorhenuan et al.58 recorded spike
data from V1 neurons of macaque monkeys by using tetrodes and analyzed
the relation between triple-wise interactions (Eq. (17)) among three
neurons (ordinate) and the average marginal pairwise interaction (Eq. (15))
of neuron pairs in the group (abscissa). The red and blue filled symbols
represent interactions of neurons within 300 and 600 μm vicinity,
respectively, while the unfilled gray symbol shows the interaction
at > 1000 μm distance (Replicated from Fig. 4 in Ohiorhenuan et al.58). The
triangles are data from three neurons. The stars and squares are data from
the four and five neurons. The black lines show the region of interactions
for the triangular architecture with common excitatory inputs to each pair
of neurons. The solid black line is the high amplitude boundary for
interactions, while the dashed black line is the boundary of the low
spontaneous rate (μ= 1 Hz). The dark gray solid and dashed lines
determine the boundaries for the asymmetric triangular architecture with
common excitatory inputs given to two pairs among three neurons. The
light gray lines are for the same asymmetric excitatory-to-pairs motif when
the three pairwise interactions are averaged over, while the dark gray lines
are the average of only nonzero pairwise interactions. The blue analytic
lines represent a narrow region for the star architecture with common
inhibitory input (high common input amplitude limit and high diffusion
limit), whereas the green lines show the region for excitatory inputs given
to three neurons (dashed line, low spontaneous rate boundary, μ= 1 Hz for
scaled diffusion limit of D=ðτmV2

θ Þ ¼ 2 ´ 10�19 and solid line, high common
input’s amplitude limit). The time window is Δ= 10 ms and common input
rate is λ= 5 Hz.
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triple-wise interactions are time-independent (Methods: Sequen-
tial Bayesian estimation of the neuronal interactions). Figure 8c
shows the estimated parameters for exemplary 3 neurons. The
sequential Bayesian estimation method provides maximum a
posteriori estimates (MAP) of each parameter with credible
intervals. The model accounts for the modulation of firing rates
with the time-dependent first-order parameters.

Next, we fitted this model to all the combinations of five
neurons exhibiting the highest firing rates. Figure 8d shows MAP
estimates of the pairwise and triple-wise interactions of these
neurons. The error bars are the 95% credible intervals. The
colored dots and darker error bars indicate that the interactions
are significantly away from 0; namely, if the minimum values of
the 95% credible intervals of all pairwise and triple-wise
interactions are larger than 0 or if the maximum values of the
95% credible intervals are all smaller than 0. The plots in light
gray are non-significant groups of neurons. The directions of the
grating stimulus are indicated by different colors of the dots. Note
that the significant positive pairwise and negative triple-wise
interactions are not the artifacts of the time-dependent modula-
tions (see the inset for the trial-shuffled result).

Finally, we repeated the same analysis on the five mice with the
largest number of recorded neurons. Figure 8e is a summary plot
with the theoretical boundaries for the five mice (only the groups
showing significant interactions are shown). The results of the
time-dependent analysis with credible intervals are consistent

with the anesthetized monkey data: the excitatory-to-pairs motif
is the most plausible for explaining the observed neural
interactions.

The above findings trigger the following question: why should
the observed strong negative triple-wise interaction be associated
with common excitatory inputs, and the inhibitory shared inputs
fail to produce any strong negative interactions? We will answer
this question at the end of the Results section. But before that, we
verify the robustness of our excitatory-to-pairs scenario to a
possible complication of the motifs by recurrent interconnections.

Excitatory directional/recurrent connections among three
neurons can explain the observed negative triple-wise interac-
tion. Although the previous section’s analysis seems valid for
common input architectures among three postsynaptic neurons,
the question remains as to whether considering interconnections
among the three neurons might affect our conclusions from
Figs. 7 and 8. Therefore, we simulated all possible motifs of
directional or reciprocal connections among the three neurons.
The number of motifs for three neurons is 26= 64 (each directed
connection can be present or absent; 26 for the 6 possible inter-
connections). However, some of these motifs are structurally the
same: they turn into each other simply by permuting the labels of
the three postsynaptic neurons. This means that the 64 possible
motifs reduce to 16 main structures (Fig. 9a). Here, we asked
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Fig. 8 Comparison of theoretical predictions with V1 neurons of awake mice. a Firing rate averaged over all trials and all V1 neurons recorded from an
exemplary mouse during stimulus presentation. The stimulus was drifting gratings (orientation 0 degree, temporal frequency 2 Hz) with 75 repetitions in the
‘functional connectivity’ stimulus set of the Allen Brain Observatory—Neuropixels Visual Coding. The exemplary mouse had the largest recorded neurons in
the dataset. b Distribution of firing rates of all recorded V1 neurons from the same mouse. c Exemplary traces of time-dependent and constant natural
parameters estimated by applying the state-space method to recordings of activities of three neurons from the mouse’ primary visual cortex (the solid lines
are maximum a posteriori estimates; filled areas are 95% Bayesian credible intervals). The fitted model assumes that the natural parameters for individual
neurons (θi, i= 1, 2, 3) are time-dependent, while the pairwise and higher-order natural parameters are time-independent. The bin size used to create the
binary data was 5ms. The selected neurons had the top-three highest firing rates among the 126 recorded neurons of the mouse. d Triple-wise versus
pairwise interactions. The pairwise and triple-wise interactions were estimated by independently applying the state-space analysis to all combinations of
three neurons taken from the top-five highest firing rate neurons observed in the mouse with the largest number of recorded neurons. The stimuli are the
drifting gratings with four different orientations. The colored dots are the MAP estimates of the interactions that significantly deviate from 0. Dots of same
color are subsets of the data that were recorded under the same stimulus orientation. The error bars indicate 95% credible intervals. To draw the error bars
for the pairwise interactions, we used the mean value of the estimated three pairwise interactions. We classified the subsets as significant if none of the 95%
credible intervals of the pairwise and triple-wise interactions cover the value 0. e Comparison of interactions measured in five mice with theoretical
boundaries for each architecture. We repeated the procedure to obtain panel d for the four other mice with the largest number of recorded neurons. The
same color scheme of dots indicates the subsets of three neurons from the same mouse. The style and color of the boundaries follow the definitions used in
Fig. 7. The gray lines are the asymmetric excitatory-to-pairs boundaries determined from the average of the nonzero pairwise interactions.
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whether adding directional or reciprocal connections between
neurons in the inhibitory-to-trio motif would shift the strength of
triple-wise interactions arising from inhibitory-to-trio toward the
strong interactions found in the experimental data (for example,
the red symbols in Fig. 7). Figure 9a shows the results of triple-
wise interaction for each motif averaged over 50,000 runs. We
found four clusters of motifs, separated from each other, ordered
by the number of inputs to pairs. The first cluster (blue, motifs 1
to 7) contains motifs with no simultaneous input from one
excitatory neuron to two others (to pairs), despite that there can
be recurrent connections. The average triple-wise interaction
induced by this cluster is small. The second cluster (red, motifs 8
to 13) has motifs with one excitatory neuron as the input with
directional connections to pairs of neurons. The third and fourth
clusters (green, motifs 14 and 15; and black, motif 16) contain
motifs with two and three excitatory-to-pairs of neurons in the
directional connections between neurons. Clearly, as the number
of excitatory inputs to pairs increases, the triple-wise interaction
becomes more negative and stronger. The inset shows the triple-
wise versus pairwise interactions for these four clusters. While
motifs 2-7 in the first cluster (blue) can not be distinguished from
the inhibitory-to-trio (motif 1), the strong negative triple-wise
interactions observed in the second, third, and fourth clusters
(motifs 8–16) cannot be explained by the inhibitory motif (motif
1) even if the amplitude of the inhibition is increased (Fig. 4c).
This picture is consistent with the empirical data (Figs. 7 and 8),
where there were large negative triple-wise and positive pairwise
interactions. The excitatory-to-pairs motif, either as common
input or as a directional connectivity, can generate strong inter-
actions and thus is supported as the basic motif behind the data
presented in Figs. 7 and 8.

Another question remains about the simultaneous existence of
common excitatory and inhibitory inputs in both the triangle and
star architectures; in this case, we analyzed a model in which
these architectures were mixed (Supplementary Note 9). The

results show that mixing of other motifs excluding the excitatory-
to-pairs motif cannot induce strong negative triple-wise and
positive pairwise interactions (Supplementary Fig. 18).

Excitation versus inhibition: which one can produce stronger
triple-wise interactions? So far, we found that the strong nega-
tive triple-wise combined with positive pairwise interactions
observed for V1 neurons are a signature of microcircuits with
common excitatory inputs (Fig. 7). One remaining question is
why other microcircuits with common inhibitory inputs failed to
produce strong negative triple-wise interactions. Another is can
we always attribute strong higher-order interactions to common
excitatory inputs, or does it depend on certain features which vary
from experiment to experiment?

The measured pairwise and triple-wise interactions depend on
various features of the postsynaptic neurons, as well as their
possible shared inputs. For the analytically tractable regime of
strong signaling inputs, however, we can reduce many factors to a
few decisive ones. Here, analytical calculations show that, when
the spontaneous rate of postsynaptic neurons in the time window,
Δ, is low, i.e., F0(Δ)≪ 1, common excitatory inputs produce large
pairwise and triple-wise interactions, while common inhibitory
inputs do not (Supplementary Fig. 3 and Supplementary Note 3).
This picture is reversed if the spontaneous firing rate of the
postsynaptic neurons is high, i.e., F0(Δ)≲ 1. There is, of course,
an intermediate regime, F0(Δ)≃ 0.5, where the strength of the
interaction induced by inhibitory inputs to trio and excitatory
inputs to pairs are nearly the same (Supplementary Fig. 3).

Figure 10 illustrates how the postsynaptic neurons’ sponta-
neous rate, i.e., μ within the time bin, Δ, plays an essential role in
relating the hidden underlying architecture with the observed
interactions. If the regime of spontaneous rate is known, based on
the statistics of neural data (pairwise and triple-wise interactions),
one can predict the predominant architecture that induces the
observed interactions. In the low spontaneous rate regime,

Fig. 9 Triple-wise interactions for 16 motifs of directional and/or reciprocal connections among three neurons when they receive independent noise
and common inhibitory input to trio. a The architectures are divided into four clusters based on the number of excitatory inputs to pairs in each motif. The
first cluster (blue) contains directional connections with no excitatory inputs to pairs in the directional connections among three neurons (blue circles). The
second cluster (red) has one excitatory input to a pair, and the third and fourth (green and black) are related to two and three excitatory inputs to pairs in the
directional connections among three neurons (blue circles). The inset shows the triple-wise interaction versus pairwise interaction for all 16 motifs. b The mean
and error bar (standard deviation) of triple-wise interaction for each cluster as a function of the number of excitatory inputs to pairs. c Triple-wise interaction for
the 16 motifs is a linear function of the number of excitatory-to-pairs motifs in the directional connections and number of loops. Each motif was simulated
50,000 times, and each trial contained 500 seconds of spike trains with a time resolution of 0.05ms. The time window used to calculate the triple-wise and
pairwise interactions was Δ= 5ms, and the shape of presynaptic input was a square function for both the common input and directional connection’s input, the
same as in the analytic calculation. Scaled diffusion D=ðτmVθ

2Þ ¼ 9 ´ 10�5; scaled amplitude A/(τmVθ)=0.0125; common presynaptic input and input rate of
directional connectivity λ= 5Hz; the time delay of directional interconnection t0 ¼ 6ms>Δ; A0=A ¼ 1, where A0 is the amplitude of the directional connections.
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motifs of excitatory inputs can induce strong triple-wise and
pairwise interactions (regions in Fig. 10a); whereas, in the high
spontaneous rate regime (for example, in the olfactory bulb75),
motifs with inhibitory inputs can generate strong interactions
(Fig. 10b). When judging the architecture, it is recommended to
consider uncertainty in estimating the empirical interactions to
avoid erroneous detection of the architecture.

In the experiment conducted by Ohiorhenuan et al.43,58, the
neuronal firing rates ranged within 10 Hz ≤ μ ≤ 70 Hz (Fig. 4 in
ref. 58), while the time bin was Δ= 10 ms. The exact spontaneous
spiking probability of postsynaptic neurons is F0 ¼
1� expð�μ ´ΔÞ; this yields 0.1 ≤ F0 ≤ 0.5. For such values of F0,
any observation of strong triple-wise interactions is an indication
of common excitatory inputs as opposed to inhibitory ones. For
the V1 neurons of mice, we chose neurons that had firing rates in
3 Hz ≤ μ ≤ 6 Hz, a time bin of Δ= 5ms, and spontaneous spiking
probability ranges within 0.015 ≤ F0 ≤ 0.03. As such, the observed
strong negative triple-wise interactions are a signature of
excitatory-to-pairs motifs. Furthermore, the data from Ohiorhe-
nuan and Victor58 indicates that neurons exhibiting lower firing
rates generate stronger positive pairwise and negative triple-wise
interactions (see Fig. 4c, a in Ohiorhenuan and Victor58). This
observed increase in the pairwise interactions and negative triple-
wise interactions with decreasing spontaneous rate (firing rate)
appears in excitatory-to-pairs motif in Supplementary Fig. 3a, b
(right), but not in inhibitory-to-trio motif (Supplementary Fig. 3a,
b, left). This fact reaffirms our claim that the excitatory-to-pairs
motif underlies the V1 microcircuits in these datasets.

Discussion
Our results point to the possibility of revealing the underlying
neuronal architecture and type of common input by using pair-
wise and triple-wise neural interactions (Fig. 10). Furthermore,
for the specific set of monkey and mouse data, we conclude that,
rather than the inhibitory-to-trio motif, the excitatory-to-pairs
motif, either as hidden common inputs or directional connection,
is a necessary and sufficient explanation of the observed strong
negative triple-wise and positive pairwise interactions. For
revealing the motif underlying the data, we presented an analytic

guide map: showing the distinct regions of each basic motif in the
triple-wise versus pairwise plane (Fig. 6a). Each region is defined
by two boundaries, the high amplitude regime boundary for all
motifs and the low (high) spontaneous rate boundary for the
excitatory (inhibitory) inputs motifs. For the high amplitude
boundary, we analytically calculated how extremely strong com-
mon inputs affect the pairwise and triple-wise interactions
(Supplementary Note 3). This analysis was independent of the
neuron models and the conditions of the equilibrium potential: it
reveals that whenever the spontaneous firing rate is low, motifs
that have excitatory inputs can induce strong triple-wise inter-
actions (Supplementary Fig. 3), whereas when the spontaneous
firing rate is high, motifs with common inhibitory input can
produce strong interactions. A neuron in this situation may
resemble one talkative person (excitatory input) who is clearly
noticed among many others who are silent (low spontaneous
rate). On the other hand, if the majority are talkative (high
spontaneous rate), one silent person (inhibitory input) would be
conspicuous.

We showed that low (high) spontaneous rate boundary for the
excitatory-to-trio (inhibitory-to-trio) motif as well as high
amplitude boundaries for all motifs, are independent of the
neuron model and the near-threshold assumption (Fig. 6a). The
low (high) spontaneous rate boundary of the common excitatory
(inhibitory)-to-pairs, however, depend on the neuron model and
the near-threshold assumption (Supplementary Note 4). We
carried out numerical simulations and other verifications to make
sure (i) the observed strong negative triple-wise interactions and
positive pairwise interactions in particular data on macaque and
mouse V1 are signatures of the excitatory-to-pairs motif and (ii)
the guide map remains reliable, in more general situations like
including adaptation in the neuron model (Supplementary
Note 7) and when the neuron’s voltage is slightly away from the
threshold (Supplementary Note 8). However, the guide map and
regions corresponding to motifs changed according to the
spontaneous rate of neurons and bin size. Here, we have provided
the results for infrequent and frequent spontaneous rate of
postsynaptic neurons (Fig. 10) under the assumption of a low
input rate and small bin size. The dependence of guide map on
bin size is shown in Supplementary Fig. 5. As can be seen, the bin

Fig. 10 Guide map for uncovering the underlying architecture from observed higher-order interactions. a For a spontaneous rate within the range
μ= 1− 100 Hz, three regions for excitatory inputs' motifs are shown. The strong higher-order interactions, regardless of their sign, are the sole signature of
common excitatory inputs when the spontaneous rate is low. b The regions for spontaneous rate within the range of μ= 100− 1000 Hz show that
inhibitory inputs can induce strong interactions in a high spontaneous rate regime. The excitatory input regions for high spontaneous rates (Supplementary
Fig. 4) shrink to a small size compared with the low spontaneous rate regime. The method of drawing the boundaries follows Fig. 6a and Supplementary
Note 3 and 4. The fixed parameters are the bin size, Δ= 5ms, and input rate, λ= 5 Hz.
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size cannot be too large, as it would diminish the effect of the
shared input (Fig. 4a, b) and hence degrade the overall reliability
of our formalism.

The classical approach to infer synaptic connectivity from
extracellular spiking activity is to construct cross-correlograms of
simultaneous spike trains from pairs of neurons10. However, this
approach aims at discovering connections among recorded neu-
rons. In fact, researchers have made efforts to eliminate the effect
of common drives from unobserved inputs on this measure to
avoid erroneously reporting pseudo-connections11,76. Another
approach is the model-based method that uses a stochastic model
of neurons. Among them, the point process-generalized linear
model (GLM) is a standard tool for analyzing the statistical
connectivity of the observed neurons12–14. However, these models
determine current neuronal activity from their own past activities
and/or known covariate signals such as stimulus and local field
potential signals. Since the recorded neurons are embedded in
larger networks, we need to consider the effect of inputs from
unobserved neurons to describe the population activity accu-
rately. Although there have been attempts to incorporate com-
mon inputs from unobserved neurons into the GLM framework
by treating them as hidden variables77,78, these statistical models
are not directly constrained by physiological limits such as Dales’
law, physiological membrane dynamics, or spiking thresholds
that the LIF neuron model has79. In contrast, the physiological
LIF models that we used are based on knowledge about the
balanced network: we included hidden inputs as background
noise and consider various architectures of hidden common
inputs as shared signals with arbitrary strengths. Moreover, we
generalized the analysis and presented a guide map to infer motifs
with most of its boundaries independent of the neuron model.

Another approach to model the input-output relation of a
neural population under in vivo conditions is to use the dichot-
omized Gaussian (DG) model47,50,80 and its extensions81–84. The
DG model contains threshold functions that receive inputs
sampled from a correlated multivariate Gaussian distribution to
model shared synaptic inputs. It can capture well the population
spike-count distributions of exponential integrate-and-fire neu-
rons receiving shared Gaussian inputs85. Previous studies have
shown that this simple model exhibits positive pairwise and
negative triple-wise interactions and can account for the observed
sparse population activity41,42. However, our approach to model
input-output relation has the following advantages over the DG
model. First, we describe the population activity based on the
analytical input-output relation of the LIF model, as opposed to
the DG model that lacks membrane dynamics. The main merit of
the DG model is that, due to the simplified construction without
dynamics, it offers an analytical expression of the population
activity given the statistics of the inputs. However, we recently
obtained the analytic input-output relation for the near-threshold
LIF neuron that addresses the dynamics of the in vivo membrane
potential36, which allows us to describe the input-output relation
with greater temporal accuracy. Second, the LIF neuron models
allow us to construct various architectures with different common
input types, enabling us to build a flexible framework to infer the
network structure from data. In contrast, the DG model is limited
in its structure of the shared inputs; thus, one cannot test alter-
native hypotheses, e.g., whether common inhibitory inputs can
also generate the same neural interactions41,58.

Our quantitative model is based on two distinct network
architectures (triangle and star) with either excitatory or inhibi-
tory shared inputs. It is crucial to determine how the directional
connections among postsynaptic neurons affect the prediction.
Ample experimental evidence has established that pyramidal
neurons in the visual cortex of mature mammals are sparsely
connected22,86–89. However, a combination of directional

connections with shared inputs has been observed. For example,
excitatory inputs from layer 4 are shared with layer 2/3 connected
pairs of excitatory pyramidal neurons90. Here, we ran simulations
on directional connections among three neurons in addition to
inhibitory input to trio: the results affirm that the presence of
excitatory-to-pairs motif, rather than inhibitory-to-trio, either in
directional or hidden shared input’s connections induces strong
negative triple-wise and positive pairwise interactions in low
spontaneous rate regimes (see Fig. 9). In some experimental
results, of course, a divergent common inhibition might be mixed
with local common excitatory inputs. To find evidence of such a
mixed inhibitory-to-trio motif in the data, one should carefully
examine deviations from the observed interactions that are solely
due to the excitatory-to-pairs motif. However, we expect such
deviations would be small, as long as the spontaneous activities of
neurons are low.

One of the assumptions in our analytical framework is that the
firing rate of the signaling input is low91 in comparison with that
of the postsynaptic neurons; Hence, there is at most one signal
arriving between two successive spikes of the postsynaptic neu-
ron. It is possible to consider cases with higher firing rates of the
signaling input (Appendix III in Shomali et al.36). However, as we
have considered a small time window, Δ= 5− 10 ms, the
assumption of having not more than one signal during such a
short time window is reasonable (Supplementary Fig. 2 in Sup-
plementary Note 1). Another assumption is that the synaptic
inputs set the voltage of the neuron near the threshold regime,
which is reported to be the case when stimulus is presented20.
However, a verifying analysis by NEURON simulator using the
blue brain multicompartmental neuron model3,57, supports the
idea that the guide map remains intact even in subthreshold
situations.

Our finding shows that the strong negative triple-wise inter-
actions (sparse population activity) observed in the data43 can be
induced by a simple motif, the excitatory-to-pairs, with the rea-
listic spiking nonlinearity. Does this microcircuit have any spe-
cific computational advantage, or did the specific experimental
settings result in this observation? Independent empirical evi-
dence shows that the excitatory-to-pairs motif is overexpressed
compared with a random network in rat visual23 and
somatosensory92 cortex. Our findings of excitatory-to-pairs
motifs in monkey and mouse V1 neurons may imply that such
ubiquitous motifs coupled with neurons’ nonlinearity are suffi-
cient for sparse coding in the early sensory cortices93–95. A the-
oretical study by Zylberberg and Shea-Brown53 supports this
view: they showed that, when recurrently connected neurons
optimally encode natural images, they sparsified the population
responses by integrating inputs sublinearly (i.e., exhibited nega-
tive triple-wise interactions). On the other hand, the common
inhibitory input traditionally plays a role in the sparse coding in
the form of a well-known winner-take-all network96. Indeed,
there is also experimental evidence that a common inhibitory
input innervates multiple postsynaptic pyramidal neurons if they
are closer than 100 μm97 to each other; at greater distances, the
probability of common inhibitory inputs to two or more neurons
decreases (Fig. 6b in Packer and Yuste97). This phenomenon is
attributed to the limited length of the inhibitory neurons’ axons
and it means that, if the electrodes’ separation is greater than
100 μm, the chance of capturing a common inhibitory input (to a
pair, or to a trio) is diminished. In the experiment of Ohiorhe-
nuan et al., the closest possible separation of the recorded neurons
was less than 300 μm; i.e., recorded neurons are expected to be in
a circle of radius r ~ 150 μm58. In that case, the probability of
having two neurons closer than 100 μm is 32%, while that of
having three neurons closer than 100 μm to each other would be
much lower, less than 7% (Supplementary Note 10). Thus, the
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probability of finding an inhibitory presynaptic neuron, that
innervates synapses to three recorded postsynaptic neurons is less
than 7%. Consequently, the observations of Ohiorhenuan et al. do
not rule out the presence of an inhibitory-to-trio motif in local
microcircuitry spanning length of less than 100 μm, and it cannot
be used as empirical proof that the excitatory-to-pairs is an
exclusive computational motif of the V1 microcircuits58.

More precise experiments controlling the separation of elec-
trode tips are required to complete the picture of cortical
microarchitecture. Plotting how the observed triple-wise inter-
action varies with neuronal separation might give a clearer pic-
ture. Such a dependence of pairwise interactions varied with
neurons’ distance has been observed in retina ganglion cells98. If
the chance of a strong negative triple-wise interaction for neurons
closer than 100 μm decreases, it would indicate the absence of the
excitatory-to-pairs motif in a local network with neuronal
separation less than 100 μm; if so, Ohiorhenuan et al.’s observa-
tion would be a specific result of the experimental setting58.
However, if the strong negative triple-wise interactions persist
even for neurons closer than 100 μm, it means that the excitatory-
to-pairs motif prevails in the microcircuit (≤ 300 μm) and would
constitute further evidence supporting the computational
advantage of excitatory-to-pairs microcircuitry. By contrast, it
would be difficult to find evidence that the inhibitory-to-trio
motif exists or coexists with the excitatory-to-pairs motif as
computational units in the local microcircuits from the activities
of the three neurons as long as the postsynaptic firing rate is low,
because of the small negative triple-wise interactions induced by
common inhibitory inputs (Supplementary Note 3).

Finally, we hope that the experimental evidence of the struc-
tured interactions in mouse V1 (Fig. 8) and theoretical predic-
tions of the underlying motifs for both mouse and monkey V1
data presented here, will motivate neurophysiologists to perform
experiments that can directly identify input types and the net-
work’s structure in living animals. More specifically, although it is
quite challenging, an experiment that simultaneously performs
in vivo patch-clamp of postsynaptic neurons and common inputs
(and specifies the types of neurons by using, e.g., genetic meth-
ods) could provide the ground-truth data about the architecture
and improve the prediction of the proposed method.

In summary, we provided a theoretical tool and verified it by
NEURON simulator, to predict network architecture and types of
hidden inputs (excitatory/inhibitory) from the activity of neurons
recorded in vivo. We defined analytic regions for each motif, with
boundaries mostly independent of a neuron model, to show that
the basic motifs can be distinguished using spiking statistics. Our
guide map helps to uncover hidden network motifs from neural
interactions observed in a variety of in vivo data.

Methods
Effect of presynaptic spike-timing on leaky integrate-and-fire neuron
receiving noisy inputs balanced near threshold. Here, we describe the statistical
properties of our cortical neuron model operating under in vivo-like conditions36.
We evaluated the probability of spiking within a given time window; it is the
building block with which we construct the population activity of such neurons. To
this end, we use a leaky integrate and fire (LIF) postsynaptic neuron with a
membrane time constant of τm and a resting potential of Vr:

τm
dVðtÞ
dt

¼ �ðVðtÞ � VrÞ þ IðtÞ: ð5Þ

The neuron spikes when its membrane potential, V(t), hits the spiking threshold,
Vθ; V(t) then resets to Vr. The input current I(t) consists of two parts: (a) a
transient signaling input which represents the input from the influential synapses
of arbitrary strength, ΔI(t, A, τb), and (b) the effect of all other independent pre-
synaptic inputs accumulated as a fluctuating background input, I0(t):

IðtÞ ¼ I0ðtÞ þ ΔIðt;A; τbÞ: ð6Þ
We modeled the fluctuating background input as Gaussian white noise, so that it
would replicate synaptic inputs to V1 neurons when a visual stimulus is

presented20. I0(t) has a mean drive of �I and variance of 2D/τm; here, the diffusion
coefficient, D, measures I0(t)’s level of noise. The signaling input, ΔI(t, A, τb), is
characterized by its amplitude (or efficacy), A, and its arrival time, τb.

The fluctuating I0(t) is a source of variability; its stochastic nature, however,
makes it impossible to solve Eq.(5) and find the exact spike-time deterministically.
Thus, researchers have tried to address the probability of spiking36,68,99. Their
essential mathematical tool is the Fokker-Planck (or diffusion) equations100, which
give the probability density that a postsynaptic neuron spikes at time t, given that
the membrane potential at the initial time t0 is known. However, the corresponding
Fokker-Planck equation has yet to be solved even in the absence of any signaling
input. An analytical solution exists for a very specific case �I ¼ Vθ

101,102, which is
known as the threshold regime representing a physiologically plausible situation for
in vivo neurons. Recently, Shomali et al. were able to extend that analytic solution
of the spike density to a case in which signaling inputs arrive on top of background
noise36. They considered a near-threshold neuron, �I ’ Vθ , that receives a transient
signaling input (i.e., the synaptic time constant of τs is sufficiently smaller than the
membrane time constant, τm). They solved the Fokker-Planck equation and
analytically found the probability density of spiking (also called the inter-spike
interval distribution, or ISI) for an arbitrary strength and shape of signaling input
(Methods: Spike density of a leaky integrate-and-fire neuron receiving a signaling
input at the threshold regime).

Spiking density of leaky integrate-and-fire neuron receiving signaling input in
the threshold regime. According to Shomali et al.36, the first-passage time density
(inter-spike interval density) for the LIF neuron (Eq. (5)) receiving signaling input
at time τb on top of noisy background input can be expressed as

JAðtÞ ¼
ffiffiffiffiffiffi
κω

p

πτm
exp �φ2

þ
2

� �
1þ

ffiffiffiffiffi
π

2κ
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φþ exp
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þ
2κ

� �
´ 1þ Erf
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;

ð7Þ

where Erf ðxÞ ¼ ð2= ffiffiffi
π

p Þ R x
0 expð�t2Þdt and κ(t, τb), ω(t, τb) and φ±(t, τb) are

κðt; τbÞ ¼ ð1� rðtÞ2Þ=ð1� rðt � τbÞ2Þ;

ωðt; τbÞ ¼
rðt � τbÞ2ð1� rðτbÞ2Þ

ð1� rðtÞ2Þ3
;

φ± ðt; τbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τmV
2
θ

Dð1� rðτbÞ2Þ

s �
± rðτbÞ �

Z t

τb

ds
τm

ΔIðs;A; τbÞ
Vθ

�
;

ð8Þ

using rðtÞ ¼ expð�t=τmÞ. The first-passage time density in the period before the
signal arrival, i.e., t < τb, reduces to the known formula102,103:

J0ðtÞ ¼
1
τm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
π

τmV
2
θ

D
r2ðtÞ

ð1� r2ðtÞÞ3

s
exp � τmVθ

2

2D
r2ðtÞ

1� r2ðtÞ

� �
: ð9Þ

In this study, we used Eq. (7) with a square-shaped signaling input given by:

ΔIðt;A; τbÞ ¼ A ´
0 t < τb;

1=Δt τb ≤ t ≤ τb þ Δt;

0 τb þ Δt < t;

8><
>: ð10Þ

where Δt is the signal’s duration i.e., Δt ~ τs, which is much smaller than τm.

Spiking density of LIF neuron after signaling input arrival. Here, we derive the
probability density of a postsynaptic spike occurring after arrival of the signaling
input. To do so, we reset the time origin to the signal’s arrival time in a way that the
last postsynaptic spike happened at τb before the new origin. The conditional
probability that the next postsynaptic spike happens at τ after the signal arrives is
calculated as in Shomali et al.36

f AðτjτbÞ ¼
JAðτ þ τbÞ

1� R τb
0 J0ðsÞds

; ð11Þ

where the denominator is a normalization term to satisfy
R1
0 f AðτjτbÞdτ ¼ 1. Next,

we compute the probability density that the postsynaptic neuron generated a spike
at τb before arrival of the signal, but not since then, pback(τb). It is the probability of
backward recurrence time, following renewal point process theory104:

pbackðτbÞ ¼ μð1� R τb
0 J0ðsÞ dsÞ, where μ ¼ ðR1

0 sJ0ðsÞdsÞ
�1

is the mean firing rate of
the postsynaptic neuron when there is no signaling input. By marginalizing Eq.
(11) with respect to τb by using pback(τb), we obtain36

f AðτÞ ¼
Z 1

0
f AðτjτbÞ´ pbackðτbÞ dτb

¼ μ

Z 1

0
JAðτ þ τbÞ dτb:

ð12Þ

Note that when the amplitude of the signaling input, A, is zero, JA(Vθ, t)= J0(Vθ, t)
and fA(τ) simplify to f 0ðτÞ ¼

R1
τ μJ0ðVθ; sÞ ds.
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Now, we can determine the probability of having one or more spikes in a
specific time window, Δ, after stimulus onset. It is given as the cumulative density
function of fA(τ):

FAðΔÞ ¼
Z Δ

0
f AðτÞdτ; ð13Þ

where the subscript A indicates that FA(Δ) is a function of the amplitude of the
signaling input. In the absence of the signaling input (i.e., A = 0), we have
F0ðΔÞ ¼

R Δ
0 f 0ðτÞdτ.

Pairwise and triple-wise interactions of neural populations. Using a binary
representation of spiking activity for each postsynaptic neuron in a time win-
dow, Δ (schematically illustrated in Fig. 2a), we can represent the population
activity of the postsynaptic neurons as a binary pattern. From the probabilities
of the occurrence of all possible patterns, we can assess pairwise or higher-order
interactions of the neural population. First, we consider two neurons. Let
xi= {0, 1} (i= 1, 2) be a binary variable, where xi= 1 means that the ith neuron
emitted one or more spikes in the bin, while xi= 0 means that the neuron
was silent.

We denote by P(x1, x2) the probability mass function of the binary activity
patterns of the two postsynaptic neurons. Here, P(1, 1) and P(0, 0) are the
probabilities that both neurons are, respectively, active and silent within Δ.
Similarly, P(1, 0) is the probability that neuron 1 emits one or more spikes, while
neuron 2 is silent during Δ; P(0, 1) represents the opposite situation. The
probability mass function can be represented in the form of an exponential family
distribution:

Pðx1; x2Þ ¼ expðθ1x1 þ θ2x2 þ θ12x1x2 � ψÞ; ð14Þ
where θ1, θ2, and θ12 are canonical parameters, and ψ is a log-normalization
parameter. In particular, θ12 is an information-geometric measure of the pairwise
interaction37,60,63. Accordingly, the pairwise interaction parameter is computed as

θ12 ¼ log
Pð1; 1ÞPð0; 0Þ
Pð1; 0ÞPð0; 1Þ : ð15Þ

We have θ12= 0 when the binary activities of two neurons are independent.
The same treatment can be applied to three neurons. The probability mass

function for three neurons is written in exponential form as

Pðx1; x2; x3Þ ¼ exp ∑
3

i¼1
θtixi þ∑

i<j
θtijxixj þ θ123x1x2x3 � ψ

� �
: ð16Þ

Let us suppose θ123 (the triple-wise interaction parameter) is 0. In this case, the
distribution reduces to the pairwise maximum entropy model, i.e., the least
structured model that maximizes the entropy given that the event rates of
individual neurons and joint event rates of two neurons are specified105.
Consequently, a positive (negative) triple-wise interaction indicates that
the three neurons generate synchronous events more (less) often than the chance
level expected from the event rates of individual neurons and their pairwise
correlations. From this equation, the triple-wise interaction among
three neurons for the exponential family of probability mass function is
calculated as37,38:

θ123 ¼ log
Pð1; 1; 1ÞPð1; 0; 0ÞPð0; 1; 0ÞPð0; 0; 1Þ
Pð0; 0; 0ÞPð0; 1; 1ÞPð1; 0; 1ÞPð1; 1; 0Þ : ð17Þ

Mixture model of three neurons receiving common inputs to their pairs
(triangle architecture). The mixture model of three neurons whose pairs receive
independent common inputs (a triangle architecture) is calculated as follows.
Figure 3d, shows eight possible patterns for the three independent common inputs.
When the common input to neuron 1 and 2 is active (and the other two common
inputs are silent), the pattern probabilities of three postsynaptic neurons are given
by P1

AðxÞ ¼ ½Q2
i¼1 FAðΔÞxi ð1� FAðΔÞÞ1�xi � ´ ½F0ðΔÞx3 ð1� F0ðΔÞÞ1�x3 �. This situa-

tion happens in (λΔ)(1−λΔ)2 × 100% of the bins. The probabilities of activity
patterns in which neurons receive the second (third) common input to neuron 2
and 3 (3 and 1), P2

AðxÞ (P3
AðxÞ), obey equations similar to this one. The common

inputs may be simultaneously applied to the same bin due to their independence.
Namely, two common inputs coincide at (λΔ)2(1− λΔ) × 100% of the bins. The
pattern probability in the bins at which common inputs 1 and 2 coincide is given
by P12

A ðxÞ ¼ ½Qi¼1;3FAðΔÞxi ð1� FAðΔÞÞ1�xi � ´ ½F2AðΔÞx2 ð1� F2AðΔÞÞ1�x2 �. Simi-
larly, we define P23

A ðxÞ and P13
A ðxÞ for the bins at which the common inputs 2 and 3

and common inputs 1 and 3 coincide, respectively. Finally, all common inputs
coincide at (λΔ)3 × 100% of the bins, for which the pattern probability is given by
P123
A ðxÞ ¼ Q

i¼1;2;3F2AðΔÞxi ð1� F2AðΔÞÞ1�xi . The parallel spike sequences are
modeled as a mixture of these probability mass functions,

PðxÞ ¼ ð1� λΔÞ3P0ðxÞ þ ∑
3

i¼1
ðλΔÞð1� λΔÞ2Pi

AðxÞ

þ∑
i<j
ðλΔÞ2ð1� λΔÞPij

AðxÞ þ ðλΔÞ3P123
2A ðxÞ:

ð18Þ

For the asymmetric case, when two common inputs are shared among three
neurons (Fig. 3e), the mixture model simplifies to

PðxÞ ¼ ð1� λΔÞ2P0ðxÞ þ ∑
2

i¼1
ðλΔÞð1� λΔÞPi

AðxÞ þ ðλΔÞ2P12
A ðxÞ: ð19Þ

Sequential Bayesian estimation of neuronal interactions. We extended the log-
linear model for two (Eq. (14)) and three neurons (16) to a time-dependent model
by using the time-dependent parameters collectively denoted as θt and by assuming
the following state transitions for the parameter:

θt ¼ θt�1 þ ξt ; ð20Þ
where ξt is a Gaussian random variable with zero mean and covariance Q. A
sequential Bayes filter and smoother was performed to obtain the approximate
posterior of the time-series θ1, θ2,… given the population activity data. The
algorithm provides the mean and covariance of the approximated Gaussian pos-
terior at every time step. The hyperparameter Q is optimized under the principle of
maximizing marginal likelihood by using the expectation-maximization algorithm
(see refs. 54,74 for the details of this method). We used a diagonal covariance matrix
as Q whose entries for the first-order parameters were nonzero and optimized. The
variances for the pairwise or higher-order interactions were set to zero, resulting in
the estimation of the constant parameters.

Ethics statement. All procedures in Ohiorhenuan and Victor58 were in accor-
dance with the National Institutes of Health guidelines for the use and care of
experimental animals and were approved by the Weill Cornell Medical College
Institutional Animal Care and Use Committee. All experimental work for the Allen
Brain Observatory—Neuropixels Visual Coding dataset was performed with
approval and oversight of the Allen Institute Institutional Animal Care and Use
Committee.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data of this study is available at https://doi.org/10.5281/zenodo.7546537. The
datasets analyzed in this study are from Ohiorhenuan and Victor58 and the Allen Brain
Observatory—Neuropixels Visual-Coding dataset, https://portal.brain-map.org/explore/
circuits/visual-coding-neuropixels.

Code availability
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