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Abstract—Modern CPUs suffer from power efficiency hetero-
geneity, which can result in additional energy cost or performance
loss. On the other hand, future supercomputers are expected
to be power constrained. This paper focuses on energy aware
scheduling algorithms targeted on two situations considering this
node heterogeneity. In single-node situation, workload consists of
various single-node jobs, Combinatorial Optimization Algorithm
saves energy by calculating a local optimal power efficiency
node allocation plan from KM (Kuhn-Munkres) algorithm. In
multi-node situation, power cap causes load unbalancing in
multi-node jobs due to the node heterogeneity. Sliding Window
Algorithm targets on reducing such unbalancing by sliding
window. Proposed algorithms are evaluated in the simulation
and real supercomputer environment. In single-node situation,
Combinatorial Optimization Algorithm achieved up to 2.92%
saving. For the multi-node situation, workload is designed based
on real historic workload, and up to 5.36% saving was achieved
by Sliding Window Algorithm.

Index Terms—power saving, job scheduling, node heterogene-
ity, parallel computing

I. INTRODUCTION

After a long period of exponential improvement in transis-
tors density, Dennard scaling appeared to break down several
years ago. According to Dennard scaling, with the density of
transistors doubles, CPU frequency increases by 40% and the
power reduces by 50%, which means the total power of a chip
stays in a level the same and performance per watt grows in
the same rate as Moore’s Law [1]. However, such performance
improvement without increasing power consumption becomes
harder due to the current leakage and high temperature of
transistors at extremely small size. Since Dennard scaling is
over, the performance improvement means power consumption
increasing commensurately. Thus, the power consumption of
future supercomputers may be restricted due to the facility
capacity [2].

In order to reduce the cost, the power cap is another method
to prevent the peak power from exceeding the predetermined
threshold. One problem of the power cap is that nodes can
show significant performance variation under a cap [3] even
with the same architecture. This variation is referred to as
a node-level power/performance heterogeneity. Most parallel
applications are designed to be load-balanced to maximize
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the performance of all computing nodes. Thus, the node-level
performance heterogeneity may cause serious imbalance in
parallel applications depending on nodes they are assigned to.

There is also another problem that will cause load imbal-
ance, most applications in supercomputers mainly use part of
components, such as CPU, GPU, memory and internal network
[3]. For example, some computation-intensive applications
consume only very little memory and internal network power.
With such an intensive use of a particular component, the
power/energy consumption of an application is determined by
not only the node-level power efficiency but also component-
wise efficiency. Thus, applications should be assigned to nodes
which can perform better. In supercomputer systems, the node
allocation plan is determined by the job scheduler. Thus, to
achieve efficient power management, it is necessary to study
energy aware scheduling considering node-level heterogeneity
and property of jobs.

This paper proposes two kinds of energy-aware scheduling
algorithms for supercomputer systems considering the node
heterogeneity. Combinatorial Optimization algorithm (COA)
targets on the situation of scheduling different kinds of jobs,
such as computation-intensive and memory-intensive jobs,
using one node for each (single-node situation) using node
power efficiency. Sliding Window algorithm (SWA) targets
on reducing load imbalance caused by the performance het-
erogeneity among nodes executing the same type jobs under
a tight power cap possibly using multiple nodes (multi-node
situation). The common basic idea behind two algorithms is
using Power/performance Variation Table (PVT). PVT is a
profile characterizing power efficiency of all nodes and can
be built by test runs or historic data [3]. With information of
power efficiency of each node, algorithms output the energy-
efficient allocation plan depending on property of jobs.

This paper is organized as follows. Section II first introduces
several tools used in experiments, then explains the design
of the scheduling simulator and two scheduling algorithms.
Section III shows observed behaviors of ITO-A under different
power cap and evaluates energy saving capability of schedul-
ing algorithms. Related work are presented in Section IV and
conclusion is in Section V.
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TABLE I
SPECIFICATION OF ITO-A

Machine Fujitsu PRIMERGY CX2550/CX2560 M4

System
Number of Nodes 2,000 (72,000 cores)

Memory 384 TB
Peak Performance 6.91 PFlops (Double Precision)

Node
CPU Intel Xeon Gold 6154 (Skylake-SP)

3.0 GHz 18 core x 2 / node (3,456 GFlops)
Memory DDR4 192 GB (255.9 GB/s)

II. METHODOLOGY

A. Power Measuring

The main power consumption of supercomputer with no
accelerators comes from CPUs and memories. Current tech-
nology can measure the power consumption of two generic
components, identified as PKG for CPUs and DRAM for
memories, with high accuracy. Thus, energy saving capabil-
ity of scheduling algorithms of pure CPU supercomputer is
evaluated by energy consumption of PKG and DRAM during
the workload in this paper. Calculation performance and power
consumption heterogeneity occurs at transistor level. However,
this paper mainly focuses on job scheduling by which a set of
nodes is allocated to a job. Hence, this paper chooses node as
the smallest unit of heterogeneity.

In order to simulate the power behavior of systems having
node-level heterogeneity, the simulator needs to be able to
characterise the power consumption of different jobs running
on different nodes. One technique to achieve this is PVT. In
this paper, PVT is built by test runs of applications. PKG
energy and DRAM energy data of test runs and evaluation
runs is recorded by a power management tool named RAPL
(Running Average Power Limit). RAPL is a tool introduced
in Intel Sandy Bridge processor family at first to provide
energy model interfaces in its first generation. Then, it has
been constantly enhanced in its successive generations and
now provides more valuable interfaces. Ilsche et al. [5],
Desrochers et al. [6] and Hackenberg et al. [7] verified the
power information and showed that its accuracy has been
much improved from Sandy Bridge to the modern state-of-the-
art architecture. For benchmark applications, STREAM and
HPCG are used in single-node situation and HPCG is also
used in multi-node situation.

The specification of ITO-A is in Table I. It is a subsys-
tem of Kyushu University’s supercomputer system. For each
benchmark used in the simulation and evaluation, power and
execution time in the PVT are collected from the average value
of more than 10 times test runs on all 2,000 nodes in ITO-A.
The evaluation of real power consumption of each scheduling
algorithms is also carried out on ITO-A.

B. Multi-node Scheduling Simulation

In supercomputer systems, execution time of jobs varies
from few seconds to hours, and computing nodes provided

Fig. 1. Simulator architecture

to each job are also limited. As a result, evaluating scheduling
algorithms in real computing environments is inappropriate,
even if such a challenge is allowed. Thus, a reliable and
customizable simulation environment is necessary for studying
the behavior of large-scale systems and evaluating scheduling
algorithms. Scheduling simulation introduced in this paper
supports scheduling of multi-node jobs and is able to char-
acterise power efficiency of each nodes by PVT.

Fig. 1 shows the architecture of the simulation configu-
ration. In Simulation Module, Workload Generator creates
a workload, which determines the timing to submit various
kind of jobs to the Scheduler, depending on the workload
configuration. Simulator submits jobs to Resource Manage-
ment Module. Submitted jobs are added to the job queue in
Resource Management Module, then Scheduler will calculate
the allocation plan depending on the scheduling algorithm,
jobs in the queue, available nodes in the node pool and
PVT in the Power Database. Power Monitor simulates the job
execution after scheduling, and records energy consumption.

1) Workload Generation: There are two states of comput-
ing nodes, one is executing a job and another is waiting for
scheduler to assign a job. In this paper, these two states are
called busy and available. Depending on whether the system
is busy or not, the energy saving capability of scheduling
algorithms can be different. System utilization rate describes
how busy the system is. In the real supercomputer system, the
utilization rate is not constant in time. From the utilization
rate of ITO-A system has been traced for around two weeks
(July 08 - 21 2018), the range was from 40% to 90%. Thus,
the generated workload is designed to keep the utilization rate
fluctuating around a certain value according to the workload
configuration, so that the behavior of the supercomputer can
be simulated under different utilization rate.

2) Power Monitor: After the allocation plan is made during
each step, the power monitor updates the power, elapsed time
and total energy consumption. Since several investigations
have been carried out about how to predict the power and
the influence of heterogeneity by power logs [3], simulation
in this paper is based on the assumption that the power con-
sumption, execution time and influence of heterogeneity can
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be accurately predicted. Thus, the final power and execution
time have the same value as in PVT. For multi-node jobs,
the simulation assumes that the computational load amount of
each node is perfectly balanced.

For a multi-node job j assigned to nodes N0, N1, . . . , Nq−1,
the total power P , execution time t and total energy E are
calculated as follow:

P =

q−1∑
k=0

Pj,k (1)

Pj,k = PPKG
j,k + PDRAM

j,k (2)

t = max(tj,k : k = 0, 1...q − 1) + tcomm (3)

E = Pt (4)

where Pj,k, PPKG
j,k , PDRAM

j,k and tj,k is the node-level total
power, PKG power, DRAM power and execution time of the
execution of a single-node job jsingle on the node Nk. The job
jsingle is used to estimate node-level performance numbers of
j which is considered as the weakly-scaled parallel version of
jsingle. The time tcomm represents the total communication
cost paid in j’s execution. In multi-node situation, the execu-
tion time is difficult to be predicted by PVT, because the job
execution time of one node is related to other nodes executing
the job. Thus, the simulation assumes that the execution time
of a multi-node job only depends on the node with the worst
performance. To simplify the model, this paper does not
consider the relationship between the communication cost and
power-efficiency of nodes, which means tcomm only depends
on application, problem size and number of required nodes.

C. Heterogeneity Aware Scheduling Algorithms

This section introduces scheduling algorithms applied to the
scheduler. The scheduler is a component of Resource Manage-
ment Module, which consists of scheduler, power database,
one FIFO (First In First Out) job queue and one node pool.
The architecture of this module makes each components easy
to modify, in case new systems or scheduling policies have
different requirements. PVT is saved in the power database,
recording the average PPKG, PDRAM and t collected from
test runs. Scheduler assigns jobs in the job queue to available
nodes in the node pool. Currently four scheduling algorithms
are applied to the scheduler:
• Naive: An application-unaware, heterogeneity-unaware

scheduling, applied to single-node and multi-node situa-
tions. This scheduling algorithm always chooses available
nodes with the smallest ID number. It is the baseline to
evaluate the energy saving capability of other algorithms.

• Power Aware Algorithm (PAA): An application-unaware,
heterogeneity-aware scheduling, applied to single-node
and multi-node situations. In this algorithm, as long as
there are enough available nodes, the scheduler assigns
the earliest job in the job queue to the most power
efficient nodes regardless of the state in the node pool and
job queue. Power efficient of nodes is ranked according to
the average value of all benchmarks’ predicted powers in

PVT. It saves energy by using efficiency nodes as much
as possible.

• Combinatorial Optimization Algorithm: An application-
aware, heterogeneity-aware scheduling, applied to single-
node situation. It is the same as PAA if the same
application are executed on all nodes. When scheduling
various kinds of jobs, COA finds an optimal energy-
saving solution by KM (Kuhn-Munkres) algorithms [8]
for jobs with different property. Scheduling policy not
only depends on power efficiency, but also on the prop-
erties of applications.

• Sliding Window Algorithm: An application-unaware,
heterogeneity-aware scheduling, applied to multi-node
situation. This algorithms only targets on multi-node sit-
uation under the power cap, and based on the assumption
that execution time of a load-balanced multi-node job
depends on the worst performance node. In multi-node
situation, the performance of highly efficient nodes will
be dragged down by other less efficient nodes executing
the same job. SWA uses the sliding window so that
performance gap between nodes running the same job is
not too large. SWA can be extended to application-aware
version.

1) Combinatorial Optimization Algorithm (COA): PAA is
an application-unaware scheduling algorithm and thus only
considers the ranking of power efficiency. However, some
nodes may show the high power efficiency when executing
memory-intensive applications, and is not very efficient when
executing computation-intensive applications. Thus, the alloca-
tion plan in PAA is not the best because PAA does not always
choose the most suitable nodes according to the property of
applications. Since there are usually two or more jobs in the
job queue during each scheduling interval, the queue likely
has two ore more jobs to be scheduled at the next interval
in its head segment. With this information, COA computes
an allocation plan that has minimum energy cost by KM
algorithms.

Considering p single-node jobs J = {j0, j1...jp−1} assigned
to q nodes N={n0, n1...nq−1} (q ≥ p), the problem can be
transformed into the optimal matching problem in a graph:
giving a bipartite graph G(V,E) (V = J ∪N,E = J ×N ),
the weight of edge w(j, n) is the energy consumption of job
j running on node n. M (M ⊆ E) is called a matching if
∃(j, n) ∈ M holds for ∀j ∈ J ; for ∀(j, n) ∈ M , (j, n′) /∈ M
and (j′, n) /∈ M hold for ∀n′ ∈ N − {n} and ∀j′ ∈ J −
{j}, respectively. Then, energy consumption of matching M
is defined as follow:

CM =
∑

(j,n)∈M

w(j, n) (5)

The matching M with minimum CM is called a minimum-
weighted matching, which is also the minimum energy con-
sumption allocation plan.

KM algorithm is one of the most popular algorithm that
solves this assignment problem in polynomial time [8]. The
basic idea of this algorithm is defining a label l(v) for each
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jobs and nodes, and looking for the M∗ that satisfies the
following equation:∑

(j,n)∈M∗

{l(j) + l(n)} =
∑

(j,n)∈M∗

w(j, n) (6)

When a job can not be matched, the algorithm will adjust
l(v) while keeping l(j) + l(n) ≤ w(j, n) ( ∀j ∈ J,∀n ∈ N ),
then try to match the job again. Assuming M∗ is a maximal
perfect matching [8], then for any M the following inequality
is satisfied:

CM =
∑

(j,n)∈M

w(j, n) ≥
∑

(j,n)∈M

{l(j) + l(n)} (7)

Note that, with definitions N(M) = {n : (j, n) ∈ M} and
J(M) = {j : (j, n) ∈M}, following hold; l(n) ≤ 0 for ∀n ∈
N(M∗); l(n) = 0 for ∀n /∈ N(M∗); and

∑
j∈J(M) l(j) =∑

j∈J(M∗) l(j). Therefore, the following is obtained to show
the optimality of M∗:∑

(j,n)∈M

{l(j) + l(n)} ≥
∑

(j,n)∈M∗

{l(j) + l(n)}

=
∑

(j,n)∈M∗

w(j, n)
(8)

Therefore, the allocation plan generated by COA consumes
less energy than all other allocation plans. If the number of
jobs in the job queue m is more than the number of available
nodes n, only the earliest n jobs in the queue can be scheduled
to obey the FIFO principle.

2) Sliding Window Algorithm (SWA): When power cap is
not applied to nodes, the difference of CPU frequency between
nodes is very small. Considering a q-node job j assigned to q
nodes (n0, n1... nq−1), let P , t and E be the power consump-
tion, execution time and energy consumption of j’s execution,
respectively. Suppose q single-node weakly-scaled jobs js,k
(k = 0, 1...q − 1) are assigned to the same q nodes, and let
Ps,k, ts,k and Es,k be the power consumption, execution time
and energy consumption of the job js,k, respectively. Since the
relationship between communication cost and nodes is ignored
and CPU frequency may be assumed independent of nodes
in the case without power capping, following equations are
obtained:

t = max(ts,k) + tc = ts,0 + tc = ... = ts,q−1 + tc (9)

E = Pt =

q−1∑
k=0

Ps,kt =

q−1∑
k=0

{Es,k + Ps,ktc} (10)

Here tc is the communication time. It is proved that the
scheduling of multi-node jobs can be transformed to the
scheduling of package of single-node jobs based on Equation
(1)–(4), and COA still works. In the situation with power
capping, however, Equation (9) does not hold anymore, which
means COA can not be applied to such situation. In this paper,
SWA focuses on multi-node situation, where multi-node jobs
are assigned to nodes under power caps.

Fig. 2. Process of Sliding Window algorithm (WindowSize=10)

In multi-node situation, the simulation assumes that the
execution time is determined by the node with the worst
performance when load-balanced multi-node job is executing
on nodes with different computational performance. Thus, if
good performance nodes (good nodes) and bad performance
nodes (bad nodes) are executing the same multi-node job,
the performance of good nodes will be dragged down by
bad nodes. It is difficult to assign good nodes to a multi-
node jobs, but these nodes still have chance to have smaller
scale multi-node jobs or, more likely, single-node jobs fully
exerting their performance if such small jobs are ready to
run in the queue. Since single-node and small scale multi-
node jobs are dominant, the allocation plan aware of node
performance similarity will work well without degrading the
utilization rate of good nodes.

SWA performs node assignment for a q-node job taking care
of the performance similarity by sliding a window wider than
q over all nodes, ranked by their computational performance,
one by one from the ranking top to the bottom until q available
nodes are included in the window. As exemplified in Fig. 2
for an 8-node job, SWA successfully finds eight nodes whose
performance is similar to each other, leaving two most efficient
nodes which will be likely utilized immediately by a 2-node
job or two single-node jobs at the head of the queue. Note that
SWA can successfully terminate with more than q available
nodes in the window only when they are found at the very
beginning of the sliding. In this case it simply chooses most
efficient available nodes.

As discussed above, Equation (9) does not hold under the
power cap so that KM algorithm is difficult to be applied in
multi-node situation, since w(j, n) is not a constant value.
Thus, scheduling algorithms used in this experiment of multi-
node situation are application-unaware with a workload con-
sisting of jobs for one particular application but with different
problem size and the number of required nodes. However,
there are some ways extending SWA to an application-aware
version, for example, resorting nodes and updating the ranking
before scheduling a new job.

III. VALIDATION AND EVALUATION

A. Single-node Situation

COA focuses on scheduling single-node jobs with differing
properties to nodes with the different power efficiency. In this
section, an experiment is carried out to verify the difference
between the power behavior of benchmark applications to
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understand the real heterogeneity of ITO-A as measurements
in [?]. Then the same workload is executed on both the
simulator and ITO-A to evaluate the accuracy of the simulator
and power saving capability of scheduling algorithms. The
evaluation is carried out under two different utilization rates.

1) Node-level Heterogeneity Verification: For verification,
STREAM and HPCG are chosen as the memory-intensive and
computation- and memory-intensive benchmark applications,
respectively. Two benchmark applications are executed for 10
times on 2,000 nodes on ITO-A. The average value of PKG
power and DRAM power are measured by RAPL. In the
verification both STREAM and HPCG run as one node job (1
process/36 threads) for 10 iteration times. The problem size of
STREAM is ARRAY SIZE=6G and HPCG is X=128, Y=192,
Z=128.

Fig. 3 shows results of the verification. To study the dif-
ference between benchmark applications, the PKG power and
DRAM power of nodes are displayed separately and excep-
tional points have been removed. X-axis represents the ranking
of 2,000 nodes, and is ordered by the average PKG/DRAM
power of two benchmark applications. It should be noted that
these two rankings are different and no clear relationship
was found. Y-axis shows the average PKG/DRAM power
consumption of 10 executions.

For the PKG power consumption, the variation in HPCG
reaches up to 17W (107W–124W), about 14.4% of the average
value. However, the PKG power consumption of STREAM
shows a variation of 4W (119W–123W), only 3.3% of the
average value. The PKG power consumption of these two
applications among all nodes does not show a strong relation.
In contrast, for the DRAM power consumption, tendencies
of STREAM and HPCG are similar. The DRAM power
of STREAM shows a 16W (60W–78W) variation, which is
23.5% of the average value. Similarly, the result of HPCG is
25.0% of the average value ranging in 30W–40W.

Two important facts can be inferred from the result. One
is that a PKG-efficient node may not be a DRAM-efficient
node since the DRAM power ranking of nodes has no obvious
relationship with the PKG power ranking. Thus, application-
aware scheduling is necessary because the power consumption
not only depends on the ranking of nodes, but also depends on
the properties of applications. The other is that the variation
of STREAM is much less than HPCG in terms of the total
power consumption, which means assigning HPCG to a power-
efficient node can save more power compared to STREAM. In
contrast, even if STREAM is assigned to a power-inefficient
node, the additional power consumption is relatively accept-
able. This requires the scheduling algorithm not to consider
the earliest job in the queue, but to trade off in all jobs that
need to be assigned.

2) Simulation and Evaluation of COA: The evaluation of
scheduling algorithms was carried out both in the simulator
and ITO-A. Only one representative workload is used due to
the limitation of experiment time in ITO-A. The workload
includes two different kinds of jobs, representing computation-
intensive jobs and memory-intensive jobs. Without loss of

Fig. 3. Power consumption heterogeneity of STREAM and HPCG

TABLE II
EXPERIMENTAL SETUP OF THE EVALUATION IN SINGLE-NODE SITUATION

Scenario Utilization Rate Nodes Scheduler
Busy 80% 1,990 Naive/PAA/COA
Free 40% 1,990 Naive/PAA/COA

generality, the total time for two benchmark applications in
the workload is set to be similar. The evaluation is carried
out under two scenarios (busy and free) come from the real
operation of supercomputer at Kyoto University with different
utilization rates to verify how the utilization rate affects
the energy saving capability. Workload and allocation plan
applied to the simulation and ITO-A is the same in order to
evaluate the accuracy of the simulator. In each scenario, three
scheduling algorithms, Naive, PAA and COA, are applied.
The experimental scenario is briefly shown in Table II. In the
experiment 5,700 jobs of STREAM and 3,400 jobs of HPCG
are used.

To compare the energy saving capability of algorithms quan-
titatively, the energy saving rate of algorithm A in scenario S
is defined as follow:

SavingA,S =
ENaive,S − EA,S

ENaive,S
(11)

where EA,S is the total energy consumption of algorithm A
in the scenario S. The comparison of scheduling algorithms
in two scenarios is shown in Fig. 4. X-axis represents whether
the energy consumption is from the simulation or real, Y-axis
is the energy saving rate. Both PAA and COA show better
energy saving capability in the free scenario. This is because
both algorithms save power by using good nodes as much
as possible. However, the busy scenario, in which almost all
good nodes are busy, forces some jobs to be assigned to bad
nodes. In all scenarios, COA saves more energy than PAA.
As discussed above, the total power consumption variation of
STREAM is less than HPCG, then COA can use this fact
to save more energy when jobs must be assigned to bad
nodes, while PAA cannot. Thus, the difference between two
algorithms is more significant in busy scenario as shown in
the figure, where COA saves 17% more energy than PAA.

The maximum error of difference between the simulation
energy consumption and real energy consumption is only
0.68% of total energy consumption. Comparing with PAA and
COA, the simulation error of Naive is much smaller. There
are many possible explanations for this. For example, PAA
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Fig. 4. Comparison of energy saving rate in single-node situation

Fig. 5. Execution time of HPCG under different power caps

and COA always assigning jobs to the same node may cause
the overheat, then it forces CPU frequency to decrease, which
results in the changes of power and worse accuracy [9].

B. Multi-node Situation under Power Cap

1) Verification of Power Behavior in Multi-node Situation
Under Power Caps: One feature of supercomputers under
power caps is that node-level power heterogeneity is trans-
formed into node-level performance heterogeneity. In this
case, the variation of power is very small, while nodes show
different computational performances. The most important
factor to determine the energy consumption is the execution
time, which depends on the performance of nodes. To verify
this, the performance of all nodes is measured under different
CPU power caps. Each node executes single-node HPCG with
one process, 36 threads and problem size of (104,104,104) for
ten times. The same set of jobs has been launched for four
times under different CPU power cap and one time without
capping for comparison. The execution results are shown in
Fig. 5 and the power consumption is shown in Fig. 6. Here the
unrealistic power capping (40W) is used to know the results
on the extreme condition.

For the execution time, all nodes show similar computa-
tional performances when there is no power cap. The execution
time range from 130s–151s, its variation is about 15% of the
average value, and no strong relationship with power hetero-
geneity is observed as discussed in Section III-A1. Thus, this
variation may be caused by other reason instead of node-level
heterogeneity, for example, the CPU frequency changing in
the execution. As the power cap becomes tighter, the execution
time becomes longer. When the power cap is extremely tight
(40W), the execution time increases significantly, and shows
clear relationship with the power efficiency of nodes. It is also
observed that the execution time ranges in 250s–400s resulting

Fig. 6. Power consumption of HPCG under different power caps

Fig. 7. Allocation plans of PAA and SWA

in a large variation of almost 50% of the average value,
much larger than the 14.4% variation of power consumption
shown in Section III-A1. It can be inferred that the node-level
heterogeneity becomes more serious under the tight power cap.

In contrast to the situation in Section III-A1, the PKG power
consumption of all nodes are very close under each of CPU
power caps. As for DRAM power, it is almost insensitive with
the tightness of power capping and almost independent of PKG
power as well. Thus, the power heterogeneity is smaller in this
case, and the performance heterogeneity, which reflected in
the variation of execution time, becomes the most important
factor of total energy consumption. Following simulations and
experiments are carried out under the power cap of 40W.

An important assumption in this work is Equation (3), which
states that the execution time of multi-node job is determined
by the worst performance node under the power cap. A small-
scale experiment is carried out to study the execution time of
multi-node jobs under the power cap, and to prove that it is
possible to save energy by SWA. Fig. 7 explains graphically
the difference between allocation plans of PAA and SWA
when assigning one multi-node job (j1) and 4 single-node jobs
(j2, . . . , j5). The ID of the node is labeled from the ranking of
its computational performance. In PAA, j1 first arrives and is
assigned to the best 8 nodes (node 1, 2, 11, 12, 21, 22, 23 and
24), then single-node jobs j2, . . . , j5 are assigned to nodes 25,
. . . , 28. In this situation, node 1 and 2 are both good nodes,
but they cannot take their performance advantages because
the execution time is decided by node 24. In SWA with the
window size of 10 nodes, the job assigned to each of nodes
1, 2, 11 and 12 is the single-node job, which means there is
no performance loss on these nodes. The multi-node job must
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Fig. 8. Experimental result of allocation plans in fig. 7

suffer an unavoidable performance loss of some nodes, such
as the node 21. However, the performance difference between
the node 21 and 28 is much smaller than difference between
the node 1 and 24. Hence, the performance loss of SWA is
less than that of PAA.

30 nodes were selected according to the stratified sampling
on ITO-A to verify the power consumption and execution time
in the above situation. Fig. 8 shows the experimental result. It
is observed that, compared with PAA, SWA brings a small rise
of 15s to the execution time of the multi-node job, while it
significantly decreases the execution time of single-node jobs.
For example, a single-node job assigned to the node 1 by
SWA takes 65s shorter execution time than the node 25 chosen
by PAA. Compared to PAA, the total energy consumption
of SWA is reduced by 1.7%. Another important observation
is that the difference of execution time between single-node
jobs and multi-node jobs is relatively large and cannot be
ignored, even though the problem size for each node is the
same. Theoretically, the communication cost is related to the
performance of nodes but the prediction of the communication
cost is so complicated, that the current simulation does not
consider the relationship.

2) Simulation and Evaluation of SWA: The power saving
capability of SWA depends on the number and execution time
of both multi-node and single-node jobs in the workload. This
is because the number of jobs assigned to both good nodes
and bad nodes is related to the arriving time, execution time
and number of required nodes. Thus, in order to simulate the
workload in real supercomputers faithfully, a historic workload
of Laurel 2 (supercomputer system B at Kyoto University)
was analyzed (September 18 - 25 2019). Table III shows the
result of classifying all jobs during this period according to
the execution time and the number of required nodes. The
number in the table is the total of classified jobs. It is observed
that multi-node jobs are fewer than single-node jobs, and the
number of required nodes for most multi-node jobs is less than
8.

In the evaluation, four configurations of HPCG are used
to represent jobs with different execution time and required
nodes to understand the basic results. The difference among
these four configurations is shown in Table IV. The number
of iterations is used to control the execution time of jobs,
rather than using the problem size whose change also affects
the execution time but causes a chaotic behavior in power
consumption due to the complicated structure of HPCG. The

TABLE III
CLASSIFICATION OF JOBS IN LAUREL 2

<360s 360s-3,600s >3600s
1 node 10,472 7,749 10,437

2-8 nodes 253 172 516
>8 nodes 1 0 3

TABLE IV
CONFIGURATION OF JOBS IN THE SIMULATION

Scenario Utilization Rate Nodes Power Cap Scheduler
Busy 80% 665 40W Naive/PAA/SWA
Free 40% 665 40W Naive/PAA/SWA

Job Node Iterations No. of Jobs Benchmark
A 1 1 times 774 HPCG (104-104-104)
B 1 10 times 1,043 HPCG (104-104-104)
C 8 1 times 17 HPCG (208-208-208)
D 8 10 times 51 HPCG (208-208-208)

number of jobs is set according to the historic workload in
Laurel 2. Due to the resource constraints, it is difficult to
run workload that lasts for more than an hour in ITO-A.
Thus, comparing with the real execution time in Laurel 2,
the execution time of jobs in the evaluation is cut down. Jobs
with extremely short execution time (≤ 20s) are discarded
because the power consumption of these jobs cannot accurately
be measured and is a very small proportion of the total energy
consumption.

Fig. 9 shows the energy saving rate of PAA and SWA in
the simulation and ITO-A. Compared to the energy saving rate
without the power cap, the energy saving rate of PAA under
the tight power cap becomes higher since the performance
heterogeneity under the power cap of 40W is larger than the
power heterogeneity without power cap. In free scenario, there
are many available nodes with similar performance so that
the number of jobs assigned to a mixture of good and bad
nodes is small. Thus, the power savings of PAA and SWA
is close in free scenario. However, since there are not many
available good nodes to choose in busy scenario, PAA assigns
more jobs to the mixture of good and bad nodes resulting in
performance loss. Thus, SWA saves more energy than PAA in
the busy scenario. Another observation is that both algorithms
show better power saving capability in the free scenario, which
is the same as single-node situation. The reason is that more
available nodes in the free scenario mean more options for
the scheduler, making it possible to assign more jobs to good
nodes keeping bad nodes less busy, while in the busy scenario
the scheduler has to assign jobs to bad nodes since the number
of available good nodes is not enough.

In multi-node situation, the error of the total power con-
sumption between simulation results and real results is larger
than single-node situation. The difference is caused by many
factors. For example, the execution time of jobs is unstable
under tight power cap and sometimes exceptionally long.
Another possible reason, as discussed above, is that commu-
nication cost of multi-node jobs is related to the performance
of nodes but not considered in the current simulation.
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Fig. 9. Comparison of energy saving rate in multi-node situation

IV. RELATED WORK

Several studies have been carried out to reduce the ad-
ditional energy consumption caused by power/performance
heterogeneity in supercomputers. Inadomi et al. reported that
the node-level power heterogeneity is transformed to the
node-level performance heterogeneity under power caps, and
introduced a power budgeting framework, which is based on
the power variation estimation with PVT [3]. Yamamoto et
al. also proposed a power budgeting framework based on
power estimation, and discussed the scheduling from another
viewpoint, which reduces performance loss by preventing
the power of job from exceeding the power constraint [10].
Only single node-level power heterogeneity aware resource
management was proposed in [11], the algorithm presented
in which is the prototype of PAA in this paper, and is the
very fundamental version of the algorithms proposed in this
paper. Comparing with these works, this paper takes different
perspectives to reduce additional energy consumption caused
by power/performance heterogeneity. COA focuses on both
power heterogeneity and application factors by solving the
optimal assignment problems, and SWA prevents the perfor-
mance loss caused by tight power constraint by reducing load
imbalance with the sliding window. For power estimation,
Inadomi et al. introduced a power model predicting power and
performance variation by test runs [3]. Some study achieved
good reductions of energy consumption (over 10% reduction)
[12] [13] compared to the results of this study (5.36%). The
results of this study come from the scheduling considering the
node power heterogeneity and different from the job workload.
Thus it may be possible to combine the method of this study
and other power-aware scheduling.

V. CONCLUSION

This paper first presented a newly developed multi-node
scheduling simulator that can be applied to nodes with dif-
ferent power efficiency and computational performance, then
proposed two scheduling algorithms. COA is an application-
aware scheduling algorithm targeting on single-node situation
without power constraint, and saves the energy by solving
the optimal assignment problem with KM algorithm. SWA
reduces the load imbalance in multi-node jobs caused by the
performance heterogeneity under tight power caps by a sliding
window. These two algorithms are compared to Naive and
PAA in the simulation and the real supercomputer. As a result,
COA saved up to 2.92% of energy saving rate compared to

Naive in single-node situation using ITO-A node heterogene-
ity. In multi-node situation, the best energy saving rate of
SWA reached 5.36% compared to Naive under a power cap
of 40W at ITO-A. It should be noted that 40W is a very strict
power cap for computing nodes, and thus is not usually applied
in real supercomputers. However, studying power behavior of
supercomputers under such a power cap is necessary, because
in future it is expected that even a relaxed capping will cause
a more significant performance degradation in multi-node job
execution due to the enlargement of semiconductor process
variation according to the shrinking of transistors.

Finally, the workload in the evaluation is not perfectly same
as the historic workload in Laurel 2, because it is generated
in a stochastic process and applications in it are also different.
When a workload includes jobs lasting for hours and jobs only
executing for few seconds, it must be considered that whether
SWA still saves energy or not.
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